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Abstract. We introduce an extension to Merton’s famous continuous time model of optimal
consumption and investment, in the spirit of previous works by Pliska and Ye, to allow for
a wage earner to have a random lifetime and to use a portion of the income to purchase life
insurance in order to provide for his estate, while investing his savings in a financial market
comprised of one risk-free security and an arbitrary number of risky securities driven by multi-
dimensional Brownian motion. We then provide a detailed analysis of the optimal consumption,
investment, and insurance purchase strategies for the wage earner whose goal is to maximize
the expected utility obtained from his family consumption, from the size of the estate in the
event of premature death, and from the size of the estate at the time of retirement. We use
dynamic programming methods to obtain explicit solutions for the case of discounted constant
relative risk aversion utility functions and describe new analytical results which are presented
together with the corresponding economic interpretations.

1. Introduction

We consider the problem faced by a wage earner having to make decisions continuously about
three strategies: consumption, investment and life insurance purchase during a given interval
of time [0,min{T, τ}], where T is a fixed point in the future that we will consider to be the
retirement time of the wage earner and τ is a random variable representing the wage earner’s
time of death. We assume that the wage earner receives his income at a continuous rate i(t)
and that this income is terminated when the wage earner dies or retires, whichever happens
first. One of our key assumptions is that the wage earner’s lifetime τ is a random variable and,
therefore, the wage earner needs to buy life insurance to protect his family for the eventuality
of premature death. The life insurance depends on a insurance premium payment rate p(t) such
that if the insured pays p(t) · δt and dies during the ensuing short time interval of length δt
then the insurance company will pay p(t)/η(t) dollars to the insured’s estate, where η(t) is an
amount set in advance by the insurance company. Hence this is like term insurance with an
infinitesimal term. We also assume that the wage earner wants to maximize the satisfaction
obtained from a consumption process with rate c(t). In addition to consumption and purchase
of a life insurance policy, we assume that the wage earner invests the full amount of his savings
in a financial market consisting of one risk-free security and a fixed number N ≥ 1 of risky
securities with diffusive terms driven by M -dimensional Brownian motion.

The wage earner is then faced with the problem of finding strategies that maximize the utility
of (i) his family consumption for all t ≤ min{T, τ}; (ii) his wealth at retirement date T if
he lives that long; and (iii) the value of his estate in the event of premature death. Various
quantitative models have been proposed to model and analyze this kind of problem, at least
problems having at least one of these three objectives. This literature is perhaps highlighted by
Yarri [9] who considered the problem of optimal financial planning decisions for an individual
with an uncertain lifetime as well as by Merton [4, 5] who emphasized optimal consumption and
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investment decisions but did not consider life insurance. These two approaches were combined
by Richard, whose impressive paper [8] uses sophisticated methods at an early date for the
analysis of a life-cycle life insurance and consumption-investment problem in a continuous time
model. Later, Pliska and Ye [6, 7] introduced a continuous-time model that combined the
more realistic features of all those in the existing literature and extended the model proposed
previously by Richard, the main difference being the choice of the boundary condition, leading to
somewhat different economic interpretations of the underlying problem. More precisely, while
Richard assumed that the lifetime of the wage earner is limited by some fixed number, the
model introduced by Pliska and Ye had the feature that the duration of life is a random variable
which takes values in the interval ]0,∞[ and is independent of the stochastic process defining
the underlying financial market. Moreover, Pliska and Ye made the following refinements to the
theory: (i) the planning horizon T is now seen as the moment when the wage earner retires,
contrary to Richard’s interpretation as a finite upper bound on the lifetime; and (ii) the utility of
the wage earner’s wealth at the planning horizon T is taken into account as well as the utility of
lifetime consumption and the utility of the bequest in the event of premature death. Blanchet-
Scalliet et al. paper [1] deals with optimal portfolio selection with an uncertainty exit time for a
suitable extension of the familiar optimal consumption investment problem of Merton, without
considering any kind of life insurance purchase.

Whereas Pliska and Ye’s financial market involved only one security that was risky, in the
present paper we study the extension where there is an arbitrary (but finite) number of risky
securities. The existence of these extra risky securities gives greater freedom for the wage earner
to manage the interaction between his life insurance policies and the portfolio containing his
savings invested in the financial market. Some examples of these interactions are described
below.

Following Pliska and Ye, we use the model of uncertain life found in reliability theory, com-
monly used for industrial life-testing and actuarial science, to model the uncertain time of
death for the wage earner. This enables us to replace Richard’s assumption that lifetimes are
bounded with the assumption that lifetimes take values in the interval ]0,∞[. We then set up
the wage earner’s objective functional depending on a random horizon min{T, τ} and trans-
form it to an equivalent problem having a fixed planning horizon, that is, the wage earner who
faces unpredictable death acts as if he will live until some time T , but with a subjective rate
of time preferences equal to his “force of mortality” for his consumption and terminal wealth.
This transformation to a fixed planning horizon enables us to state the dynamic programming
principle and derive an associated Hamilton-Jacobi-Bellman (HJB) equation. We use the HJB
equation to derive the optimal feedback control, that is, the optimal insurance, portfolio and
consumption strategies. Furthermore, we obtain explicit solutions for the family of discounted
Constant Relative Risk Aversion (CRRA) utilities and examine the economic implications of
such solutions.

In the case of discounted CRRA utilities our results generalize those obtained previously by
Pliska and Ye. For instance, we obtain: (i) an economically reasonable description for the optimal
expenditure for insurance as a decreasing function of the wage earner’s overall wealth and a
unimodal function of age, reaching a maximum at an intermediate age; (ii) a more controversial
conclusion that possibly an optimal solution calls for the wage earner to sell a life insurance
policy on his own life late in his career. Nonetheless, the extra risky securities in our model
introduce novel features to the wage earner’s portfolio and insurance management interaction
such as: (i) a young wage earner with small wealth has an optimal portfolio with larger values
of volatility and higher expected returns, with the possibility of having short positions in lower
yielding securities; and (ii) a wage earner who can buy life insurance policies will choose a more
conservative portfolio than a wage earner who is without the opportunity to buy life insurance,
the distinction being clearer for young wage earners with low wealth.
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This paper is organized as follows. In section 2 we describe the problem we propose to address.
Namely, we introduce the underlying financial and insurance markets, as well as the problem
formulation from the point of view of optimal control. In section 3 we see how to use the
dynamic programming principle to reduce the optimal control of section 2 to one with a fixed
planning horizon and then derive an associated HJB equation. We devote section 4 to the case
of discounted CRRA utilities. We conclude in section 5.

