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Abstract: Although controversial from the theoretical point of view, quantile risk

measures are widely used by institutions and regulators.

In this paper we show that the use of measures like Value at Risk or Conditional Tail

Expectation as optimization criteria for insurance or reinsurance leads to treaties that are

not enforceable and/or are clearly bad for the cedent. We argue that this is one further

argument against the use of quantile risk measures, at least for the purpose of risk-transfer

decisions.
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1 Introduction

Risk measures based on quantiles became popular since 1988, when U.S. commercial banks

started to determine their regulatory capital requirements for financial market risk expo-

sure using Value at Risk (VaR) models. Value at Risk became widely used with the Basel

II accord, which came into force in 2006. Although controversial, the same risk measure

was adopted by the European Union within the solvency assessment of insurance compa-

nies for the calibration of the Solvency Capital Requirement, in the Solvency II accord,

which is scheduled to come into effect in 2012.
∗This research has been supported by Fundação para a Ciência e a Tecnologia (FCT) – project

PTDC/ECO/ 66693/2006 – through PIDDAC, partially funded by the Portuguese State Budget.
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The controversy around the VaR is based on several of its shortcomings: (i) It is

only concerned about the frequency of default, but not with the size of default, thus it

encourages agents to take excessive risk under a false sense of security; (ii) VaR estimates

are unstable when the losses are not “normally distributed”, which is of upmost importance

in insurance, where fat tails are very common and mass points may occur; (iii) VaR lacks

theoretically appealing properties, namely, it fails to be coherent in the sense of Artzner

et al. (1999).

This paper provides further evidence against VaR following another line of argument:

In our opinion, if decisions based on a risk measure are sound, then the use of that risk

measure as an optimization criterion should lead to sound strategies. We argue that VaR

clearly fails this test.

We will use the following definition for the VaR.

Definition 1 For any real random variable X and any constant α ∈ (0, 1), the Value at

Risk at probability α is

VaRX(α) = min{v : Pr{X > v} ≤ α}. ¤ (1)

Trying to avoid the shortcomings of VaR, several alternative measures based on quan-

tiles have been proposed in the literature. Rockafellar & Uryasev (2002) derive fundamen-

tal properties for the Conditional Tail Expectation (CTE) – in their article designated

Conditional Value at Risk (CVaR) – for distributions that can involve discreetness and

show that it is a coherent risk measure. We use their definition.

Definition 2 For any real random variable X and any constant α ∈ (0, 1), the Condi-

tional Tail Expectation at probability α (CTEX(α)) is the mean of the α tail distribution

of X, where the distribution in question is the one with distribution function

F (ζ) =

{
0 for ζ < VaRX(α)
α−Pr{X>ζ}

α for ζ ≥ VaRX(α). ¤
(2)

The subtlety of the definition resides in the case where the distribution function of X

has an atom at VaRX(α).

There are two common variants of the Conditional Tail Expectation that appear in

the literature, here designated by Upper and Lower Conditional Tail Expectation (called

Upper and Lower Conditional Value at Risk in Rockafellar & Uryasev (2002)).
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Definition 3 For any real random variable X and any constant α ∈ (0, 1), the Lower

Conditional Tail Expectation at probability α is

CTE−X(α) = E [X|X ≥ VaRX(α)] (3)

and the Upper Conditional Tail Expectation at probability α is

CTE+
X(α) = E [X|X > VaRX(α)] . ¤ (4)

Both CTE− and CTE+ fail to be coherent. Also, CTE+
X(α) is not well defined for

every random variable because Pr{X > VaRX(α)} may be zero. One important example

is the case when an insurer detains a risk X and buys stop-loss reinsurance (X−M)+ with

M ≤ VaRX(α). Then, he retains a risk min{Y, M}, with Value at Risk equal to M and

CTE+
min{Y,M}(α) not well defined. For this reason, the measure CTE+ is not considered

in this paper.

Notice that CTE−X(α) ≤ CTEX(α) holds for any random variable, with strict inequality

being possible if X has a probability atom at VaRX(α). CTE and CTE− are related to

the Expected Shortfall at probability α,

ESX(α) = E[(X −VaRX(α))+], (5)

by the equalities

CTEX(α) =VaRX(α) +
1
α

ESX(α), (6)

CTE−X(α) =VaRX(α) +
1

Pr{X ≥ VaRX(α)}ESX(α). (7)

So, we see that the difference between CTE and CTE− is the greater weight of default

sizes in the computation of CTE in the case Pr{X ≥ VaRX(α)} > α.

Under Definition 2, for nonnegative random variables, CTEX(α) turns out to be equal

to what is usually named TVaRX(α) and defined by

TVaRX(α) =
1
α

∫ α

0
VaRX(s)ds, (8)

even in the case where X has mass points.

In the real world, insurance arrangements are important means of risk transfer and

can take many forms. To simplify, we define insurance as any contract by which the owner

of the risk (the cedent) pays a premium which is an amount fixed at the beginning of a

3



given time period and, in exchange for this payment, the counterpart agrees to support

part of the total loss generated by the risk during the period, according to some formula

specified in the contract. This definition includes both insurance and reinsurance. For

convenience, the results in this paper are formulated in the language of reinsurance, but

the reader should have in mind that they apply exactly to all forms of insurance as defined

above. We believe that, from a qualitative point of view and with necessary adaptations,

most of them also apply to more general risk-transfer arrangements.

The popularity of quantile risk measures justifies the significant number of research

papers using these criteria for the calculation of optimal reinsurance treaties. Cai and Tan

(2007) calculate optimal retention limits for stop loss contracts under the VaR and CTE−

risk measures. Cai et al. (2008) using also the VaR and the CTE− criteria derive the

optimal ceded loss arrangements in a class of increasing convex ceded loss functions, and

prove that depending on α and on the safety loading for the reinsurance premium, which is

assumed to be calculated according to the expected value principle, the optimal reinsurance

can be in the forms of stop loss, quota share or change loss. Tan et al. (2010) show that

stop loss minimizes the Conditional Tail Expectation (CTE) of the retained risk, when the

reinsurance premium is calculated according to the expected value principle. Bernard and

Tian (2009) investigates optimal reinsurance contracts under different tail risk measures

subject to regulatory constraints.

In this paper we find that the constraints assumed by Cai et al. (2008) are binding.

We solve both problems (VaR and the CTE−) lifting the constraints on the convexity and

monotonicity of the ceded loss functions, and obtain discontinuous functions as optimal

solutions. This holds not just when the reinsurance premium is computed by the expected

value principle but also when it is either a continuous function of the m first moments or

it a risk-adjusted premium calculation principle as defined by Wang (1996). In particular

when the optimization criterion is the VaR we are led to the truncated stop loss, which

has already appeared in the actuarial literature when the criterion chosen is the survival

probability in one period of time, namely in Gajek and Zagrodny (2004), Kaluszka (2005)

and Kaluszka and Okolewski (2008).

It is our opinion that discontinuous reinsurance arrangements are not acceptable. Any

claim value on the neighborhood of a discontinuity point of the reinsurance arrangement

would lead to a conflict between insurer and reinsurer.

Further, the optimal treaties provide effective protection against small or moderate
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losses (which could possibly be well provided by adequate reserves) and little protection,

if any, against large or very large losses where reinsurance is crucial.

The insurer is expected to make a profit in the event of small claims. Hence by ceding

the small claims and keeping the large ones, the insurer is in fact renouncing to the

source of profits without gaining any protection against catastrophic events. Indeed, in

many situations the optimal treaty exchanges a profitable situation against one where the

insurer is certain to loose money and still have the same unbounded tail on the amount

of the losses.

The reader may argue that at least part of these shortcomings could be eliminated by

including constraints to the admissible functions, like monotonicity and convexity. Our

opinion is that the optimization criterion should be worth by itself. If without further

constraints it provides optimal solutions that have clear and systematic shortcomings,

then it should be seen at least with reserve.

If instead of VaR we consider the coherent CTE, then the optimal treaties look more

acceptable. At least for ”good” premium principles the optimal solution is now continuous

and monotonically increasing, being generically a stop-loss with a ceiling. This type of

contract is common in the industry, mainly because stop-loss reinsurance is too expensive

to be acceptable in most practical cases. However, we give strong evidence that CTE pro-

vides solutions with reinsurance excessively concentrated on small/moderate claim sizes.

