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A billiard is a mechanical system consisting of a point-particle moving freely

inside a planar region and being reflected off the perimeter of the region accord-

ing to some reflection law. The specular reflection law is the familiar rule that

prescribes the equality of the angles of incidence and reflection. Billiards with

this reflection law are conservative systems, and as such are models for physical

systems with elastic collisions. For this reason and their intrinsic mathematical

interest, conservative billiards have been extensively studied. Much less studied

are dissipative billiards, which originate from reflection laws requiring that the

angle of reflection is a contraction of the angle of incidence. These billiards do

not preserve the Liouville measure, and therefore can model physical systems

with non-elastic collisions. In this paper, we investigate numerically and an-

alytically a dissipative billiard in a square. We find that its dynamics differs

strikingly from the one of its conservative counterpart, which is well known to

be integrable. Indeed, our results show that a dissipative billiard in a square

has a rich dynamics with horseshoes and attractors of parabolic and hyperbolic

type coexisting simultaneously.

I. INTRODUCTION

Billiards are among the most studied dynamical systems for two main reasons. Firstly,

they serve as models for physical systems of great importance (see e.g. the book7 and

references therein), and secondly, they are simple examples of dynamical systems displaying

a rich variety of dynamics ranging from integrability to complete chaoticity. Most of the

existing literature on this subject is devoted to the study of conservative billiards (cf.3,8).

In this case, the point-particle obeys the standard reflection law: the equality between the

angles of incidence and reflection.

Another class of systems, which has not received as much attention as conservative bil-

liards, consists of billiards with reflection law stating that the angle of reflection is a con-

traction of the angle of incidence. This should have the effect of contracting the volume in

phase space, as observed computationally.

In this paper, we consider a specific dissipative law of reflection. We assume that the
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contraction is uniform, i.e. the angle of reflection equals the angle of incidence times a

constant factor 0 < λ < 1.

Recently, Markarian, Pujals and Sambarino6 proved that dissipative planar billiards

(called pinball billiards in their paper) have two invariant directions such that the growth

rate along one direction dominates uniformly the growth rate along the other direction.

This property is called dominated splitting, and is weaker than hyperbolicity, which requires

one growth rate to be greater than one, and the other growth rate to be smaller than one.

The result of Markarian, Pujals and Sambarino applies to billiards in regions of different

shapes. In particular, it applies to billiards in polygons. This is an interesting fact because

the dominated splitting property enjoyed by the dissipative polygonal billiards contrasts the

parabolic dynamics observed in the conservative case6,8.

We take here a further step towards the study of dissipative polygonal billiards considering

the square billiard table. Our main finding is that this system does not just have the

dominated splitting property, but it is hyperbolic on a subset of the phase space. More

precisely, we provide theoretical arguments and numerical evidence that the non-wandering

set in the phase space decomposes into two invariant sets, one parabolic and one hyperbolic.

This dynamical picture is clearly richer than the one of the conservative square billiard,

which is fully integrable.

We also conduct a rather detailed study of the changes in the properties of the invariant

sets as the parameter λ varies. We found that there are no hyperbolic attractors for small

values of λ but only one horseshoe and one parabolic attractor. For intermediate values of λ,

we observe the coexistence of a parabolic attractor, a hyperbolic attractor and a horseshoe,

whereas for large values of λ, we only have a parabolic and a hyperbolic attractors.

We should mention that results somewhat similar to ours were obtained for non polygonal

billiards (see ref.1,2).

The paper is organized as follows. In Section II, we present a detailed description of

the map for the dissipative square billiard. Some results concerning the invariant sets of

this map are formulated in Section III. To study our map, it is convenient to quotient it

by the symmetries of the square. This procedure is described in Section IV, and produces

the so-called reduced billiard map. Section V is devoted to the construction of the stable

and unstable manifolds of a fixed point of the reduced billiard map (corresponding to a

special periodic orbit of the billiard map). In Section VI, we explain that these invariant
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FIG. 1: Phase space M\ S+.

manifolds have transversal homoclinic intersections, and use this fact to argue that the

dissipative square billiard has positive topological entropy. The same section contains also

a bifurcation analysis of the limit sets of reduced billiard map.