2. Problem formulation

Throughout this section, we define the setting in which the wage earner has to make his
decisions regarding consumption, investment and life insurance purchase. Namely, we introduce
the specifications regarding the financial and insurance markets available to the wage earner.
We start by the financial market description, followed by the insurance market and conclude
with the definition of a wealth process for the wage earner.

2.1. The financial market model. We consider a financial market consisting of one risk-
free asset and several risky-assets. Their respective prices (S0(t))0≤t≤T and (Sn(t))0≤t≤T for
n = 1, ..., N evolve according to the equations:

dS0(t) = r(t)S0(t)dt , S0(0) = s0 ,

dSn(t) = µn(t)Sn(t)dt+ Sn(t)
M
∑

m=1

σnm(t)dWm(t) , Sn(0) = sn > 0 ,

where W (t) = (W1(t), . . . ,WM (t))T is a standard M -dimensional Brownian motion on a prob-
ability space (Ω,F , P ), r(t) is the riskless interest rate, µ(t) = (µ1(t), . . . , µN (t)) ∈ R

N is the
vector of the risky-assets appreciation rates and σ(t) = (σnm(t))1≤n≤N,1≤m≤M is the matrix of
risky-assets volatilities.

We assume that the coefficients r(t), µ(t) and σ(t) are deterministic continuous functions on
the interval [0, T ]. We also assume that the interest rate r(t) is positive for all t ∈ [0, T ] and the
matrix σ(t) is such that σσT is nonsingular for Lebesgue almost all t ∈ [0, T ] and satisfies the
following integrability condition

N
∑

n=1

M
∑

m=1

∫ T

0
σ2
nm(t)dt < ∞ .

Furthermore, we suppose that there exists an (Ft)0≤t≤T -progressively measurable process π(t) ∈
R
M , called the market price of risk, such that for Lebesgue-almost-every t ∈ [0, T ] the risk

premium

α(t) = (µ1(t)− r(t), . . . , µN (t)− r(t)) ∈ R
N (1)

is related to π(t) by the equation

α(t) = σ(t)π(t) a.s.

and is such that the following two conditions hold
∫ T

0
‖π(t)‖2 < ∞ a.s.

E

[

exp

(

−

∫ T

0
π(s)dW (s)−

1

2

∫ T

0
‖π(s)‖2 ds

)]

= 1 .

The existence of such a process π(t) ensures the absence of arbitrage opportunities in the financial
market defined above. Note also that the conditions on the matrix σ above do not imply market
completeness. See [3] for further details on market viability and completeness.
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Moreover, throughout the paper we will assume that (Ω,F , P ) is a filtered probability space
and that its filtration F = {Ft, t ∈ [0, T ]} is the P -augmentation of the filtration generated by
the Brownian motion W (t), σ{W (s), s ≤ t} for t ≥ 0. Each sub-σ-algebra Ft represents the
information available to any given agent observing the financial market until time t.

2.2. The life insurance market model. We assume that the wage earner is alive at time
t = 0 and that his lifetime is a non-negative random variable τ defined on the probability space
(Ω,F , P ). Furthermore, we assume that the random variable τ is independent of the filtration
F and has a distribution function F : [0,∞) → [0, 1] with density f : [0,∞) → R

+ so that

F (t) =

∫ t

0
f(s) ds .

We define the survivor function F : [0,∞) → [0, 1] as the probability for the wage earner to
survive at least until time t, i.e.

F (t) = P (τ ≥ t) = 1− F (t) .

We shall make use of the hazard function, the conditional, instantaneous death rate for the wage
earner surviving to time t , that is

λ(t) = lim
δt→0

P (t ≤ τ < t+ δt | τ ≥ t)

δt
=

f(t)

F (t)
. (2)

Throughout the paper, we will suppose that the hazard function λ : [0,∞) → R
+ is a continuous

and deterministic function such that
∫ ∞

0
λ(t) dt = ∞ .

These two concepts introduced above are standard in the context of reliability theory and actu-
arial science. In our case, such concepts enable us to consider an optimal control problem with
a stochastic planning horizon and restate it as one with a fixed horizon.

Due the uncertainty concerning his lifetime, the wage earner buys life insurance to protect
his family for the eventuality of premature death. The life insurance is available continuously
and the wage earner buys it by paying a insurance premium payment rate p(t) to the insurance
company. The insurance contract is like term insurance, with an infinitesimally small term.
If the wage earner dies at time τ < T while buying insurance at the rate p(t), the insurance
company pays an amount p(τ)/η(τ) to his estate, where η : [0, T ] → R

+ is a continuous and
deterministic function which we call the insurance premium-payout ratio and is regarded as fixed
by the insurance company. The contract ends when the wage earner dies or achieves retirement
age, whichever happens first. Therefore, the wage earner’s total legacy to his estate in the event
of a premature death at time τ < T is given by

Z(τ) = X(τ) +
p(τ)

η(τ)
,

where X(t) denotes the wage earner’s savings at time t.

2.3. The wealth process. We assume that the wage earner receives an income i(t) at a con-
tinuous rate during the period [0,min{T, τ}], i.e., the income will be terminated either by his
death or his retirement, whichever happens first. Furthermore, we assume that i : [0, T ] → R

+

is a deterministic Borel-measurable function satisfying the integrability condition
∫ T

0
i(t) dt < ∞ .
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The consumption process (c(t))0≤t≤T is a (Ft)0≤t≤T -progressively measurable nonnegative
process satisfying the following integrability condition for the investment horizon T > 0

∫ T

0
c(t) dt < ∞ a.s. .

We assume also that the insurance premium payment rate (p(t))0≤t≤T is a (Ft)0≤t≤T -predictable
process, i.e., p(t) is measurable with respect to the smallest σ-algebra on R

+ × Ω such that all
left-continuous and adapted processes are measurable. In a intuitive manner, a predictable
process can be described as such that its values are “known” just in advance of time.

For each n = 0, 1, ..., N and t ∈ [0, T ], let θn(t) denote the fraction of the wage earner’s
wealth allocated to the asset Sn at time t. The portfolio process is then given by Θ(t) =
(θ0(t), θ1(t), · · · , θN (t)) ∈ R

N+1, where

N
∑

n=0

θn(t) = 1 , 0 ≤ t ≤ T . (3)

We assume that the portfolio process is (Ft)0≤t≤T -progressively measurable and that, for the
fixed investment horizon T > 0, we have that

∫ T

0
‖Θ(t)‖2 dt < ∞ a.s. ,

where ‖·‖ denotes the Euclidean norm in R
N+1.