Optimal treaties by which the insurer is certain to loose money and retains an unbounded

tail of the losses are still possible.

The results for CTE− are intermediate between VaR and CTE: some more reinsur-

ance of large claims is provided than in the VaR case, but the optimal treaties are again

discontinuous and non-monotonic. This is not surprising, considering that CTE− takes

the size of defaults into account but with a smaller weight than CTE.

Quantile risk measures are only concerned with a single period, take into account

only the claims, ignoring important parameters of the overall situation of the insurer, like

reserves and premiums revenue, that presumably should have some bearing in the choice

of the reinsurance strategy. So, maybe other criteria that take into account the long-term

fitness of the insurer are more adequate to select good reinsurance policies.

This paper is organized as follows: In Section 2 we formalize the optimal reinsurance

problem and state the general assumptions used in the paper. In Section 3, we introduce

random treaties, a mathematical tool that allows a unified analysis of the optimal rein-
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surance problem under the different criteria used in this paper. Full proofs of the main

properties of random treaties are provided in Appendix. Sections 4, 5 and 6 deal with

the VaR, CTE and CTE− criteria, respectively. Implications of these results concerning

suitability of the risk measures are discussed in Section 7.

2 Problem setting

We consider the case when the direct insurer is concerned with a single risk. This can be

a single policy or a portfolio of policies. The aggregate value of claims on this risk during

a given interval of time is a non-negative random variable Y : Ω 7→ [0, +∞), defined in

a probability space (Ω,F , µ) . A reinsurance policy is a function Z : [0, +∞) 7→ [0, +∞),

mapping each possible aggregate value of the claims into the corresponding value refunded

under the reinsurance contract. The set of all possible reinsurance policies is:

Z = {Z : [0,+∞) 7→ R|Z is measurable and 0 ≤ Z(y) ≤ y,∀y ≥ 0} .

We do not distinguish between functions which differ only on a set of zero probability. i.e.,

two measurable functions, φ and φ′ are considered to be the same whenever Pr{φ(Y ) =

φ′(Y )} = 1. Similarly, a measurable function Z is an element of Z whenever Pr{0 ≤
Z(Y ) ≤ Y } = 1.

The premium charged for each admissible reinsurance policy is computed by a real

functional P : Z 7→ [0, +∞]. Thus, if the direct insurer buys a particular reinsurance

policy Z ∈ Z, the retained risk (net of premium) is

RZ = Y − Z + P (Z).

We assume that the insurer rates risks using a given risk measure ρ and has full knowledge

of the functional P . Thus, he wishes to select a reinsurance policy that solves the following

problem:

Problem 1 Find Ẑ ∈ Z such that

ρ(RẐ) = min {ρ(RZ) : Z ∈ Z} . ¤

In this paper we consider that ρ is VaR, CTE or CTE−. All three risk measures are

cash-invariant, which implies

ρ(RZ) = P (Z) + ρ(Y − Z), ∀Z ∈ Z. (9)

6



As already mentioned, CTEX(α) is coherent in the sense of Artzner et al. (1999) while

X 7→ VaRX(α) and X 7→ CTE−X(α) are nonconvex functionals and hence are incoherent.

All the results presented in this paper are obtained under the following blanket as-

sumptions:

Assumption 1 The random variable Y is integrable, i.e., E[Y ] < +∞. ¤

This assumption is sufficient to guarantee existence of relaxed solutions (see Section 3

below). Notice that nonintegrable risks are generally considered to be non-insurable.

Assumption 2 The random variable Y is a mixture of a continuous random variable

with the degenerate random variable Y0 ≡ 0. ¤

This assumption is included only for convenience. A brief discussion of the conse-

quences of its relaxation is included as a footnote to the proof of Proposition 2.

Concerning the premium calculation principle, we take one of the following alternative

assumptions:

Assumption 3 The premium calculation principle is a functional

P (Z) = γ
(
E[Z], E[Z2], . . . , E[Zm]

)
, ∀Z ∈ Z, (10)

where γ : [0, +∞]m 7→ [0, +∞] is a continuous function, monotonically increasing with

respect to xm (the m-th coordinate of its argument), such that lim
xm→+∞ γ(x1, x2, . . . , xm) =

+∞ uniformly with respect to (x1, x2, . . . , xm−1). ¤

Assumption 4 The premium calculation principle is a functional

P (Z) =
∫ +∞

0
w(Pr{Z > t})dt, ∀Z ∈ Z, (11)

where w : [0, 1] 7→ [0, 1] is continuous, concave, monotonic increasing function with w(0) =

0, w(1) = 1. ¤

Examples of premium calculation principles of the type (10) include the expected value

principle (m = 1, γ(x) = (1+β)x), the variance principle (m = 2, γ(x1, x2) = x1 +β(x2−
x2

1)
+), and the standard deviation principle (γ(x1, x2) = x1 + β

√
(x2 − x2

1)+).

Since the premium is the minimal monetary compensation the reinsurer will take to ac-

cept a given risk, it is a risk measure in the sense of Artzner et al. (1999). If we accept that

risk measures in general should be coherent, then premium calculation principles should

be coherent. Functionals of type (10) include both coherent and incoherent principles,

while all principles of type (11) are coherent (see Kusuoka (2001)).
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3 Random treaties

The risk measures VaR and CTE− and many of the premium principles (10) fail to be

convex. Optimization of nonconvex functionals poses special difficulties. The main one

being that existence of any solution is difficult to guarantee. This is inconvenient not only

because any attempt to solve a problem without solution is obviously pointless, but also

because approaches based on necessary optimality conditions are much simplified when

the solution is a priori known to exist. We overcome this difficulty by considering random

treaties.

A random treaty is a contract that defines the amount to be refunded as a function

of the claim amount and some other random variable. Thus, the value refunded under a

random treaty given a particular claim amount Y = y is a random variable Z(y, X) rather

than a constant value given by the function Z(y). One simple example is a contract stating

that the insurer will be refunded for all his losses if the winning number in the lottery

is even and will receive nothing if it is odd. On average the direct insurer expects to

be refunded for half his losses, but this contract is obviously not the same as the quota-

share Z(y) = 1
2y. Such contracts are enforceable in practice as long as the auxiliary

random variable is public and cannot be tampered by any of the contracting parts (as it is

presumably the case in the example above). The results in Sections 4, 5 and 6 show that,

under Assumptions 1, 2, a non-random optimal treaty always exists. Hence the reader who

is not comfortable with the idea of random treaties can view them as mere mathematical

tool that allows us to deal with the problems outlined in the previous section in a unified

approach.

The space of random treaties is defined as follows

Definition 4 Any Borel probability measure η over R2 satisfying

(i) η{(y, z) : 0 ≤ z ≤ y} = 1;

(ii) η(A× R) = Pr{Y ∈ A} for every Borel set A ⊂ [0, +∞),

is called a random treaty. The space of all random treaties is denoted by M. ¤

The space of (deterministic) treaties, Z, can be embedded in M by identifying each

function Z ∈ Z with the corresponding measure

ηZ(A) =
∫

R2

χA(y, z)δZ(y)(dz)µ(dy), A ∈ BR2 , (12)
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where δa denotes the Dirac measure concentrated at the point a and

χA(y, z) =

{
1, if (y, z) ∈ A,

0, if (y, z) /∈ A

is the characteristic function of the set A. A functional Φ̂ : M 7→ [−∞, +∞] is said to be

an extension of a functional Φ : Z 7→ [−∞, +∞] into M if

Φ̂(ηZ) = Φ(Z), ∀Z ∈ Z.