II. THE SQUARE BILLIARD

Consider the square D = [0, 1] × [0, 1] ⊂ R2. For our purposes, D is called the square

billiard table. To study the dynamics of the billiard inside this table, it is sufficient to know

the angle of incidence at the impact points and the reflection law. For the usual reflection

law (the angle of reflection is equal to the angle of incidence) we find the next impact point

s′ and angle of reflection θ′ by the billiard map (s′, θ′) = B(s, θ) acting on the previous

impact (s, θ). This map admits an explicit analytic description. Its domain coincides with

the rectangle

M = [0, 4]×
(
−π

2
,
π

2

)
from which the set

S+ = { (s, θ) ∈ M : {s} = 0 or {s}+ tan θ ∈ {0, 1} }

is removed. The symbols [s] and {s} = s− [s] stand for the integer part and the fractional

part of s, respectively. An element of S+ corresponds to an orbit leaving or reaching a corner

of D (see Fig. 1). By reversing the role of time in this description of S+, one obtains the set

S− =
{
(s, θ) ∈ M : {s} = 0 or (s,−λ−1θ) ∈ S+

}
.
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Both sets S+ and S− consist of finitely many analytic curves. Next, let

M1 = { (s, θ) ∈ M : {s} > 0 and {s}+ tan θ > 1 } ,

M2 = { (s, θ) ∈ M : {s} > 0 and 0 < {s}+ tan θ < 1 } ,

M3 = { (s, θ) ∈ M : {s} > 0 and {s}+ tan θ < 0 } .

The billiard map B : M\ S+ → M\ S− is defined by

B(s, θ) =



(
[s] + 1 +

1− {s}
tan θ

(mod 4),
π

2
− θ

)
on M1,

([s]− 1− {s} − tan θ (mod 4),−θ) on M2,(
[s] +

{s}
tan θ

(mod 4),−π

2
− θ

)
on M3.

This map is clearly an analytic diffeomorphism in its domain. The inverse of B is eas-

ily obtained by noticing that the billiard map is time-reversible. That is, given the map

T (s, θ) = (s,−θ), we have

B−1 = T ◦ B ◦ T −1.

To modify the reflection law, we compose B with another map R : M → M. The

resulting map Φ = R ◦ B is called a billiard map with a modified reflection law.

Several reflections laws have been considered1,6. In this paper, we consider the following

“dissipative” law. Given 0 < λ < 1, we set

Rλ(s, θ) = (s, λθ) .

According to this law, the direction of motion of the particle after a reflection gets closer to

the normal of the perimeter of the square (see Fig. 2). To emphasize the dependence of the

billiard map on the parameter λ, we write

Φλ = Rλ ◦ B.

As a side remark, one can also define the map Φλ for λ > 1. In this case, the map Rλ

expands uniformly the angle θ, and Φλ becomes a map with holes in the phase space. It is

interesting to observe that the maps Φλ−1 and Φ−1
λ are conjugated for 0 < λ < 1. Indeed, it

is not difficult to check that

Φλ−1 = (Rλ ◦ T )−1 ◦ Φ−1
λ ◦ (Rλ ◦ T ),
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FIG. 2: Dissipative reflection law.

by using the fact that T and Rλ commute and that R−1
λ = Rλ−1 . Therefore, all the results

presented in this paper hold for λ > 1 as well, provided that we replace the word “attractor”

with the word “repeller”, and switch the words “stable” and “unstable”.

III. HYPERBOLICITY

Let (s0, θ0) be an element of M\S+. Set (s1, θ1) = Φλ(s0, θ0), and denote by t(s0, θ0) the

length of the segment connecting s0 and s1. Using elementary trigonometry, one can show

in a straightforward manner that the derivative of Φλ takes the following form:

DΦλ(s0, θ0) = −

 cos θ0
cosλ−1θ1

t(s0, θ0)

cosλ−1θ1
0 λ

 .

In fact, the previous formula holds for every polygon, and not just for the square (see Formula

2.26 in ref.3).