The wealth process X(t), t ∈ [0,min{T, τ}], is then defined by

X(t) = x+

∫ t

0
[i(s)− c(s)− p(s)] ds+

N
∑

n=0

∫ t

0

θn(s)X(s)

Sn(s)
dSn(s) , (4)

where x is the wage earner’s initial wealth. This last equation can be rewritten in the differential
form

dX(t) =

(

i(t)− c(t)− p(t) +

(

θ0(t)r(t) +
N
∑

n=1

θn(t)µn(t)

)

X(t)

)

dt

+
N
∑

n=1

θn(t)X(t)
M
∑

m=1

σnm(t)dWm(t) , (5)

where 0 ≤ t ≤ min{τ, T}.
Using relation (3) we can always write θ0(t) in terms of θ1(t), . . . , θN (t), so from now on we

will define the portfolio process in terms of the reduced portfolio process θ(t) ∈ R
N given by

θ(t) = (θ1(t), θ2(t), · · · , θN (t)) ∈ R
N .

2.4. The optimal control problem. The wage earner is faced with the problem of finding
strategies that maximize the expected utility obtained from:

(a) his family consumption for all t ≤ min{T, τ};
(b) his wealth at retirement date T if he lives that long;
(c) the value of his estate in the event of premature death.

This problem can be formulated by means of optimal control theory: the wage earner’s goal is
to maximize some cost functional subject to (i) the (stochastic) dynamics of the state variable,
i.e., the dynamics of the wealth processX(t) given by (4); (ii) constraints on the control variables,
i.e., the consumption process c(t), the premium insurance rate p(t) and the portfolio process
θ(t); and (iii) boundary conditions on the state variables.



6 I. DUARTE, D. PINHEIRO, A. A. PINTO, AND S. R. PLISKA

Let us denote by A(x) the set of all admissible decision strategies, i.e., all admissible choices
for the control variables ν = (c, p, θ) ∈ R

N+2. The dependence of A(x) on x denotes the
restriction imposed on the wealth process by the boundary condition X(0) = x. In particular,
A(x) must be such that for each ν ∈ A(x) the corresponding wealth process satisfies X(t) ≥ 0
for all t ≤ min{T, τ}.

The wage earner’s problem can then be restated as follows: find a strategy ν = (c, p, θ) ∈ A(x)
which maximizes the expected utility

V (x) = sup
ν∈A(x)

E0,x

[
∫ T∧τ

0
U(c(s), s) ds+B(Z(τ), τ)I{τ≤T} +W (X(T ))I{τ>T}

]

, (6)

where T ∧ τ = min{T, τ}, IA denotes the indicator function of event A, U(c, ·) is the utility
function describing the wage earner’s family preferences regarding consumption in the time
interval [0,min{T, τ}], B(Z, ·) is the utility function for the size of the wage earners’s legacy in
case τ ≤ T , and W (X) is the utility function for the terminal wealth at time t = T in the case
τ > T .

We suppose that U and B are strictly concave on their first variable and that W is strictly
concave on its sole variable. In section 4 we specialize our analysis to the case where the wage
earner’s preferences are described by discounted CRRA utility functions.

3. Stochastic optimal control

In this section we use the techniques in [6, 7] to restate the stochastic optimal control problem
formulated in the preceding section as one with a fixed planning horizon and to derive a dynamic
programming principle and the corresponding HJB equation.

3.1. Dynamic programming principle. Let us denote by A(t, x) the set of admissible de-
cision strategies ν = (c, p, θ) for the dynamics of the wealth process with boundary condition
X(t) = x. For any ν ∈ A(t, x) we define the functional

J(t, x; ν) = Et,x

[
∫ T∧τ

t
U(c(s), s) ds+B(Z(τ), τ)I{τ≤T} +W (X(T ))I{τ>T}

∣

∣

∣
τ > t,Ft

]

and introduce the associated value function:

V (t, x) = sup
ν∈A(t,x)

J(t, x; ν) .

Given some initial condition (t, x) ∈ [0, T ]×R, we have that ν∗ ∈ A(t, x) is an optimal control
if V (t, x) = J(t, x; ν∗).

The following lemma is the key tool to restating the control problem above as an equivalent
one with a fixed planning horizon. See [10] for a proof.

Lemma 3.1. Suppose that the utility function U is either nonnegative or nonpositive. If the

random variable τ is independent of the filtration F, then

J(t, x; ν) = Et,x

[
∫ T

t
F (s, t)U(c(s), s) + f(s, t)B(Z(s), s) ds+ F (T, t)W (X(T ))

∣

∣

∣
Ft

]

,

where F (s, t) is the conditional probability for the wage earner’s death to occur at time s condi-

tional upon the wage earner being alive at time t ≤ s and f(s, t) is the corresponding conditional

probability density function.

Using the previous lemma, one can state the following dynamic programming principle, ob-
taining a recursive relationship for the maximum expected utility as a function of the wage
earner’s age and his wealth at that time. See [10] for a proof.
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Lemma 3.2 (Dynamic programming principle). For 0 ≤ t < s < T , the maximum expected

utility V (t, x) satisfies the recursive relation

V (t, x) = sup
ν∈A(t,x)

E

[

exp

(

−

∫ s

t
λ(u) du

)

V (s,X(s))

+

∫ s

t
F (u, t)U(c(u), u) + f(u, t)B(Z(u), u) du

∣

∣

∣
Ft

]

.

The transformation to a fixed planning horizon can then be given the following interpretation:
a wage earner facing unpredictable death acts as if he will live until time T , but with a subjective
rate of time preferences equal to his “force of mortality” for the consumption of his family and
his terminal wealth.

3.2. Hamilton-Jacobi-Bellman equation. The dynamic programming principle enables us
to state the HJB equation, a second-order partial differential equation whose “solution” is the
value function of the optimal control problem under consideration here. The techniques used
in the derivation of the HJB equation and the proof of the next theorem follow closely those in
[2, 10, 11].

Theorem 3.3. Suppose that the maximum expected utility V is of class C2. Then V satisfies

the Hamilton-Jacobi-Bellman equation







Vt(t, x)− λ(t)V (t, x) + sup
ν∈A(t,x)

H(t, x; ν) = 0

V (T, x) = W (x)
, (7)

where the Hamiltonian function H is given by

H(t, x; ν) =

(

i(t)− c− p+

(

r(t) +
N
∑

n=1

θn(µn(t)− r(t))

)

x

)

Vx(t, x)

+
x2

2

M
∑

m=1

(

N
∑

n=1

θnσnm(t)

)2

Vxx(t, x) + λ(t)B

(

x+
p

η(t)
, t

)

+ U(c, t) .

Moreover, an admissible strategy ν∗ = (c∗, p∗, θ∗) whose corresponding wealth is X∗ is optimal

if and only if for a.e. s ∈ [t, T ] and P -a.s. we have

Vt(s,X
∗(s))− λ(s)V (s,X∗(s)) +H(s,X∗(s); ν∗) = 0 . (8)

Proof. We divide the proof in two parts: we start by establishing the HJB equation (7) and then
we will prove that the equality (8) holds.