Using (12), it is easy to check that the following are “natural” extensions for the functionals

Z 7→ VaRY−Z(α), Z 7→ CTEY−Z(α), Z 7→ CTE−Y−Z(α), (10) and (11), respectively:

ˆVaRη(α) = inf{v : η{(y, z) : y − z > v} ≤ α}; (13)

ˆCTEη(α) =
α− η{(y, z) : y − z > VaRη(α)}

α
VaRη(α)+

+
1
α

∫

{(y,z):y−z>VaRη(α)}
(y − z)dη; (14)

ˆCTE
−
η (α) =

∫
{(y,z):y−z≥VaRη(α)}(y − z)dη

η{(y, z) : y − z ≥ VaRη(α)} ; (15)

P̂ (η) = γ

(∫

R2

(z, z2, . . . , zm)dη

)
; (16)

P̂ (η) =
∫ +∞

0
w(η{(y, z) : z > t})dt. (17)

So, we introduce the relaxed problem:

Problem 2 Find η̂ ∈M such that

P̂ (η̂) + ρ̂(η̂) = min{P̂ (η) + ρ̂(η) : η ∈M},

where ρ̂ is (13), (14) or (15) and P̂ is (16) or (17). ¤

In the remaining of this paper ρ̂(η) always denotes one of the extensions (13), (14) or

(15). P̂ (η) denotes (16) or (17).

The relaxation of Problem 1 into Problem 2 is similar to Kantorovich relaxation in the

Monge optimal mass transfer problem (see e.g. Evans (1999)). It is partly justified by the

following Proposition:

Proposition 1 Problem 2 admits a solution in M. ¤
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Proof. A full proof is provided in the Appendix. Here we just state the key arguments:

We provide the space of random treaties with the topology of weak convergence over

the space Cc, of all continuous functions g : R2 7→ R with compact support. This means

that a sequence {ηn ∈M}n∈N is said to converge to η ∈M if and only if

lim
∫

R2

gdηn =
∫

R2

gdη

holds for every g ∈ Cc. This makes M into a compact topological space.

All the functionals (13)–(17) are lower semicontinuous with respect to the above topol-

ogy.

Hence the result follows by the Weierstrass’ Theorem.

Our approach consists in finding necessary optimality for the relaxed problem and then

prove that for each candidate optimal solution there is a nonrandom treaty that has the

same rating.

4 The VaR measure

In this section, we solve Problem 1 when the insurer’s risk measure is the VaR.

4.1 Premiums depending on moments

Suppose the premium calculation principle is of type (10). For each η ∈ M, we consider

the polynomial function ζ 7→ Qη(ζ) defined as

Qη(ζ) =
m∑

i=1

∂γ

∂xi
ζi, ζ ∈ R, (18)

where ∂γ
∂xi

denotes the partial derivative of γ with respect to its i-th argument, evaluated

at the point x =
∫
R2

(
z, z2, . . . zm

)
dη. To simplify, we denote by QZ the polynomial QηZ ,

when Z ∈ Z is a nonrandom treaty.

Proposition 2 (under Assumptions 1, 2 and 3):

Let η̂ solve Problem 2. If γ is differentiable at x̂ =
∫
R2

(
z, z2, . . . zm

)
dη̂ and ∇γ(x̂) 6= 0,

then Problem 1 admits an optimal treaty Ẑ ∈ Z such that, for each claim size y > 0 we

have:

Ẑ(y) = arg min
ζ∈[0,y]

QẐ(ζ) or Ẑ(y) = arg min
ζ∈[(y−v)+,y]

QẐ(ζ),
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with v = VaRY−Ẑ(α). Further, there is a constant C ∈ [0,+∞) such that

Ẑ(y) = arg min
ζ∈[(y−v)+,y]

QẐ(ζ) if min
ζ∈[(y−v)+,y]

QẐ(ζ)− min
ζ∈[0,y]

QẐ(ζ) < C;

Ẑ(y) = arg min
ζ∈[0,y]

QẐ if min
ζ∈[(y−v)+,y]

QẐ(ζ)− min
ζ∈[0,y]

QẐ(ζ) > C. ¤

Proof. Fix η̂ ∈ M, a solution of Problem 2 satisfying the assumptions above. Let

v = ˆVaRη̂(α), and pick (y0, z0) ∈ Supp(η̂).

To start, assume that z0 ∈ [0, y0− v). Fix t ∈ (−z0, y0− z0), and consider the measure

ηε(A) =η̂(A)− η̂(A ∩Bε(y0, z0))+

+ η̂ {(y, z) ∈ Bε(y0, z0) : (y, z + t) ∈ A} , A ∈ BR2 ,

where Bε(y0, z0) is the open ball of radius ε and center at (y0, z0). For sufficiently small

ε > 0, ηε ∈M and ˆVaRηε(α) ≤ ˆVaRη̂(α). Therefore, optimality of η̂ implies

P̂ (ηε) ≥ P̂ (η̂). (19)

For i ∈ {1, 2, . . . ,m}, we have
∫

R2

zidηε =
∫

R2

zidη̂ −
∫

Bε(y0,z0)
zidη̂ +

∫

Bε(y0,z0)
(z + t)idη̂ =

=
∫

R2

zidη̂ +
(
(z0 + t)i − zi

0

)
η̂ (Bε(y0, z0)) + o (η̂ (Bε(y0, z0))) .

Thus, differentiability of γ implies

P̂ (ηε) =P̂ (η̂) +
m∑

i=1

∂γ

∂xi

∣∣∣∣
x=

∫
R2 (z,z2,...,zm)dη̂

× (
(z0 + t)i − zi

0

)× η̂ (Bε(y0, z0))+

+ o (η̂ (Bε(y0, z0))) =

=P̂ (η̂) + (Qη̂(z0 + t)−Qη̂(z0))× η̂ (Bε(y0, z0))+

+ o (η̂ (Bε(y0, z0))) , (20)

and hence, inequality (19) implies

Qη̂(z0 + t) ≥ Qη̂(z0), ∀z0 + t ∈ (0, y0).

By continuity of Qη̂, this is

z0 = arg min
z∈[0,y0]

Qη̂(z).
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If, instead, we assume that z0 ∈ [y0−v, y0], we still have ηε ∈M and ˆVaRηε(α) ≤ ˆVaRη̂(α),

provided t ∈ (y0 − v − z0, y0 − z0) and ε > 0 is sufficiently small. The same argument as

above shows that in this case we have

z0 = arg min
z∈[y0−v,y0]

Qη̂(z).

Thus, we proved that

Supp(η̂) ⊂
{

(y, z) : y ≥ 0, z = arg min
t∈[0,y]

Qη̂(t) or z = arg min
t∈[y−v,y]

Qη̂(t)
}

. (21)

Since ζ 7→ Qη̂(ζ) is a (nonconstant) polynomial, it has only finitely many local minima in

[0, +∞). Let 0 ≤ c1 < c2 < . . . < cp be the local minimizers of ζ 7→ Qη̂(ζ) in [0, +∞).

Then, (21) implies that the support of η̂ is contained in the set
(

p⋃

i=1

{(y, ci) : y ≥ ci}
)
∪ {(y, y) : y ≥ 0} ∪ {(y, y − v) : y ≥ v}.

Due to Definition 4, this means that the measure η̂ admits a representation

η̂(A) =
p∑

i=1

∫ +∞

ci

mi(y)χA(y, ci)dF (y)+

+
∫ +∞

0
mp+1(y)χA(y, y)dF (y)+

+
∫ +∞

v
mp+2(y)χA(y, y − v)dF (y), ∀A ∈ BR2 , (22)

where mi, i = 1, 2, . . . , (p + 2) are measurable nonnegative functions such that

Pr

{
p+2∑

i=1

mi(Y ) = 1

}
= 1,

and F is the distribution function of Y .

Fix (y1, z1), (y2, z2) ∈ Supp(η̂) such that

y1 > v, y2 > v, z1 = arg min
z∈[0,y1]

Qη̂(z), z2 = arg min
z∈[y2−v,y2]

Qη̂(z). (23)

Fix

t1 ∈ (y1 − z1 − v, y1 − z1), t2 ∈ (−z2, y2 − z2), (24)
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and consider the measure

ηε(A) =η̂(A)− η̂ (A ∩Bε(y1, z1))+

+ η̂ {(y, z) ∈ Bε(y1, z1) : (y, z + t1) ∈ A}−

− η̂ (Bε(y1, z1))
η̂ (Bε(y2, z2))

η̂ (A ∩Bε(y2, z2))+

+
η̂ (Bε(y1, z1))
η̂ (Bε(y2, z2))

η̂ {(y, z) ∈ Bε(y1, z1) : (y, z + t1) ∈ A} , A ∈ BR2 .