Now, suppose that {(si, θi)}ni=0 are n+ 1 consecutive iterates of Φλ. Then, we see that

DΦn
λ(s0, θ0) = (−1)n

αn(s0, θ0) γn(s0, θ0)

0 βn(s0, θ0)

 ,

where

αn(s0, θ0) =
cos θ0

cosλ−1θn

n−1∏
i=1

cos θi
cosλ−1θ i

, βn(s0, θ0) = λn,

and

γn(s0, θ0) =
1

cosλ−1θn

n−1∑
i=0

λit(si, θi)
n−1∏

k=i+1

cos θk
cosλ−1θ k

.

We now prove a simple lemma concerning the stability of the periodic points of Φλ. It is

not difficult to see that this lemma remains valid for every polygon and for other reflection

laws (e.g. Rλ(s, θ) = (s, θ − c sin 2θ) with 0 < c < 1/2 as in6).
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Lemma III.1. For every λ ∈ (0, 1), the periodic points of Φλ of period 2 and period greater

than 2 are parabolic and hyperbolic, respectively.

Proof. Suppose that (s0, θ0) is a periodic point of Φλ with period n. Since (sn, θn) = (s0, θ0),

it turns out that

αn(s0, θ0) =
n−1∏
i=0

cos θi
cosλ−1θi

.

Before continuing with the proof, we make two simple remarks. The first remark is that

each term cos θi/ cosλ
−1θi of the expression of αn(s0, θ0) is equal or greater than 1 with

equality if and only if θi = 0. The second remark is that DΦn
λ(s0, θ0) is a triangular matrix,

and so the moduli of its eigenvalues are αn(s0, θ0) and λn < 1. To determine the stability of

(s0, θ0) is therefore enough to find out whether or not αn(s0, θ0) is greater than 1.

If n = 2, it is easy to see that the trajectory of (s0, θ0) must always hit the boundary of D

perpendicularly. In other words, we have θ0 = θ1 = θ2 = 0, and so α2(s0, θ0) = 1. Periodic

points of period 2 are therefore parabolic. Clearly, a necessary condition for a polygon to

admit periodic points of period 2 is that the polygon must have at least 2 parallel sides (not

a sufficient condition though).

Now, suppose that n > 2. In this case, we claim that (s0, θ0) is hyperbolic. Indeed,

when n > 2, the billiard trajectory of (s0, θ0) must have at least two non-perpendicular

collisions with the boundary of D, and since cos θi/ cosλ
−1θi > 1 for such collisions, we can

immediately conclude that αn(s0, θ0) > 1.

A more elaborated analysis along the lines of the proof of Lemma III.1 yields some general

conclusions on the chaotic behavior of dissipative polygonal billiards. We state below two

interesting results of this type. Their proofs are behind the scope of this paper, and will

appear elsewhere4. Unless specified otherwise, Φλ denotes the map of a dissipative billiard

in a general polygon D throughout the rest of this section.

A set Σ ⊂ M is called invariant if Φ−1
λ (Σ) = Σ. An invariant set Σ is called hyperbolic if

there exist a norm ∥ · ∥ on M, a non-trivial invariant measurable splitting TΣM = Es ⊕Eu

and two measurable functions 0 < µ < 1 and K > 0 on Σ such that for every (s, θ) ∈ Σ and

every n ≥ 1, we have

∥DΦn
λ|Es(s,θ)∥ ≤ K(s, θ)µ(s, θ)n,

∥DΦ−n
λ |Eu(Φn

λ(s,θ))
∥ ≤ K(s, θ)µ(s, θ)n.
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If the functions µ and K can be replaced by constants, then Σ is called uniformly hyperbolic,

otherwise it is called non-uniformly hyperbolic.

The first result we present concerns billiards in regular polygons without parallel sides.

For such polygons, the map Φλ does not have periodic points of period 2.

Proposition III.2. Let D be a polygon without parallel sides, and suppose that Σ is an

invariant set of Φλ. Then Σ is uniformly hyperbolic for every λ ∈ (0, 1).

The second result concerns billiards in rectangles. Now, the map Φλ admits periodic

points of period 2, and it is not difficult to check that the set of all these points is a

parabolic attractor P for every λ ∈ (0, 1).