Recall that the wealth process X(t), t ∈ [0,min{T, τ}], satisfies the stochastic differential
equation (5). Using Itô’s lemma, we obtain that

V (t+ h,X(t+ h)) = V (t,X(t)) +

∫ t+h

t
a(u,X(u)) du+

M
∑

m=1

∫ t+h

t
bm(u,X(u)) dWm(u) , (9)
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where the integrand functions a and bm, m = 1, . . . ,M , are given by

a(t,X(t)) = Vt(t,X(t)) +

(

i(t)− c− p+X(t)

(

r(t) +
N
∑

n=1

θn (µn(t)− r(t))

))

Vx(t,X(t))

+
1

2
X2(t)Vxx(t,X(t))

M
∑

m=1

(

N
∑

n=1

θnσnm(t)

)2

(10)

bm(t,X(t)) = X(t)Vx(t,X(t))
N
∑

n=1

θnσnm(t) , m = 1, . . . ,M .

Using the dynamic programming principle of Lemma 3.2 and setting s = t+h we get the identity

V (t, x) = sup
ν∈A(t,x)

E

[

exp

(

−

∫ t+h

t
λ(u) du

)

V (t+ h,X(t+ h))

+

∫ t+h

t
F (u, t)U(c(u), u) + f(u, t)B(Z(u), u) du

∣

∣

∣
Ft

]

. (11)

Noting that for small enough values of h the following inequalities hold

exp

(

−

∫ t+h

t
λ(v) dv

)

∈ 1− λ(t)h±O(h2) (12)

and combining the equality (11) with the inequalities (12) above, we obtain

0 ∈ sup
ν∈A(t,x)

E

[

(1− λ(t)h±O(h2))V (t+ h,X(t+ h))− V (t, x)

+

∫ t+h

t
F (u, t)U(c(u), u) + f(u, t)B(Z(u), u) du

∣

∣

∣
Ft

]

.

Substituting (9) in the last equation we obtain

0 ∈ sup
ν∈A(t,x)

E

[

(

1− λ(t)h±O(h2)
)

(

V (t,X(t)) +

∫ t+h

t
a(u,X(u)) du

)

+
(

1− λ(t)h±O(h2)
)

M
∑

m=1

∫ t+h

t
bm(u,X(u)) dWm(u)

−V (t, x) +

∫ t+h

t
(1− F (u, t))U(c(u), u) + λ(t)(1− F (u, t))B(Z(u), u) du

∣

∣

∣
Ft

]

.

Dividing the previous equation by h and letting h go to zero we obtain the equality

0 = sup
ν∈A(t,x)

[

Vt(t, x)− λ(t)V (t, x) +

(

i(t)− c− p+

(

r(t) +
N
∑

n=1

θn(µn(t)− r(t))

)

x

)

Vx(t, x)

+
x2

2

M
∑

m=1

(

N
∑

n=1

θnσnm(t)

)2

Vxx(t, x) + λ(t)B (Z(t), t) + U(c, t)
∣

∣

∣
Ft

]

.
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Letting Z(t) = x+ p
η(t) , the dynamic programming equation becomes

0 = sup
ν∈A(t,x)

[

Vt(t, x)− λ(t)V (t, x) +

(

i(t)− c− p+

(

r(t) +
N
∑

n=1

θn(µn(t)− r(t))

)

x

)

Vx(t, x)

+
x2

2

M
∑

m=1

(

N
∑

n=1

θnσnm(t)

)2

Vxx(t, x) + λ(t)B

(

x+
p

η(t)
, t

)

+ U(c, t)
∣

∣

∣
Ft

]

.

Finally, noting that Vt(t, x)− λ(t)V (t, x) does not depend on ν, we obtain the HJB equation of
(7), thus concluding the proof of the first part of the theorem.

Regarding the second part of the theorem, we start by letting ν ∈ A(t, x) and apply Itô’s
lemma to

exp

(

−

∫ s

t
λ(v) dv

)

V (s,X(s)) .

We obtain that

V (t, x) = exp

(

−

∫ T

t
λ(v) dv

)

W (X(T ))

−

∫ T

t
exp

(

−

∫ u

t
λ(v) dv

)

(a(u,X(u))− λ(u)V (u,X(u))) du

−

M
∑

m=1

∫ T

t
exp

(

−

∫ u

t
λ(v) dv

)

bm(u,X(u)) dWm(u) ,

where a(t, x) and bm(t, x), m = 1, . . . ,M are as given in (10). From the previous equality, we
get

V (t, x) = Et,x

[

exp

(

−

∫ T

t
λ(v) dv

)

W (X(T ))

−

∫ T

t
exp

(

−

∫ u

t
λ(v) dv

)

(a(u,X(u))− λ(u)V (u,X(u))) du
∣

∣

∣
Ft

]

. (13)

From the definition of the hazard function in (2), we obtain that the conditional probability
F (s, t) for the wage earner’s death to occur at time s conditional upon the wage earner being
alive at time t ≤ s is given by

F (s, t) = exp

(

−

∫ s

t
λ(v) dv

)

. (14)

Similarly, we obtain that the conditional probability density function f(s, t) for the death to
occur at time s conditional upon the wage earner being alive at time t ≤ s is given by

f(s, t) = λ(s)exp

(

−

∫ s

t
λ(v) dv

)

. (15)

Using (14) and (15), we rewrite (13) as

V (t, x) = Et,x

[

F (T, t)W (X(T ))−

∫ T

t
F (u, t) (a(u,X(u))− λ(u)V (u,X(u))) du

∣

∣

∣
Ft

]

. (16)

Using Lemma 3.1, we rearrange (16) to obtain

V (t, x) = J(t, x; ν)

−Et,x

[
∫ T

t
F (u, t) (Vt(u,X(u))− λ(u)V (u,X(u)) +H(u,X(u); ν)) du

∣

∣

∣
Ft

]

. (17)
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Consider now an optimal admissible strategy ν∗ = (c∗, p∗, θ∗) whose corresponding wealth is
X∗. From equation (17) we have that

V (t, x) = J(t, x; ν∗)

−Et,x

[
∫ T

t
F (u, t) (Vt(u,X

∗(u))− λ(u)V (u,X∗(u)) +H(u,X∗(u); ν∗)) du
∣

∣

∣
Ft

]

(18)

and from the HJB equation (7), we have

Vt(u,X
∗(u))− λ(u)V (u,X∗(u)) +H(u,X∗(u); ν∗) ≤ 0. (19)

Combining (18) and (19), we obtain that ν∗ is optimal if and only if the value function V satisfies
(8), which concludes the proof. �

The second part of the theorem above provides a clear approach for the computation of
optimal insurance, portfolio and consumption strategies. In particular, we obtain the existence
of such optimal strategies under rather weak conditions on the utility functions.