For every sufficiently small ε > 0 we have ηε ∈ M and the argument used to obtain (20)

shows that for this new measure we have

P̂ (ηε) =P̂ (η̂) + (Qη̂(z1 + t1)−Qη̂(z1) + Qη̂(z2 + t2)−Qη̂(z2)) η̂ (Bε(y1, z1))+

+ o (η̂ (Bε(y1, z1))) .

Thus, optimality of η̂ implies

Qη̂(z1 + t1)−Qη̂(z1) + Qη̂(z2 + t2)−Qη̂(z2) ≥ 0.

By picking z1 + t1 close to arg min
z∈[y1−v,y1]

Qη̂(z), z2 + t2 close to arg min
z∈[0,y2]

Qη̂(z), and using

(23), we see that this implies

min
z∈[y1−v,y1]

Qη̂(z)− min
z∈[0,y1]

Qη̂(z) ≥ min
z∈[y2−v,y2]

Qη̂(z)− min
z∈[0,y2]

Qη̂(z)

Since this holds for any pair (y1, z1), (y2, z2) ∈ Supp(η̂) satisfying (23), we conclude that

there is a constant C ∈ [0, +∞) such that

Qη̂(z1) = min
z∈[0,y1]

Qη̂(z) ≤ min
z∈[y1−v,y1]

Qη̂(z)− C

for every (y1, z1) ∈ Supp(η̂) such that z1 < y1 − v, and

Qη̂(z2) = min
z∈[(y2−v)+,y2]

Qη̂(z) ≤ min
z∈[0,y2]

Qη̂(z) + C

for every (y2, z2) ∈ Supp(η̂) such that z2 ≥ y2 − v.

Fix C satisfying these conditions. Let y > 0 be a Lebesgue point of the functions mif ,

i = 1, 2, . . . , (p+2), where f = F ′ is the probability density of Y . Using the representation

(22) and the results above, we see that

If min
z∈[y−v,y]

Qη̂(z) − min
z∈[0,y]

Qη̂(z) > C, then mp+1(y) = mp+2(y) = 0 and mi(y) = 0 for

every i ∈ {1, 2, . . . , p} such that ci ≥ y − v;
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If min
z∈[y−v,y]

Qη̂(z)− min
z∈[0,y]

Qη̂(z) < C, then mi(y) = 0 for every i ∈ {1, 2, . . . , p} such that

ci < y − v.

Suppose that for some i ∈ {1, 2, . . . , p}, we have

Pr{mi(Y ) > 0 and mp+1(Y ) > 0} > 0.

The results above show that this implies

Pr{Qη̂(Y ) = Qη̂(ci)} > 0 or Pr{Qη̂(Y ) = Qη̂(ci) + C} > 0,

which is a contradiction because, since Qη̂ is a nonconstant polynomial, the sets

{y : Qη̂(y) = Qη̂(ci)}, {y : Qη̂(y) = Qη̂(ci) + C}
must be finite. Hence we must have

Pr{mi(Y ) > 0 and mp+1(Y ) > 0} = 0, for i = 1, 2, . . . , p.

A similar argument shows that

Pr{mi(Y ) > 0 and mp+2(Y ) > 0} = 0, for i = 1, 2, . . . , p;

Pr{mp+1(Y ) > 0 and mp+2(Y ) > 0} = 0.

Now, suppose there are distinct i, j ∈ {1, 2, . . . , p} such that

Pr{mi(Y ) > 0 and mj(Y ) > 0} > 0.

without loss of generality, we may assume that there is a interval [a, b] such that

Pr{Y ∈ [a, b], mi(Y ) > 0 and mj(Y ) > 0} > 0;

ci + v /∈ (a, b), cj + v /∈ (a, b).

There exists t ∈ (a, b) such that
∫ t

a
(mi(y) + mj(y)) dF (y) =

∫ b

a
mi(y)dF (y).

Let m̃i, m̃j denote the functions

m̃i(y) =





mi(y) + mj(y), for y ∈ [a, t],

0, for y ∈ (t, b],

mi(y), for y /∈ [a, b],

m̃j(y) =





0, for y ∈ [a, t],

mi(y) + mj(y), for y ∈ (t, b],

mj(y), for y /∈ [a, b].
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Thus, Pr{Y ∈ [a, b], m̃i(Y ) > 0 and m̃j(Y ) > 0} = 0 and it can be checked that the

measure η̃ obtained by substituting m̃i, m̃j for mi, mj in the representation (22) satisfies
∫

R2

(z, z2, . . . , zm)dη̃ =
∫

R2

(z, z2, . . . , zm)dη̂, VaRη̃(α) = VaRη̂(α).

Thus, we proved that mi, i ∈ {1, 2, . . . , p + 2} can be chosen such that

Pr{mi(Y ) > 0 for more than one i} = 0.

In that case the function

Z(y) =
p∑

i=1

ciχ{mi=1}(y) + yχ{mp+1=1}(y) + (y − v)χ{mp+2=1}(y)

satisfies

Z ∈ Z, VaRY−Z(α) = ˆVaRη̂(α), P (Z) = P̂ (η̂),

and all the conditions stated in the Proposition.1

Proposition 2 shows that the solution of Problem 1 is in general a nonmonotonic

discontinuous function. Figure 1 shows one possible optimal treaty for the case where the

premium calculation principle depends in the first four moments of the ceded risk.

For a premium of this type, QZ is a forth-degree polynomial with positive principal

coefficient. Therefore, QZ may have up to two local minima in [0,+∞), denoted by c1,

c2. If c1 > 0, c2 > c1 + v and QZ(c2) < QZ(c1), we have

arg min
ζ∈[(y−v)+,y]

QZ(ζ) =





y, for y ≤ c1,

c1 for y ∈ [c1, c1 + v],

y − v, for y ∈ [c1 + v, y1),

y, for y ∈ (y1, c2],

c2 for y ∈ [c2, c2 + v],

y − v for y ≥ c2 + v.

Since QZ is strictly increasing in [c2,+∞) and lim
ζ→+∞

QZ(ζ) = +∞, we see that there is a

unique y2 > c2 + v such that QZ(y2 − v) = QZ(c2) + C. Therefore, the optimal treaty Z

should have discontinuities at the points y1, y2, as shown in the picture.
1Close examination of this proof shows what happens when Assumption 2 is lifted: the solution is

similar with the single difference that atoms may have to be “split” at discontinuity points of the optimal

treaty. I.e., if y0 is a point of discontinuity of the optimal treaty Z and Pr{Y = y0} > 0, then Pr{Z ∈
{Z(y−0 ), Z(y+

0 )}|Y = y0} = 1 but we may have 0 < Pr{Z = Z(y−0 )|Y = y0} < 1.

The same observation holds for all solutions in this paper.
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Figure 1: Optimal policy (full line) for a reinsurance premium depending on the first four

moments.

Notice that the discontinuity at the point y2 depends both on the risk measure (VaR)

and the premium principle, while the discontinuity at the point y1 is due to the particular

premium calculation principle being considered. Thus, in order to have well behaved

solutions, one should look not only for ”good” risk measures but also for ”good” premium

principles.

Below we provide the solutions for some important particular principles.

The expected value principle

Here we present the solution of Problem 1 when the risk measure is VaR and the reinsur-

ance premium is a functional of type

P (Z) = (1 + β)E[Z], (25)

where β > 0 is a constant.

Proposition 3 If the reinsurance premium is of type (25), then a solution for Problem 1

is:

Z(y) =





y −VaRY (α + 1
1+β ), if y ∈

[
VaRY (α + 1

1+β ), VaRY (α)
]
,

0, if y /∈
[
VaRY (α + 1

1+β ), VaRY (α)
]
,

(26)
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taking VaRY (α + 1
1+β ) = 0 whenever α + 1

1+β ≥ 1. ¤

Proof. For a functional of type (25), the expression (18) reduces to Qη(ζ) = (1 + β)ζ.

Hence,

arg min
ζ∈[0,y]

QZv(ζ) = 0, arg min
ζ∈[(y−v)+,y]

QZv(ζ) = (y − v)+

and the map y 7→
(

min
ζ∈[(y−v)+,y]

QZv(ζ)− min
ζ∈[0,y]

QZv(ζ)
)

is obviously strictly monotonic

increasing in [v, +∞). Therefore, Proposition 2 states that the optimal treaty is of type

Z(y) =





y − v, y ∈ [v, VaRY (α)];

0, y /∈ [v, VaRY (α)],

and Problem 1 reduces to finding the optimal parameter v ∈ [0, VaRY (α)]. To do this,

check that

VaRRZ
(α) = P (Z) + v = (1 + β)

∫ VaRY (α)

v
(y − v)f(y)dy + v.