Proposition III.3. Let D be a rectangle, and suppose that Σ is an invariant set of Φλ

not intersecting the basin of attraction of P . Then there exists λ∗ ∈ (0, 1) such that Σ is

hyperbolic for every λ ∈ (0, λ∗), and is uniformly hyperbolic for every λ ∈ (λ∗, 1).

IV. THE REDUCED BILLIARD MAP

The analysis of the billiard dynamics can be simplified if we reduce the phase space. First,

we identify all sides of the square by taking the quotient with the translations by integers of

the s-component. Then, due to the symmetry along the vertical axis at the midpoint of the

square, we can also identify each point (s, θ) with (1 − s,−θ). To formulate the reducing

procedure more precisely, we define an equivalence relation ∼ on M by (s1, θ1) ∼ (s2, θ2) if

and only if π(s1, θ1) = π(s2, θ2), where π : M → M is the function defined by

π(s, θ) =

({s}, θ) if θ ∈
[
0, π

2

)
,

(1− {s},−θ) if θ ∈
(
−π

2
, 0
)
.

Let M denote the image of π. Clearly, we have

M = (0, 1)×
[
0,

π

2

)
.

Note that it is possible to identify the set M with the quotient space M/ ∼. We call M

the reduced phase space. The induced billiard map on M is the reduced map, which we will

denote by ϕλ.
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It is clear from the definition of π that π−1(s, θ) consists of 8 elements for every (s, θ) ∈ M ,

and so (M, π) is an 8-fold covering of M . It is then easy to see that the reduced billiard map

ϕλ is a factor of the original billiard map Φλ by noting that the quotient map π is indeed a

semiconjugacy between ϕλ and Φλ, i.e., we have that π ◦ Φλ = ϕλ ◦ π.

In what concerns the relation between the dynamical systems defined by Φλ and ϕλ, there

are several key points that are worth remarking. First, we note that periodic points of ϕλ lift

to periodic points of Φλ. To be more precise, an orbit of period n under ϕλ is lifted to eight

orbits of period n, four orbits of period 2n, two orbits of period 4n and one orbit of period

8n for Φλ. Analogous statements can be produced for the lifts of transitive sets and the

existence of invariant measures. Namely, transitive sets for ϕλ are lifted to a finite number

of transitive sets for Φλ, and any invariant measure under the dynamics of ϕλ corresponds

to a finite number of invariant measures under Φλ. Finally, we remark that the reduced map

ϕλ has positive topological entropy if and only if this is the case for the billiard map Φλ.

By studying the trajectories of the billiard map we have basically two cases: either the

billiard orbit hits a neighboring side of the square or the opposite side. Separating these

cases there is a corner which is reachable only if the initial position (s, θ) ∈ M is in the

singular curve

S+ = {(s, θ) ∈ M : s+ tan θ = 1} .

This curve separates the reduced phase space in two connected open sets: M1 below S+ and

M2 above S+.

Let f1 : M1 → M and f2 : M2 → M be the transformations defined by

f1(s, θ) = (s+ tan θ, λθ) for (s, θ) ∈ M1,

f2(s, θ) =
(
(1− s) cot θ, λ

(π
2
− θ

))
for (s, θ) ∈ M2.

The reduced billiard map is then given by

ϕλ =

f1 on M1,

f2 on M2.

Its domain and range are M \ S+ and M \ S−, respectively, where

S− =
{
(s, θ) ∈ M : s− tan(λ−1θ) = 0

}
.
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FIG. 3: Periodic orbit.

Like the billiard map Φλ, the reduced billiard map ϕλ is an analytic diffeomorphism. Notice

that ϕλ maps horizontal lines into horizontal lines, a consequence of the fact that its second

component is independent of s.

Finally, we observe that the subsets of M where the maps ϕn
λ and ϕ−n

λ are defined for

every n ≥ 0 are, respectively,

M+ = M \
∪
n≥0

ϕ−n
λ (S+) and M− = M \

∪
n≥0

ϕn
λ(S

−).

V. ATTRACTORS AND HORSESHOES

We start this section by collecting several definitions, which will be used later. Let ∥ · ∥

be the Euclidean norm on M . The stable set of an element q ∈ M is defined by

W s(q) =

{
x ∈ M+ : lim

n→+∞
∥ϕn

λ(x)− ϕn
λ(q)∥ = 0

}
.