Corollary 3.4. Suppose that the maximum expected utility V is of class C2 and that the utility

functions U and B are strictly concave with respect to their first variable. Then the Hamiltonian

function H has a regular interior maximum ν∗ = (c∗, p∗, θ∗) ∈ A(t, x).

Proof. Using the second part of theorem (3.3), an optimal admissible strategy ν∗ = (c∗, p∗, θ∗)
with wealth processX∗ must satisfy (8). Therefore, ν∗ must be such thatH attains its maximum
value. We start by remarking that the condition to obtain the maximum for H decouples into
three independent conditions, as seen in the following:

sup
ν

H(t, x; ν) = (r(t)x+ i(t))Vx(t, x) + sup
c

{

U(c, t)− cVx(t, x)

}

+sup
p

{

λ(t)B

(

x+
p

η(t)
, t

)

− pVx(t, x)

}

(20)

+sup
θ

{

x2

2

M
∑

m=1

(

N
∑

n=1

θnσnm(t)

)2

Vxx(t, x) +
N
∑

n=1

θn(µn(t)− r(t))xVx(t, x)

}

.

Therefore, it is enough to study the variation of H with respect to each one of the variables c, p
and θ independently. Thus, computing the first-order conditions for a regular interior maximum
of H with respect to c, p and θ we obtain, respectively, the following three conditions

−Vx(t, x) + Uc(c
∗, t) = 0

−Vx(t, x) +
λ(t)

η(t)
BZ

(

x+
p∗

η(t)
, t

)

= 0 (21)

xVx(t, x)α+ x2Vxx(t, x)σσ
T θ∗ = 0RN ,

where the subscripts in U and B denote differentiation with respect to each function’s first
variable, α denotes the risk premium (1), and 0RN denotes the origin of RN . Computing the
second derivative with respect to each variable (or the Hessian matrix in the case of θ), we
obtain

Hcc(t, x; ν
∗) = Ucc(c

∗, t)

Hpp(t, x; ν
∗) =

λ(t)

η2(t)
BZZ

(

x+
p∗

η(t)
, t

)

(22)

Hθθ(t, x; ν
∗) = x2Vxx(t, x)σσ

T .

Note that Hcc(t, x; ν
∗) is negative since U is strictly concave on its first variable and that

Hpp(t, x; ν
∗) is negative since λ(t) is positive for every 0 ≤ t ≤ T and B is strictly concave on its
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first variable. To see that Hθθ(t, x; ν
∗) is negative definite, recall that σσT is assumed to be non-

singular and, thus, positive definite. Moreover, note that Vxx(t, x) must be negative: if Vxx(t, x)
is positive, then H would not be bounded above and as a consequence of the HJB equation
either Vt(t, x) or V (t, x) would have to be infinity, contradicting the smoothness assumption on
V . Therefore, Hθθ is negative definite and H has a regular interior maximum. �

4. The family of discounted CRRA utilities

In this section we describe the special case where the wage earner has the same discounted
CRRA utility functions for the consumption of his family, the size of his legacy, and the size of
his terminal wealth, i.e., from now on we assume that the utility functions are given by

U(c, t) = e−ρt c
γ

γ
, B(Z, t) = e−ρtZ

γ

γ
, W (X) = e−ρT X

γ

γ
, (23)

where the risk aversion parameter γ is such that γ < 1, γ 6= 0, and the discount rate ρ is positive.

4.1. The optimal strategies. Using the optimality criteria provided in theorem 3.3, we obtain
the following optimal strategies for discounted CRRA utility functions.

Proposition 4.1. Let ξ denote the non-singular square matrix given by (σσT )−1. The optimal

strategies in the case of discounted constant relative risk aversion utility functions are given by

c∗(t, x) =
1

e(t)
(x+ b(t))

p∗(t, x) = η(t) ((D(t)− 1)x+D(t)b(t))

θ∗(t, x) =
1

x(1− γ)
(x+ b(t))ξα(t) ,

where

b(t) =

∫ T

t
i(s) exp

(

−

∫ s

t
r(v) + η(v) dv

)

ds

D(t) =
1

e(t)

(

λ(t)

η(t)

)1/(1−γ)

e(t) = exp

(

−

∫ T

t
H(v) dv

)

+

∫ T

t
exp

(

−

∫ s

t
H(v) dv

)

K(s) ds

H(t) =
λ(t) + ρ

1− γ
− γ

Σ(t)

(1− γ)2
−

γ

1− γ
(r(t) + η(t))

K(t) =
(λ(t))1/(1−γ)

(η(t))γ/(1−γ)
+ 1

Σ(t) = αT (t)ξα(t)−
1

2
‖σT ξα(t)‖2 .

Proof. Assume that the utility functions U , B and W are as given in (23). Using the first order
conditions in (21), we obtain that the optimal strategies depending on the value function V are
given by

c∗(t, x) =
(

eρtVx(t, x)
)−1/(1−γ)

p∗(t, x) = η(t)

(

(

η(t)eρtVx(t, x)

λ(t)

)−1/(1−γ)

− x

)

(24)

θ∗(t) = −
Vx(t, x)

xVxx(t, x)
ξα(t) .
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We are now going to find an explicit solution for the HJB equation (7). We substitute c, p
and θ in the HJB equation by the optimal strategies in (24) and combine similar terms to arrive
at the following partial differential equation

Vt(t, x)− λ(t)V (t, x) + ((r(t) + η(t))x+ i(t))Vx(t, x)

−Σ(t)
(Vx(t, x))

2

Vxx(t, x)
+

1− γ

γ
e−ρt/(1−γ)K(t)(Vx(t, x))

−γ/(1−γ) = 0 , (25)

where Σ(t) and K(t) are as given in the statement of this proposition and the terminal condition
is given by

V (T, x) = W (x) . (26)

We consider an ansatz of the form

V (t, x) =
a(t)

γ
(x+ b(t))γ , (27)

and substitute it in (25) so that a(t) and b(t) are determined by the differential equation

1

γ

da(t)

dt
+

a(t)

x+ b(t)

db(t)

dt
− λ(t)

a(t)

γ
+

[(r(t) + η(t))x+ i(t)]a(t)

x+ b(t)

+Σ(t)
a(t)

1− γ
+

1− γ

γ
e−ρt/(1−γ)K(t)(a(t))−γ/(1−γ) = 0 .