Elementary calculus shows that

∂

∂v
VaRRZ

(α) = 1− (1 + β)(1− α− F (v)),

and hence v = VaRY (α + 1
1+β ).

Variance-related principles

Now, we present the solution of Problem 1 when the reinsurance premium is a functional

of type

P (Z) = E[Z] + g(var[Z]), (27)

where g : [0, +∞) 7→ [0, +∞) is a continuous function, differentiable in (0, +∞), and

g′(x) > 0 ∀x > 0.

Proposition 4 If the reinsurance premium is a functional of type (27) and g′ is bounded

in a neighborhood of zero then Problem 1 admits a solution:

Z(y) =





y − v, y ∈ [v, VaRY (α)],

0, if y /∈ [v, VaRY (α)],
(28)
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where v ∈ [0,VaRY(α)] is either zero or a solution of the equation

g′(var[Z]) =
1

2E[Z]
. (29)

If g′ is unbounded in any neighborhood of zero, then either Problem 1 admits a solution of

type (28) or the solution is Z ≡ 0 (no reinsurance at all). ¤

Proof. For a functional of type (27), the expression (18) reduces to a second degree

polynomial Qη(ζ) = a1ζ + a2ζ
2, with a1 ∈ R, a2 > 0. Hence, Qη admits one unique min-

imizer z1 ∈ [0, +∞). Also, the map y 7→
(

min
ζ∈[(y−v)+,y]

Qη(ζ)− min
ζ∈[0,y]

Qη(ζ)
)

is monotonic

increasing. Therefore, Proposition 2 states that there exists an optimal treaty of type

Z(y) =





y, if y ≤ z1,

z1, if y ∈ [z1, z1 + v],

y − v, if y ∈ [z1 + v, VaRY (α)],

z1, if y > VaRY (α),

(30)

and Problem 1 reduces to finding the optimal parameters z1 ≥ 0, v ≥ 0 with z1 + v ≤
VaRY (α). This is an optimization problem in R2 with linear constraints that can be solved

by standard Karush-Khun-Tucker conditions.

Indeed, for a treaty of type (30), we have

E[Zk] =
∫ z1

0
ykf(y)dy + zk

1

∫ z1+v

z1

f(y)dy+

+
∫ VaRY (α)

z1+v
(y − v)kf(y)dy + zk

1

∫ +∞

VaRY (α)
f(y)dy, k ∈ N,

and hence
∂

∂z1
E[Zk] = kzk−1

1 (F (z1 + v)− F (z1) + α),

∂

∂v
E[Zk] = −k

∫ VaRY (α)

z1+v
(y − v)k−1f(y)dy.

Therefore,
∂

∂z1
VaRRZ

(α) =
∂

∂z1
(E[Z] + g(var[Z]) + v) =

= (F (z1 + v)− F (v) + α)(1− 2g′(var[Z])(E[Z]− z1)),

∂

∂v
VaRRZ

(α) = α + F (z1 + v)−

− 2g′(var[Z])

(∫ VaRY (α)

z1+v
(y − v)f(y)dy − E[Z](1− α− F (z1 + v))

)
.
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Hence, the cost function and the constraints are continuously differentiable and, solving

the Karush-Khun-Tucker conditions, we see that if g′ is bounded in some neighborhood

of zero, then the optimal parameters must solve either v = 0 or z1 = 0 and (29). If g′ is

unbounded in any neighborhood of zero, then the parameters z1 = 0, v = VaRY (α) also

define a candidate minimizer of VaRRZ
(α).

4.2 Risk adjusted premium principles

When the insurer’s risk measure is VaR and the premium calculation principle is of type

(11), the solution of Problem 1 is as follows.

Proposition 5 If the premium calculation principle is a functional of type (11) then,

Problem 1 admits a solution

Z(y) =





y, if y ≤ VaRY (α),

0 if y > VaRY (α). ¤
(31)

Proof. Let η̂ ∈M be a solution of Problem 2.

Let v = ˆVaRη̂(α) and suppose there is a point (y0, z0) ∈ Supp(η̂) with 0 < z0 < y0− v.

Consider the measure

ηε(A) =η̂(A)− η̂(A ∩Bε(y0, z0))+

+ η̂ {(y, z) ∈ Bε(y0, z0) : (y, z − z0 + ε) ∈ A} , A ∈ BR2 .

Then, for sufficiently small ε > 0

ηε{(y, z) : z > t} ≤ η̂{(y, z) : z > t} for t ≤ 2ε or t ≥ z0 − ε;

ηε{(y, z) : z > t} < η̂{(y, z) : z > t} for t ∈ (2ε, z0 − ε),

i.e., P̂ (ηε) < P̂ (η̂). Since ˆVaRηε(α) = ˆVaRη̂(α), this is a contradiction to the optimality

of η̂. Hence η̂ must satisfy η̂{(y, z) : 0 < z < y− v} = 0. A similar argument shows that η̂

must satisfy η̂{(y, z) : z > 0, z > y− v} = 0, and therefore, η̂ must be concentrated in the

set

{(y, 0) : y ≥ 0} ∪ {(y, y − v) : y ≥ v} .
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Now, suppose there are points (y1, 0), (y2, y2 − v) ∈ Supp(η̂) with v < y1 < y2, and

consider the measure

ηε(A) =η̂(A)− η̂(A ∩ {(y, 0) : |y − y1| < ε})+
+ η̂{(y, 0) : |y − y1| < ε, (y, y − v) ∈ A}−

− η̂{(y, 0) : |y − y1| < ε}
η̂{(y, y − v) : |y − y2| < ε} η̂(A ∩ {(y, y − v) : |y − y2| < ε})+

+
η̂{(y, 0) : |y − y1| < ε}

η̂{(y, y − v) : |y − y2| < ε} η̂{(y, y − v) : |y − y2| < ε, (y, 0) ∈ A}, A ∈ BR2 .

Then, ˆVaRηε(α) = ˆVaRη̂(α) and, for sufficiently small ε > 0 we have

ηε{(y, z) : z > t} ≤ η̂{(y, z) : z > t} for t ∈ [0, y1 − v + ε) ∪ (y2 − v − ε,+∞),

ηε{(y, z) : z > t} < η̂{(y, z) : z > t} for t ∈ [y1 − v + ε, y2 − v − ε],

which implies P̂ (ηε) < P̂ (η̂), a contradiction to the optimality of η̂.

This shows that η̂ is actually a (deterministic) treaty of type

Z(y) =





y − v, for y ∈ [v, VaRY (α)],

0 for y /∈ [v, VaRY (α)],
(32)

with v ≤ VaRY (α).

We conclude the proof by showing that v = 0. To see this, notice that, for a treaty of

type (32), we have

P (Z) =
∫ VaRY (α)

v
w(1− α− F (t))dt.

Hence
∂

∂v
VaRRZ

(α) = 1− w(1− α− F (v)) ≥ 0 a.e. v ∈ [0, VaRY (α)],

i.e., VaRRZ
(α) is a monotonically increasing function of v and hence the minimum is

attained at v = 0.

5 The CTE risk measure

In this section, we solve Problem 1 when the insurer’s risk measure is the CTE.
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5.1 Premiums depending on moments

Suppose the premium calculation principle is of type (10).

We use the same notation as in Section 4.1. In particular, for each η ∈M we consider

the polynomial function Qη(ζ) =
m∑

i=1

∂γ
∂xi

ζi (equality (18)).