In the case of an invariant set Λ = ϕλ(Λ), we define its stable set to be

W s(Λ) =
∪
q∈Λ

W s(q).

The unstable sets W u(q) and W u(Λ) are defined analogously by replacing ϕλ with ϕ−1
λ and

M+ with M−.

We say that an invariant set Λ is an attractor if and only if Λ = W u(Λ) and W s(Λ) is

open in M+.

We say that an invariant set Λ is a horseshoe if and only if neither W s(Λ) is an open set

in M+ nor is W u(Λ) an open set in M−. Note that a saddle periodic orbit is a horseshoe

according to this definition.
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FIG. 4: Invariant manifolds of pλ and singular curves for the reduced billiard map.

Finally, we say that a finite union of hyperbolic invariant sets A1, . . . , Am is a hyperbolic

chain if

W u(Ai) ∩W s(Ai+1) ̸= ∅ for i = 1, . . . ,m− 1.

A. Parabolic attractor

It is simple to check that the set

P = {(s, θ) ∈ M : θ = 0}

consists of parabolic fixed points coming from period 2 orbits of the original billiard (orbits

that bounce between parallel sides of the square). It is an attractor and W s(P ) includes the

set of points B that are below the forward invariant curve

S∞ =

{
(s, θ) ∈ M : s+

+∞∑
i=0

tan(λiθ) = 1

}
.

The sequence ϕn
λ(S∞) converges to the point (1, 0). The pre-image of B is at the top of

phase space. Moreover, its basin of attraction is

W s(P ) =
∪
n≥0

ϕ−n
λ (B).

B. Fixed point and its invariant manifolds

The map Φλ has many periodic orbits. Two special periodic orbits of period 4 can be

found by using the following simple argument. A simple computation shows that if an orbit
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FIG. 5: (a) Points qn together with their local stable (red) and unstable (green) manifolds

for λ = 0.6.

(b) Points pn together with their local stable (red) and unstable (green) manifolds

for λ = 0.85.

hits two adjacent sides of the square with the same reflection angle θλ, then

θλ =
πλ

2(1 + λ)
.

If we further impose the condition that the orbit hits the two sides at s1 and s2 in such a

way that {s1} = {s2} = sλ, then we obtain

sλ =
1

1 + tan θλ
.

By symmetry, we conclude that Φ4
λ(sλ, θλ) = (sλ, θλ). By the symmetry of the square, we

also have Φ4
λ(1− sλ,−θλ) = (1− sλ,−θλ). One of these orbits is depicted in Fig. 3.

Due to the phase space reduction, the periodic orbits just described correspond to the

fixed point

pλ = (sλ, θλ)

of ϕλ. This is actually the unique fixed point of ϕλ outside P and it lies in M2. By Lemma

III.1, pλ is hyperbolic thus it has local stable and unstable manifolds W s,u
loc (pλ) for every

λ ∈ (0, 1). Since ϕλ maps horizontal lines into horizontal lines, and the set S− does not

intersect the horizontal line through pλ, we see that the local unstable manifold of pλ is given

by

W u
loc(pλ) = { (s, θ) ∈ M : θ = θλ } .
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In fact, the global unstable manifold consists of a collection of horizontal lines cut by the

images of S−.

The geometry of the stable manifold is more complicated. Since by definition points

on the stable manifold converge to the fixed point, W s
loc(pλ) can not cross S+, so it must

remain in M2. The graph transform associated with the corresponding branch of ϕλ is the

transformation

Γ(h)(θ) = 1− h(gλ(θ)) tan θ,

where gλ : [0, π/2) → [0, π/2) denotes the affine contraction

gλ(θ) = λ
(π
2
− θ

)
.

Iterating k times the zero function by Γ we obtain

Γk(0)(θ) =
k−1∑
n=0

(−1)n
n−1∏
i=0

tan(giλ(θ)).