Note now that the previous differential equation and the terminal condition (26) decouples into
two independent boundary value problems for a(t) and b(t) which are given, respectively, by

1

γ

da(t)

dt
+

(

r(t) + η(t)−
λ(t)

γ
+

Σ(t)

1− γ

)

a(t) +
1− γ

γ
e−ρt/(1−γ)K(t)(a(t))−γ/(1−γ) = 0

a(T ) = e−ρT , (28)

and

db(t)

dt
− (r(t) + η(t))b(t) + i(t) = 0

b(T ) = 0 . (29)

To find a solution for the boundary value problem (28), we write a(t) in the form

a(t) = e−ρt(e(t))1−γ ,

obtaining a new boundary value problem for the function e(t) of the form

de(t)

dt
−H(t)e(t) +K(t) = 0

e(T ) = 1 , (30)

where K(t) and H(t) are as given in the statement of this proposition. Since equation (30) is
a linear, non-autonomous, first order ordinary differential equation, it clearly has an explicit
solution of the form

e(t) = exp

(

−

∫ T

t
H(v) dv

)

+

∫ T

t
exp

(

−

∫ s

t
H(v) dv

)

K(s) ds .

Therefore, we obtain that the solution of (28) is given by

a(t) = e−ρt

(

exp

(

−

∫ T

t
H(v) dv

)

+

∫ T

t
exp

(

−

∫ s

t
H(v) dv

)

K(s) ds

)1−γ

. (31)
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To find a solution for the boundary value problem (29), we just note that this is again a linear,
non-autonomous, first order differential equation and its solution is given by

b(t) =

∫ T

t
i(s) exp

(

−

∫ s

t
r(v) + η(v) dv

)

ds (32)

as required.
Combining (24) with (27), (31) and (32), we obtain that the optimal strategies in the case of

CRRA utilities are then given by

c∗(t, x) =
1

e(t)
(x+ b(t))

p∗(t, x) = η(t)((D(t)− 1)x+D(t)b(t))

θ∗(t, x) =
x+ b(t)

x(1− γ)
ξα(t) ,

where D(t) is as given in the statement of this proposition, which concludes the proof. �

Note that the quantities b(t) and x + b(t) are of essential relevance for the definition of the
optimal strategies in proposition 4.1. The quantity b(t), that we will refer to as human capital

following the nomenclature introduced in [6], should be seen as representing the fair value at
time t of the wage earner’s future income from time t to time T , while the quantity x + b(t)
should be thought of as the full wealth (present wealth plus future income) of the wage earner
at time t. It is then natural that these two quantities play a central role in the choice of optimal
strategies, since they determine the present and future wealth available for the wage earner and
his family.

Remark 4.2. Noting that r(t), η(t) and i(t) are positive functions and considering the boundary

value problem (32), if r(t) + η(t) is small enough, we can deduce that human capital function

b(t) has the following properties:

a) it is a positive function for all 0 ≤ t < T ;
b) it is concave.

Moreover, we have that b(t) is either:

i) a decreasing function for all t ∈ [0, T ]; or
ii) a unimodal map of t, i.e. there exists some t∗ ∈ (0, T ) such that b(t) is increasing for

all 0 < t < t∗, decreasing for all t∗ < t < T ; Furthermore, we have that the graph of b(t)
intersects the graph of the function i(t)/(r(t) + η(t)) at t = t∗.

From the explicit knowledge of the optimal strategies, several economically relevant conclu-
sions can be obtained. See Fig. 1 for a graphical representation of the optimal life-insurance
purchase as a function of age and “full wealth” x + b(t) of the wage earner. We start by prov-
ing an auxiliary lemma before moving on to the statement and proof of some of the optimal
strategies properties.

Lemma 4.3. Suppose that for all t ∈ [0,min{T, τ}] the following two conditions are satisfied:

a) λ(t) ≤ η(t);
b) H(t) ≤ 1.

Then, the inequality D(t) < 1 holds for every t ∈ [0,min{T, τ}].

Proof. Recall that D(t) is given by

D(t) =
1

e(t)

(

λ(t)

η(t)

)1/(1−γ)

.
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Figure 1. The optimal life-insurance purchase for a wage earner that starts
working at age 25 and retires 40 years later. The parameters of the model were
taken as N = M = 2, i(t) = 50000 exp(0.03t), r = 0.04, ρ = 0.03, γ = −3,
λ(t) = 0.001+exp(−9.5+0.1t), η(t) = 1.05λ(t), µ1 = 0.07, µ2 = 0.11, σ11 = 0.19,
σ12 = 0.15, σ21 = 0.17 and σ22 = 0.21.

Using condition b) and noting that K(t) is positive for all t ∈ [0,min{T, τ}], we have that

e(t) = exp

(

−

∫ T

t
H(v) dv

)

+

∫ T

t
exp

(

−

∫ s

t
H(v) dv

)

K(s) ds

≥ exp

(

−

∫ T

t
1 dv

)

+

∫ T

t
exp

(

−

∫ s

t
1 dv

)

K(s) ds > 1 .

Putting together the previous inequality and condition a), we obtain the required inequality. �

The next result provides a qualitative characterization of the optimal life insurance purchase
strategy.

Corollary 4.4. Assume that the conditions of lemma 4.3 are satisfied. Then, the optimal

insurance purchase strategy p∗(t, x) has the following properties:

a) it is a decreasing function of the wealth x;
b) it is an increasing function of the wage earner’s human capital b(t);
c) it is negative for suitable pairs of wealth x and “age” t;
d) if the wage earner’s wealth x is small enough and η(t) is non-decreasing, the function

t 7→ p∗(t, x− b(t)) has the same monotonicity as the human capital function b(t).

Proof. Recall from proposition 4.1 that the optimal insurance purchase strategy p∗(t, x) is given
by

p∗(t, x) = η(t) ((D(t)− 1)x+D(t)b(t)) (33)

for all t ∈ [0,min{T, τ}].
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Items a) and b) follow from lemma 4.3, since D(t) is a positive function such that D(t) < 1
for all t ∈ [0,min{T, τ}].

For the proof of item c), note that p∗(t, x) is negative for all (t, x) ∈ [0, T ]× R
+ such that

x >
D(t)

1−D(t)
b(t)

=
λ(t)1/(1−γ)

e(t)η(t)1/(1−γ) − λ(t)1/(1−γ)
b(t) > 0 ,

and positive otherwise.
Item d) follows from (33) and the fact that η(t) is a non-decreasing. �

Some comments regarding the assumptions in lemma 4.3 (and corollary 4.4) seem necessary.
Starting with condition (a), the life insurance company must establish the premium-insurance
η(t) in such a way that λ(t) ≤ η(t) in order to make a profit (the insurance policy being fair
whenever λ(t) ≤ η(t)). Regarding condition (b), we note that the quantities r, ρ, η and λ are
usually very small in the real world and, moreover, the relative risk aversion of the wage earner
is negative in general. This is consistent with the assumption that H(t) is bounded above by
some positive constant.