Proposition 6 (under Assumptions 1, 2 and 3):

Let η̂ solve Problem 2. If γ is differentiable at x̂ =
∫
R2

(
z, z2, . . . zm

)
dη̂, ∇γ(x̂) 6= 0

and ∇γ(x̂) 6= (
1
α , 0, . . . , 0

)
, then Problem 1 admits an optimal treaty Ẑ ∈ Z such that, for

each claim size y > 0 we have:

Ẑ(y) = arg min
ζ∈[0,(y−v)+]

(
QẐ(ζ)− ζ

α

)
or Ẑ(y) = arg min

ζ∈[(y−v)+,y]
QẐ(ζ),

with v = VaRY−Ẑ(α). Further, there is a constant C ∈ R such that

Ẑ(y) = arg min
ζ∈[(y−v)+,y]

QẐ(ζ),

if min
ζ∈[(y−v)+,y]

QẐ(ζ)− min
ζ∈[0,(y−v)+]

(
QẐ(ζ) +

y − ζ

α

)
< C;

Ẑ(y) = arg min
ζ∈[0,(y−v)+]

(
QẐ(ζ) +

y − ζ

α

)
,

if min
ζ∈[(y−v)+,y]

QẐ(ζ)− min
ζ∈[0,(y−v)+]

(
QẐ(ζ) +

y − ζ

α

)
> C. ¤

Proof. This is similar to the proof of Proposition 2, with some adaptations due to the

tail component of the risk measure.

Fix η̂ ∈ M, a solution of Problem 2 satisfying the assumptions above. Let v =
ˆVaRη̂(α), and pick (y0, z0) ∈ Supp(η̂).

To start, assume that z0 ∈ [0, y0 − v). Fix t ∈ (−z0, y0 − v − z0), and consider the

measure

ηε(A) =η̂(A)− η̂(A ∩Bε(y0, z0))+

+ η̂ {(y, z) ∈ Bε(y0, z0) : (y, z + t) ∈ A} , A ∈ BR2 .

For sufficiently small ε > 0, we have ηε ∈ M, ˆVaRηε(α) = ˆVaRη̂(α), ηε{y − z > v} =
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η̂{y − z > v}. It is possible to check that

P̂ (ηε) + ˆCTEηε(α) =

=P̂ (η̂) + ˆCTEη̂(α)+

+
(

Qη̂(z0 + t) +
y0 − z0 − t

α
−

(
Qη̂(z0) +

y0 − z0

α

))
η̂ (Bε(y0, z0))+

+ o (η̂ (Bε(y0, z0))) .

Hence, the argument used in the proof of Proposition 2 shows that

Qη̂(z0)− z0

α
= min

z∈[0,y0−v]

(
Qη̂(z)− z

α

)
whenever z0 ∈ [0, y0 − v). (33)

Similarly, assuming z0 ∈ (y0− v, y0] and taking t ∈ (y0− v− z0, y0− z0), we can show that

Qη̂(z0) = min
z∈[y0−v,y0]

Qη̂(z) whenever z0 ∈ (y0 − v, y0]. (34)

Since ζ 7→ Qη̂(ζ), ζ 7→ Qη̂(ζ)− ζ
α are (nonconstant) polynomials, they have only finitely

many local minima in [0, +∞). Let c1, c2, . . . , cp be the local minimizers of ζ 7→ Qη̂(ζ)− ζ
α

in [0, +∞), cp+1, cp+2, . . . , cp+q be the local minimizers of ζ 7→ Qη̂(ζ) in [0, +∞). The

results (33) and (34) show that the support of η̂ must be contained in the set
(

p⋃

i=1

{(y, ci) : y ≥ ci + v}
)
∪




p+q⋃

i=p+1

{(y, ci) : ci ≤ y ≤ ci + v}

∪

∪ {(y, y) : y ≥ 0} ∪ {(y, y − v) : y ≥ v}.

This means that the measure η̂ admits a representation

η̂(A) =
p∑

i=1

∫ +∞

ci+v
mi(y)χA(y, ci)dF (y)+

+
p+q∑

i=p+1

∫ ci+v

ci

mi(y)χA(y, ci)dF (y)+

+
∫ +∞

0
mp+q+1(y)χA(y, y)dF (y)+

+
∫ +∞

v
mp+q+2(y)χA(y, y − v)dF (y), ∀A ∈ BR2 , (35)

where mi, i = 1, 2, . . . , (p + q + 2) are measurable nonnegative functions such that

Pr

{
p+q+2∑

i=1

mi(Y ) = 1

}
= 1.
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For each A ∈ BR2 and i = 1, 2, . . . , (p + q + 2), let

χA,i(y) =





χ
A∩{(y,z):0≤z<y−v}(y, ci), for i = 1, 2, . . . , p;

χ
A∩{(y,z):(y−v)+≤z≤y}(y, ci), for i = p + 1, p + 2, . . . , p + q;

χ
A∩{(y,z):0≤z≤y}(y, y), for i = p + q + 1;

χ
A∩{(y,z):0≤z≤y}(y, y − v), for i = p + q + 2.

This allows us to write the representation (35) in the more compact form

η̂(A) =
p+q+2∑

i=1

∫ +∞

0
mi(y)χA,i(y) dF (y), ∀A ∈ BR2 .

Fix y1, y2 > v and suppose there are i1 ∈ {1, 2, . . . , p}, i2 ∈ {p + 1, p + 2, . . . , p + q + 2}
such that

∫ y1+ε

y1−ε
mi1

χR2,i1dF > 0,

∫ y2+ε

y2−ε
mi2

χR2,i2dF > 0, ∀ε > 0.

Fix z1 ∈ (y1 − v, y1), z2 ∈ [0, y2 − v) and consider the measure

ηε(A) =η̂(A)−
∫ y1+ε

y1−ε
mi1(y)χA,i1(y)dF (y)+

+
∫ y1+ε

y1−ε
mi1(y)χR2,i1(y)χA(y, z1)dF (y)−

−
∫ y1+ε
y1−ε mi1

χR2,i1dF
∫ y2+ε
y2−ε mi2

χR2,i2dF

∫ y2+ε

y2−ε
mi2(y)χR2,i2(y)χA(y, ci2)dF (y)+

+

∫ y1+ε
y1−ε mi1

χR2,i1dF
∫ y2+ε
y2−ε mi2

χR2,i2dF

∫ y2+ε

y2−ε
mi2(y)χR2,i2(y)χA(y, z2)dF (y), A ∈ BR2 .

For every sufficiently small ε > 0 we have ηε ∈M, ˆVaRηε(α) = ˆVaRη̂(α), ηε{y− z > v} =

η̂{y − z > v} and

P̂ (ηε) + ˆCTEηε(α) =

=P̂ (η̂) + ˆCTEη̂(α)+

+
(

Qη̂(z1)−Qη̂(ci1)−
y1 − ci1

α
+ Qη̂(z2) +

y2 − z2

α
−Qη̂(ci2)

)
×

×
∫ y1+ε

y1−ε
mi1

χR2,i1dF + o

(∫ y1+ε

y1−ε
mi1

χR2,i1dF

)
, (36)

with ci2 = y2 in the case i2 = p + q + 1 or ci2 = y2 − v in the case i2 = p + q + 2.
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Choosing z1 close to arg min
z∈[y1−v,y1]

Qη̂(z), and z2 close to arg min
z∈[0,y2−v]

(
Qη̂(z)− z

α

)
, we can

use (36) to prove that

min
z∈[y1−v,y1]

Qη̂(z)− min
z∈[0,y1−v]

(
Qη̂(z) +

y1 − z

α

)
≥

≥ min
z∈[y2−v,y2]

Qη̂(z)− min
z∈[0,y2−v]

(
Qη̂(z) +

y2 − z

α

)
.

From this point the proof is identical to the proof of Proposition 2.

By Proposition 6, optimal treaties may theoretically have discontinuities, depending

on the premium calculation principle. Below we show that at least for the expected value

principle and variance-related principles, this is not the case.

The expected value principle

If the premium is computed by the expected value principle is (25), Proposition 6 takes

the corollary:

Proposition 7 Assuming that the premium calculation principle is (25):

(a) If 1 + β < 1
α , then any stop-loss treaty Z(y) = (y − v)+ with v ∈ F−1

{
β

1+β

}
is a

solution for Problem 1.

(b) If 1 + β > 1
α , then Z ≡ 0 (no reinsurance) is a solution for Problem 1.

(c) If 1 + β = 1
α , then any treaty satisfying 0 ≤ Z(y) ≤ (y − VaRY (α))+ ∀y ≥ 0 is a

solution for Problem 1. ¤

Proof. For the expected value principle (25), we have QZ(t) = (1 + β)t.

Consider the case when 1 + β < 1
α . Then,

arg min
t∈[0,(y−v)+]

(
Q(t) +

y − t

α

)
= (y − v)+ = arg min

t∈[(y−v)+,y]
Q(t).