Hence, the local stable manifold of pλ is the curve

W s
loc(pλ) =

{
(hλ(θ), θ) : 0 ≤ θ <

π

2
and 0 < h(θ) < 1

}
,

where

hλ(θ) =
∞∑
n=0

(−1)n
n−1∏
i=0

tan(giλ(θ)). (1)

This series converges uniformly and absolutely because tan(gnλ(θ)) converges to tan θλ as

n → ∞, and 0 < tan θλ < 1. The same is true for the series of the derivatives of hλ, and so

hλ is analytic.

The invariant manifolds of pλ, the singular curves of the reduced billiard map and the

upper boundary S∞ of B are depicted in Fig. 4.

C. Two Families of Periodic Orbits

A straightforward computation shows that for each n ≥ 1, there is a single periodic point

qn of period n+ 2 such that

ϕn+2
λ (qn) = f 2

2 ◦ fn
1 (qn) = qn,

and a single periodic point pn of period 2n such that

ϕ2n
λ (pn) = f 2n−1

2 ◦ f1(pn) = pn.
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(a) λ = 0.615 ∈ (λ0, λ1) (b) λ = 0.75 ∈ (λ1, λ2) (c) λ = 0.88 ∈ (λ2, 1)

FIG. 6: Local stable (green curve) and unstable (red curve) manifolds of pλ, and attractor

Aλ (blue region).

By Lemma III.1, these periodic points are hyperbolic. It is easy to show that qn exists for

all λ ∈ (0, cn], and that cn is a decreasing sequence in n. Numerical computations show

that p1, . . . , p16 exist for all λ ∈ (0, 1), whereas for every n ≥ 17, the point pn exists for all

λ ∈ (0, an] ∪ [bn, 1) with an and bn being decreasing and increasing sequences, respectively.

Our numerical computations also suggest that all the qn’s are homoclinically related to each

other, and that the same property seems to hold also for most of the pn’s (see Fig. 5).

VI. BIFURCATION OF THE LIMIT SET

Let Ω be the non-wandering set of the map ϕλ. We now formulate a conjecture on the

bifurcation of the set Ω as λ varies.

Conjecture VI.1. For any 0 < λ < 1, the non-wandering set Ω is a union of three sets:

Ω = P ∪Hλ ∪ Aλ,

where P is the parabolic attractor (see section VA), Aλ is a hyperbolic transitive attractor,

and Hλ is a horseshoe. Moreover, Hλ is either transitive or else a (possibly empty) hyperbolic

chain of transitive horseshoes. In particular,

M+ = W s(P ) ∪W s(Hλ) ∪W s(Aλ).
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To support our conjecture, we present some facts and other more specific conjectures.

Numerically, we found three constants

0 < λ0 < λ1 < λ2 < 1

such that

(F1) If 0 < λ < λ0, then Aλ = ∅ and Hλ is the maximal invariant set outside W s(P ), the

basin of attraction of P .

(F2) If λ0 ≤ λ < λ2, then Hλ contains infinitely many qn’s, while the attractor Aλ contains

pλ, all pn’s and the remaining qn’s. As λ approaches λ2, the horseshoe Hλ first shrinks

due to the loss of periodic points qn, then it becomes a short chain of periodic saddles,

and eventually it disappears when all points qn vanish.

(F3) If λ1 ≤ λ < 1, then W s(P ) = B ∪ ϕ−1
λ (B). In particular, W s(Aλ) = M+ \ (B ∪

ϕ−1
λ (B) ∪Hλ).

(F4) If λ2 ≤ λ < 1, then all qn’s vanish, the attractor Aλ contains some of the periodic

points pn, and the horseshoe Hλ contains pλ as well as the remaining surviving pn’s.

In Fig. 6, the attractor Aλ is depicted for three different values of λ.

A. Conjecture for the value of λ0

According to our numerical experiments, we see that W u(pλ) is contained in W s(Aλ) for

λ < λ2 (see Fig. 6). Iterating numerically the unstable manifold of pλ until it enters the

basin of attraction of P , we obtain the following lower bound for λ0:

λ0 ≥ 0.607.

Set q0 = pλ (this is consistent with the definition of qn), and let λ̄n be the maximum of all

0 < λ < 1 such that

W u
loc(qn) ∩W s

loc(qn+1) ̸= ∅.