Apart from studying how optimal life insurance purchase varies with age and wealth, it is also
relevant to understand how the remaining parameters which define the financial and insurance
markets influence life insurance purchase.

Corollary 4.5. With all other parameters, including t and x constant, the optimal life insurance

purchase rate p∗(t, x) is an increasing function of the discount rate ρ.

Proof. To study the influence of the discount rate ρ on the optimal optimal life insurance pur-
chase, we consider two different values of ρ and compare the corresponding values of the optimal
life insurance purchase. We distinguish the functions associated with each of the two parameter
values by their subscript.

Assume that ρ1 and ρ2 are such that ρ1 < ρ2. Recall the definitions of p
∗(t, x), H(t), e(t) and

D(t) given in proposition 4.1. Then, it is clear that the inequalities

H1(t) < H2(t)

e1(t) > e2(t)

D1(t) < D2(t)

hold for all t ∈ [0,min{T, τ}], where the subscripts correspond to ρ1 and ρ2 in an obvious
manner. Rewriting p∗(t, x) as

p∗(t, x) = η(t)(D(t)(x+ b(t))− x) ,

it follows from the preceding inequalities that

p∗1(t, x) < p∗2(t, x)

for all t ∈ [0,min{T, τ}], concluding the proof of the statement. �

Remark 4.6. The variation of the optimal life insurance purchase rate p∗(t, x) with respect

to the interest rate r(t), the risk aversion parameter γ, the hazard rate λ(t) and the insurance

premium-payout ratio η(t) is non-trivial. However, by studying the function p∗(t, x) given in

proposition 4.1 we can make the following observations:

i) p∗(t, x) is a decreasing function of the interest rate r(t), except for large values of x and

t close enough to T ;
ii) p∗(t, x) is a decreasing function of the risk aversion parameter γ, except for values of t

close enough to T ;
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iii) p∗(t, x) is an increasing function of the hazard rate λ(t) and the insurance premium-

payout ratio η(t) for small enough values of wealth x and a decreasing function for large

values of x.

The extra risky securities in our model introduce novel features to the wage earner’s portfolio
management, as is exemplified in the following result.

Corollary 4.7. Let ξ denote the non-singular square matrix given by (σσT )−1 and let (ξα(t))n
denote the n-th component of the vector ξα(t). The optimal portfolio process θ∗(t, x) = (θ∗1, ..., θ

∗
N )

is such that for every n ∈ {1, ..., N}:

a) θ∗n has the same sign as (ξα(t))n;
b) θ∗n is a decreasing function of the total wealth x if (ξα(t))n > 0 for all t ∈ [0,min{T, τ}]

and an increasing function of x if (ξα(t))n < 0 for all t ∈ [0,min{T, τ}];
c) θ∗n is an increasing function of the wage earner’s human capital b(t) if (ξα(t))n > 0

for all t ∈ [0,min{T, τ}] and a decreasing function of b(t) if (ξα(t))n < 0 for all t ∈
[0,min{T, τ}].

Furthermore, for every n,m ∈ {1, ..., N} the following equalities hold

lim
x→0+

θ∗n(t, x) = +∞ lim
x→0+

θ∗n(t, x)

θ∗m(t, x)
=

(ξα(t))n
(ξα(t))m

lim
x→∞

θ∗n(t, x) =
(ξα(t))n
1− γ

lim
t→T

θ∗n(t, x) =
(ξα(T ))n
1− γ

.

Proof. Items a), b) and c) on the first part of the corollary follow from the form of θ∗n, n ∈
{1, ..., N}, given in the statement of proposition 4.1 and positivity of b(t).

The limiting behaviours on the second part of the corollary also follow from the form of θ∗n,
n ∈ {1, ..., N}. �

Remark 4.8. Corollary 4.7 is a mutual fund result: the relative proportions among the risky

securities are independent of all parameters except for the interest rate and the risky assets

appreciation rates and volatilities since, for any n,m ∈ {1, ..., N} we have

θ∗n(t, x)

θ∗m(t, x)
=

(ξα(t))n
(ξα(t))m

.

The quantities (ξα(t))n, n ∈ {1, ..., N} can be though as “weighted risk premiums” for the
risky assets S1, . . . , SN , where the weights are provided by (quadratic) functions on the coeffi-
cients of the matrix of risky-assets volatilities σ.

Under the assumption that the “weighted risk premiums” (ξα(t))n are positive for all n ∈
{1, ..., N} and t ∈ [0,min{T, τ}], we obtain the following interesting consequence of the previous
corollary.

Corollary 4.9. Let ξ denote the non-singular square matrix given by (σσT )−1 and let (ξα(t))n
denote the n-th component of the vector ξα(t). Assume that for every n ∈ {1, ..., N} we have

(ξα(t))n > 0 for all t ∈ [0,min{T, τ}]. Then the optimal strategy for wage earners with small

enough wealth x is to short the risk-free security and hold higher amounts of risky assets.

Proof. The corollary follows from corollary 4.7 and the fact that the wage earner has no budget
limitations, thus allowing him to get into short positions on the risk free asset S0 of arbitrary
size. �

We conclude this session with a result concerning some qualitative properties of the optimal
consumption strategy. Its proof follows trivially from the form of the optimal consumption
c∗(t, x) given in proposition 4.1.

Corollary 4.10. The optimal consumption rate c∗(t) is an increasing function of both the wealth

x and the human capital b(t).
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4.2. The interaction between life insurance purchase and portfolio management. In
this section we compare the optimal life-insurance strategies for a wage earner who faces the
following two situations:

a) in the first case, we assume that the wage earner has access to an insurance market
as described above and that his goal is to maximize the combined utility of his family
consumption for all t ≤ min{T, τ}, his wealth at retirement date T if he lives that long,
and the value of his estate in the event of premature death. The optimal strategies for
the wage earner in this setting are given in Proposition 4.1.

b) in the second case, we assume that the wage earner is without the opportunity of buying
life insurance. His goal is to maximize the combined utility of his family consumption for
all t ≤ min{T, τ} and his wealth at retirement date T if he lives that long. Similarly to
what we have done previously, we translate this situation to the language of stochastic
optimal control and derive explicit solutions in the case of discounted CRRA utilities.