Hence Proposition 6 guarantees that Problem 1 admits a solution of type Z(y) = (y− v)+

and it only remains to find the optimal value of the parameter v.

For a stop-loss treaty, we have

CTERZ
(α) =





(1 + β)
∫ +∞
v (y − v)dF (y) + v, for v ≤ VaRY (α),

(1 + β)
∫ +∞
v (y − v)dF (y)+

+ 1
α

(∫ v
VaRY (α) ydF (y) +

∫ +∞
v vdF (y)

)
, for v ≥ VaRY (α).
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By elementary calculus, we see that any v satisfying F (v) = β
1+β is optimal.

In the case when 1 + β > 1
α , we have

arg min
t∈[0,(y−v)+]

(
Q(t) +

y − t

α

)
= 0, arg min

t∈[(y−v)+,y]
Q(t) = (y − v)+,

min
t∈[0,(y−v)+]

(
Q(t) +

y − t

α

)
=

y

α
, min

t∈[(y−v)+,y]
Q(t) = (1 + β)(y − v)+.

Hence, Proposition 6 states that there is an optimal treaty of type

Z(y) =





y − v, for y ∈ [v, V ];

0 for y /∈ [v, V ],

with 0 ≤ v ≤ V < +∞. For a treaty of this type:

CTERZ
(α) =





(1 + β)
∫ V
v (y − v)dF (y) + α−∫ +∞

V dF (y)

α v+

+ 1
α

∫ +∞
V ydF (y), for v ≤ VaRY (α),

(1 + β)
∫ V
v (y − v)dF (y)+

+ 1
α

∫ v
VaRY (α) ydF (y) + 1

α

∫ V
v vdF (y)+

+ 1
α

∫ +∞
V ydF (y), for v ≥ VaRY (α).

Therefore, the minimum is attained with v = V , i.e., Z ≡ 0.

Finally, consider the case 1 + β = 1
α . The proof of Proposition 6 shows that any

solution of Problem 2 must satisfy

η{(y, z) : z ≤ (y − ˆVaRη(α))+} = 1. (37)

Further, 1 + β = 1
α implies that, for any pair of random treaties η1, η2 ∈ M satisfying

ˆVaRη1(α) = ˆVaRη2(α) and (37), we have

P̂ (η̂1) + ˆCTEη1(α) = P̂ (η̂2) + ˆCTEη2(α).

The result follows from the fact that the optimal treaty in the class of stop-loss treaties is

Z(y) = (y −VaRY (α))+ when 1 + β = 1
α .

Variance-related principles

Now, we present the solution of Problem 1 when the reinsurance premium is a functional

of type 27.
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Proposition 8 Suppose the reinsurance premium is a functional of type (27).

If Z ≡ 0 (no reinsurance at all) is not optimal, then Problem 1 admits a solution:

Z(y) =





0, for y ∈ [0, v],

y − v, for y ∈ [v, v + c],

c, for y ≥ v + c,

(38)

where c, v are constants satisfying

c = E[Z] +
1

2g′ (var[Z])
1− α

α
, (39)

α− ∫ +∞
v+c dF

2g′(var[Z])α
=

∫ v+c

v

(
y − v −

(
E[Z]− 1

2g′ (var[Z])

))
dF, (40)

0 ≤ v ≤ VaRY (α). ¤

Proof. For the functional (27), we have

QZ(ζ) =
(
1− 2E[Z]g′(var[Z])

)
ζ + g′(var[Z])ζ2.

Hence, the unique minimizer of QZ : [0,+∞) 7→ R is

c1 =
(

E[Z]− 1
2g′ (var[Z])

)+

, (41)

and the unique minimizer of ζ 7→ QZ(ζ) + y−ζ
α is

c2 = E[Z] +
1

2g′ (var[Z])
1− α

α
. (42)

The map y 7→
(

min
ζ∈[(y−v)+,y]

Qη(ζ)− min
ζ∈[0,(y−v)+]

Qη(ζ) + y−ζ
α

)
is monotonic increasing in

[v, +∞). Therefore, Proposition 6 states that there exists an optimal treaty of type

Z(y) =





y, for y ≤ c1,

c1, for y ∈ [c1, c1 + v],

y − v, for y ∈ [c1 + v, V ],

c2, for y > V,

(43)

with 0 ≤ v ≤ VaRY (α) ≤ V , v + c2 ≤ V . Thus, Problem 1 reduces to finding the optimal

parameters c1, c2, v, V .
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For a treaty of type (43), we have

E[Zk] =
∫ c1

0
ykdF (y) + ck

1

∫ v+c1

c1

dF (y)+

+
∫ V

v+c1

(y − v)kdF (y) + ck
2

∫ +∞

V
dF (y), k ∈ N,

CTERZ
(α) =E[Z] + g(var[Z]) +

α− ∫ +∞
V dF

α
v +

1
α

∫ +∞

V
(y − c2)dF (y).

Let ĉ1, ĉ2, v̂, V̂ denote optimal parameters and, for each V ≥ max{v̂ + ĉ2,VaRY (α)}, let

ZV and CTEV denote the treaty and the corresponding CTE with parameters ĉ1, ĉ2, v̂,

V . Then

CTEV − CTEV̂ =
∫ V

V̂
g′(var[Zt])(t− v̂ − ĉ2)×

×
(

t− v̂ + ĉ2 − 2
(

E[Zt] +
1

2g′(var[Zt])
1− α

α

))
dF (t)dt.

Due to (42), this is

CTEV − CTEV̂ =
∫ V

V̂
g′(var[Zt])(t− v̂ − ĉ2)2dF (t) + o(|F (V )− F (V̂ )|),

and therefore, optimality implies V̂ = max{v̂ + ĉ2, VaRY (α)}.
Also, for the optimal value of the parameters, we have

∂CTERZ
(α)

∂v
=

(
2g′(var[Z])E[Z]− 1

) ∫ V̂

v̂+ĉ1

dF−

− 2g′(var[Z])
∫ V̂

v̂+ĉ1

(y − v̂)dF (y) +
α− ∫ +∞

V̂
dF

α
(44)

If v̂ + ĉ2 ≤ VaRY (α), then V̂ = VaRY (α) and (44) reduces to

∂CTERZ
(α)

∂v
=

(
2g′(var[Z])E[Z]− 1

) ∫ VaRY (α)

v̂+ĉ1

dF−

− 2g′(var[Z])
∫ VaRY (α)

v̂+ĉ1

(y − v̂)dF (y) ≤ 0,

with strict inequality holding whenever v̂ + ĉ1 < VaRY (α). Thus, v̂ + ĉ2 ≤ VaRY (α)

implies Z ≡ 0.

Thus, if Z ≡ 0 is not optimal, we must have V̂ = v̂ + ĉ2. Suppose that this is the case

and ĉ1 > 0. Then, using (41) and rearranging, (44) reduces to

∂CTERZ
(α)

∂v
=2g′(var[Z])

∫ ĉ1

0
(y − ĉ1)dF (y).
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If
∫ ĉ1
0 dF = 0, then the result follows immediately from the translation invariance of

X 7→ CTEX(α) and Z 7→ P (Z). If
∫ ĉ1
0 dF > 0, then

∂CTERZ
(α)(Z)

∂v < 0 and hence

v̂ = VaRY (α). Notice that (41) and (42) imply

ĉ2 =ĉ1 +
1

2g′(var[Z])
1
α

= ĉ1 +
1
α

(E[Z]− ĉ1) =

=ĉ1 +
1
α

(∫ ĉ1

0
(y − ĉ1)dF (y) +

∫ v̂+ĉ2

v̂+ĉ1

(y − v̂ − ĉ2)dF (y) +
∫ +∞

v̂+ĉ1

(ĉ2 − ĉ1)dF (y)
)

.

This is
(

α−
∫ +∞

v̂+ĉ1

dF (y)
)

(ĉ2 − ĉ1) =
∫ ĉ1

0
(y − ĉ1)dF (y) +

∫ v̂+ĉ2

v̂+ĉ1

(y − v̂ − ĉ2)dF (y).

If v̂ = VaRY (α), the left-hand side is non-negative while
∫ ĉ1
0 dF > 0 makes the right-hand

side strictly negative. This contradiction proves that ĉ1 = 0.