We conjecture that λ0 = minn λ̄n. Numerically, we see that

min
n

λ̄n = 0.6143916...
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B

θ = λπ/2

φ−1
λ

(B)

S−
θ = λ(1− λ)π/2

(a) λ = λ1. Since the image of the map ϕλ is always

below the line θ = λπ/2, the basin of attraction of

B is only ϕ−1
λ (B). Moreover, the region in light

gray is invariant.

pλ

S+ S−

A

φλ(A)

(b) λ = λ2. The region A between the stable and

unstable local manifolds of pλ is mapped by ϕλ into

itself.

FIG. 7: Trapping regions for ϕλ.

For λ < λ0, all periodic points pn and qn are homoclinically related to pλ, and the horseshoe

Hλ is the homoclinic class of pλ. This would imply that Hλ is a transitive set. For n large

enough, it is easy to check that W u(qn) ∩W s(P ) ̸= ∅. Provided that Hλ is transitive, this

fact implies that Hλ is a horseshoe.

B. Obtaining λ1

Define

σ∞(θ) = 1−
∞∑
i=0

tan(λiθ),

and

S∞ =
{
(σ∞(θ), θ) : θ ∈

[
0,

π

2

)
and σ∞(θ) ≥ 0

}
.

The value

λ1 = 0.6218...

is the single root of the equation

σ∞

(
λ(1− λ)

π

2

)
= 0.

16



For λ ≥ λ1, the light-colored region in Fig. 7(a) is a trapping set containing all the points

qn. This fact may be used to prove (F3), and it also implies that for n sufficiently large,

W u(qn) ∩ W s(P ) = ∅ if λ > λ1, and W u(qn) ∩ W s(P ) ̸= ∅ if λ < λ1. In particular, this

proves that W u(Hλ) ⊂ W s(Aλ).

C. The value λ2

Let hλ(θ) be the function defined in (1), whose graph is the local stable manifold of pλ.

The value

λ2 = 0.8736...

is defined to be the solution of

hλ(λθλ) = tan(θλ)

(see Fig. 7(b)). This yields that 0 < λ < λ2 if and only if

f1(W
u
loc(pλ) ∩M1) ∩W s

loc(pλ) ̸= ∅.

The periodic points qn persist for λ ∈ (0, cn] (see Section VC) and we know that λ1 <

cn+1 < cn < λ2 for every n ≥ 1, while λ1 = limn→∞ cn. Hence, the periodic points qn

disappear as λ increases from λ1 to λ2, with q1 being the last periodic point to disappear

for a value of λ close to λ2.

As λ approaches λ2, the set Hλ consists of a hyperbolic chain plus the orbits of q1 and

q2. As λ increases further and q2 vanishes, Hλ is just the single orbit of q1. Finally, when

λ < λ2 is sufficiently large so that the periodic point q1 disappears, Hλ becomes empty.

Regarding (F4), one proves that the shadowed region in Fig. 7(b) is a trapping set. For

λ ≥ λ2 the non-wandering set in this region consists of the fixed point pλ and an attractor

Ãλ whose closure is strictly contained in the interior of the region. We do not claim that Ãλ

is always an attractor. In fact, as λ increases, we see numerically that the periodic points pn

with n ≥ 17 persist for λ ∈ (0, an]∪ [bn, 1). There is also evidence that an ↘ λ2 and bn ↗ 1.

We thus believe that the attractor Ãλ decomposes into a horseshoe Hλ containing some of

the pn, and an attractor Aλ containing the remaining pn’s. However, we do not know how

these periodic points are distributed among Hλ and Aλ.

We have found that the fixed point pλ has transversal homoclinic intersections for 0 <

λ < λ2. This implies that ϕλ has positive topological entropy5 for 0 < λ < λ2. We believe
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that for λ2 ≤ λ < 1, there exists n such that pn is homoclinically related to pn+1, implying

that ϕλ has indeed positive topological entropy for every 0 < λ < 1. This property has an

alternative explanation. For λ ≥ λ2, we know that there exists a hyperbolic attractor, and

that such an attractor typically admits some physical measures. If this is the case, then our

billiard would have positive metric entropy, and so positive topological entropy.
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