We concentrate on the case b) described above for the moment. Similarly to what was done in
case a), this problem can be formulated by means of optimal control theory. The wage earner’s
goal is then to maximize a new cost functional subject to:

• the dynamics of the state variable, i.e., the dynamics of a wealth process X0(t) given by

X0(t) = x+

∫ t

0
i(s)− c0(s) ds+

N
∑

n=0

∫ t

0

θ0n(s)X
0(s)

Sn(s)
dSn(s) ,

where t ∈ [0,min{T, τ}] and x is the wage earner’s initial wealth.
• constraints on the remaining control variables, i.e., the consumption process c0(t) and
the reduced portfolio process θ0(t) =

(

θ01(t), · · · , θ
0
N (t)

)

∈ R
N ; and

• boundary conditions on the state variables.

Let us denote by A0(x) the set of all admissible decision strategies, i.e. all admissible choices
for the control variables ν0 = (c0, θ0) ∈ R

N+1. The dependence of A0(x) on x denotes the
restriction imposed on the wealth process by the boundary condition X0(0) = x.

The wage earner’s problem can then be stated as follows: find a strategy ν0 = (c0, θ0) ∈ A0(x)
which maximizes the expected utility

V 0(x) = sup
ν0∈A0(x)

E0,x

[

∫ T∧τ

0
U(c0(s), s) ds+W (X0(T ))I{τ>T}

]

, (34)

where U(c0, ·) is again the utility function describing the wage earner’s family preferences re-
garding consumption in the time interval [0,min{T, τ}] and B(X0, t) is the utility function for
the terminal wealth at time t = T ∧ τ . As before, we restrict ourselves to the special case where
the wage earner has the same discounted CRRA utility functions for the consumption of his
family and his terminal wealth given in (23). The optimal strategies are given in the next result

Proposition 4.11. Let ξ denote the non-singular square matrix given by (σσT )−1. The optimal

strategies for problem (34) in the case where U(c0, ·) and B(X0, ·) are the discounted constant

relative risk aversion utility functions in (23) are given by

c0
∗
(t, x) =

1

e0(t)
(x+ b0(t))

θ0
∗
(t, x) =

1

x(1− γ)
(x+ b0(t))ξα(t) ,
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where

b0(t) =

∫ T

t
i(s) exp

(

−

∫ s

t
r(v) dv

)

ds

e0(t) = exp

(

−

∫ T

t
H0(v) dv

)

+

∫ T

t
exp

(

−

∫ s

t
H0(v) dv

)

ds

H0(t) =
λ(t) + ρ

1− γ
− γ

Σ(t)

(1− γ)2
−

γ

1− γ
r(t)

and Σ(t) is as given in the statement of proposition 4.1.

We skip the proof of the previous proposition, since it is of the same nature as the proofs of
theorem 3.3 and proposition 4.1.

We should point that it would be preferable from an economic standpoint to maximize also the
utility of wealth at the time of premature death. In fact, it is easy to check that this corresponds
to the addition of a constraint of the form p(t, x) = 0 to our original problem. However, the
corresponding HJB equation would contain an extra term of the form λ(t) xγ/γ. The presence
of this additional term in the HJB equation makes it impossible for us to obtain closed form
solutions. On the other hand, a strategy optimizing the final wealth at retirement should be
close to an optimal strategy which maximizes also the wealth for the case of an eventual death
of the wage earner before retirement time. We plan to address such a comparison in future
research.

If we make the wage earner income i(t) equal to zero, then we get a solution which is close
to Merton’s classical solution, but it still depends on the hazard function λ(t), i.e., even in the
absence of a life insurance policy the uncertainty regarding wage earner’s lifetime still plays a
role on the determination of the optimal consumption and investment strategies.

Propositions 4.1 and 4.11 provide us with optimal portfolio processes for the two settings a)
and b) described above. In the next theorem we show how these optimal portfolio processes
compare.

Theorem 4.12. Let ξ denote the non-singular square matrix given by (σσT )−1 and (ξα(t))n the

n-th component of the vector ξα(t). For each n ∈ {1, ..., N}, we have that θ0n
∗
(t, x) > θ∗n(t, x) if

and only if (ξα(t))n > 0.

Proof. Recall the definitions of θ0
∗
and θ∗ from propositions 4.11 and 4.1, respectively. Note

that

θ0n
∗
(t, x)− θ∗n(t, x) =

1

x(1− γ)
(x+ b0(t))(ξα(t))n −

1

x(1− γ)
(x+ b(t))(ξα(t))n

=
(ξα(t))n
x(1− γ)

(b0(t)− b(t)) . (35)

Using the definitions of b0(t) and b(t) given in the statements of propositions 4.11 and 4.1,
respectively, we obtain that

b0(t)− b(t) =

∫ T

t
i(s)exp

(

−

∫ s

t
r(v) dv

)(

1− exp

(

−

∫ s

t
η(v) dv

))

ds . (36)

Since η(t) is a positive function, we get that
∫ s

t
η(v) dv > 0

and therefore, the inequality

1− exp

(

−

∫ s

t
η(v) dv

)

> 0 (37)
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holds for all 0 ≤ t ≤ s ≤ T . Therefore, combining (35), (36) and (37) and recalling that
γ < 1, we obtain that the sign of θ0n

∗
(t, x) − θ∗n(t, x) is the same as the sign of (ξα(t))n for all

t ∈ [0,min{T, τ}]. �

The economic implications of the theorem above are made clear in the following result.

Corollary 4.13. Let ξ denote the non-singular square matrix given by (σσT )−1 and (ξα(t))n
the n-th component of the vector ξα(t). Assume that for every n ∈ {1, ..., N} we have that

(ξα(t))n > 0. Then, the optimal portfolio of a wage earner with the possibility of buying a life

insurance policy is more conservative than the optimal portfolio of the same wage earner if he

does not have the opportunity to buy life insurance.

5. Conclusions

We have introduced a model for optimal insurance purchase, consumption and investment
for a wage earner with an uncertain lifetime with an underlying financial market consisting
of one risk-free security and a fixed number of risky securities with diffusive terms driven by
multidimensional Brownian motion.

When we restrict ourselves to the case where the wage earner has the same discounted CRRA
utility functions for the consumption of his family, the size of his legacy and his terminal wealth,
we obtain explicit optimal strategies and describe new properties of these optimal strategies.
Namely, we obtain economically relevant conclusions such as: (i) a young wage earner with
smaller wealth has an optimal portfolio with larger values of volatility and higher expected
returns; and (ii) a wage earner who can buy life insurance policies will choose a more conservative
portfolio than a similar wage earner who is without the opportunity to buy life insurance.

It is worth noting that the model described in this paper can be improved by adding further
ingredients such as, for instance, some form of stochasticity on the income function or the
hazard rate, some constraints on the possibility of trading of stocks on margin, the existence of
additional life insurance products on the market or even adding some correlation between the
wage earner’s mortality rate and the underlying financial market. We plan to address at least
some of these issues in a future publication.
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