Finally, optimality of Z implies
∂CTERZ

(α)

∂v = 0. Using (44), this reduces to (40).

5.2 Risk adjusted premium principles

In this section we solve Problem 1 when the insurer’s risk measure is CTE and premium

calculation principle is of type (11).

Proposition 9 If the insurer’s risk measure is CTE and the reinsurance premium is

computed by a functional (11), and the equation w(t) = t
α admits a solution in the interval

(0, 1− F (0)), then Problem 1 admits a solution

Z(y) =





y, for y ≤ V,

V, for y ≥ V,

where V is any solution of w(1− F (V )) = 1−F (V )
α .

If w(t) ≤ t
α for every t ∈ (0, 1 − F (0)), then the treaty Z ≡ Y (cedence of all risk) is

optimal.

If w(t) ≥ t
α for every t ∈ (0, 1 − F (0)), then the treaty Z ≡ 0 (no reinsurance) is

optimal. ¤

Proof. Continuity and monotonicity of w imply absolute continuity. Therefore the deriva-

tive w′ exists at almost every point of [0, 1], and w(x) =
∫ x
0 w′(t)dt, ∀x ∈ [0, 1]. Due to

concavity of w, w′ coincides almost everywhere with a monotonic nonincreasing function,

left- and right-derivatives exist at every point and w′−(x) ≥ w′+(x) for every x ∈ (0, 1).
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Fix η̂ ∈M, a solution for Problem 2. Let v = ˆVaRη̂(α), fix (y0, z0) such that 0 ≤ z0 <

y0 − v, θ ∈ (0, y0 − z0 − v) and consider the measure

η̃(A) =η̂(A)− η̂ (Bε(y0, z0) ∩A)+

+ η̂ {(y, z) ∈ Bε(y0, z0) : (y, z + θ) ∈ A} , ∀A ∈ BR2 .

For every sufficiently small ε > 0 we have η̃ ∈ M, ˆVaRη̃(α) = ˆVaRη̂(α). Optimality of η̂

and monotonicity of w imply that

0 ≤P̂ (η̃) + ˆCTEη̃(α)− (P̂ (η̂) + ˆCTEη̂(α)) =

=
∫ z0+θ+ε

z0−ε
(w(η̃{z > t})− w(η̂{z > t})) dt− θη̂(Bε(y0, z0))

α
≤

≤
∫ z0+θ+ε

z0−ε
(w(η̂{z > t}+ η̂(Bε(y0, z0)))− w(η̂{z > t})) dt− θη̂(Bε(y0, z0))

α
.

Due to concavity of w, this implies

0 ≤ (w(η̂{z > z0 + θ + ε}+ η̂(Bε(y0, z0)))− w(η̂{z > z0 + θ + ε})) (θ + 2ε)−

− θη̂(Bε(y0, z0))
α

.

dividing by θη̂(Bε(y0, z0)), this implies

0 ≤w(η̂{z > z0 + θ + ε}+ εη̂(Bε(y0, z0)))− w(η̂{z > z0 + θ + ε})
εη̂(Bε(y0, z0))

θ + 2ε

θ
− 1

α
.

Therefore

lim
θ→0+

lim
ε→0+

w(η̂{z > z0 + θ + ε}+ η̂(Bε(y0, z0)))− w(η̂{z > z0 + θ + ε})
η̂(Bε(y0, z0))

θ + 2ε

θ
≥ 1

α
,

which implies w′−(η̂{z > z0}) ≥ 1
α .

By taking θ ∈ (−z0, 0), a similar argument shows that w′+(η̂{z ≥ z0}) ≤ 1
α . Thus, we

have

w′(x) ≥ 1
α

, for a.e. x < η̂{z > z0} (45)

w′(x) ≤ 1
α

, for a.e. x > η̂{z ≥ z0} (46)

By taking (y0, z0) with z0 > y0 − v and using again the same argument, we see that

optimality of η̂ implies η̂{z > (y − v)+} = 0.

Now, suppose there exists 0 ≤ z1 < z2 satisfying (45), (46). Then,

w′(x) =
1
α

, a.e. x ∈ [η̂{z ≥ z2}, η̂{z > z1}]. (47)
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Pick y2 > y1 > z2 + v, let B = [y1, y2]× [z1, z2), and consider the measure

η̃(A) =η̂(A)− η̂(A ∩B) + η̂ {(y, z) ∈ B : (y, z2) ∈ A} , ∀A ∈ BR2 .

Due to (47), we have

ˆCTEη̃(α)− ˆCTEη̃(α) =

=
∫ z2

z1

w (η̂{z > t}+ η̂{z1 ≤ z ≤ t, y1 ≤ y ≤ y2})− w (η̂{z > t}) dt−

− 1
α

∫

B
(z2 − z)dη̂ =

=
1
α

(∫ z2

z1

η̂{z1 ≤ z ≤ t, y1 ≤ y ≤ y2}dt−
∫

B
(z2 − z)dη̂

)
= 0,

Thus, there is an optimal treaty

Z(y) =





0, for y ≤ v,

y − v, for y ∈ [v, V ],

c, for y > V,

(48)

with c > 0, v = VaRY−Z(α) ≤ VaRY (α), V ≥ max{VaRY (α), v + c}. Thus the problem

reduces to finding the optimal value for the parameters c, v, V .

For the treaty (48), we have

CTERZ
(α) =

∫ c

0
w(1− F (v + t))dt +

∫ V−v

c
w(F (V )− F (v + t))dt+

+ v +
1
α

∫ +∞

V
(y − v − c)dF (y).

Hence
∂

∂c
CTERZ

(α) =w(1− F (v + c))− w(F (V )− F (v + c))− 1− F (V )
α

=

=w(1− F (v + c))− 1 +
F (V )− F (v + c)

α
−

∫ F (V )−F (v+c)

0
w′(t)dt.

Due to (45), this is strictly negative except if F (v+c) = 1. Thus, we may chose c = V −v,

which implies
∂

∂v
CTERZ

(α) = 1− w(1− F (v)) ≥ 0,

i.e., CTERZ
(α) is monotonically increasing with v and hence we can set v = 0. Thus,

CTERZ
(α) =

∫ V
0 w(1− F (t))dt + 1

α

∫ +∞
V (y − V )df(y) and

d

dV
CTERZ

(α) = w(1− F (V ))− 1− F (V )
α

,

which concludes the proof.
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6 The CTE− risk measure

The CTE− risk measure behaves in an intermediate way between VaR and CTE. This is

not surprising if we notice that, contrary to VaR, the CTE− takes into account the tail of

the distribution but with a smaller weight than the CTE.

In this section, we present the solutions for Problem 1 when the risk measure is CTE−.

Since the proofs are similar to the CTE case, we omit them.

6.1 Premiums depending on moments

Proposition 10 (under Assumptions 1, 2 and 3):

Let η̂ solve Problem 2 and let v = ˆVaRη̂(α). If γ is differentiable at x̂ =
∫
R2

(
z, z2, . . . zm

)
dη̂,

∇γ(x̂) 6= 0 and ∇γ(x̂) 6=
(

1
η̂{y−z≥v} , 0, . . . , 0

)
, then Problem 1 admits an optimal treaty

Ẑ ∈ Z such that, for each claim size y > 0 we have:

Ẑ(y) = arg min
ζ∈[0,(y−v)+]

(
QẐ(ζ)− ζ

η̂{y − z ≥ v}
)

or

Ẑ(y) = arg min
ζ∈[(y−v)+,y]

QẐ(ζ).

Further, there is a constant C ∈ R such that

Ẑ(y) = arg min
ζ∈[(y−v)+,y]

QẐ(ζ),

if min
ζ∈[(y−v)+,y]

QẐ(ζ)− min
ζ∈[0,(y−v)+]

(
QẐ(ζ) +

y − ζ

η̂{y − z ≥ v}
)

< C;

Ẑ(y) = arg min
ζ∈[0,(y−v)+]

(
QẐ(ζ) +

y − ζ

η̂{y − z ≥ v}
)

,

if min
ζ∈[(y−v)+,y]

QẐ(ζ)− min
ζ∈[0,(y−v)+]

(
QẐ(ζ) +

y − ζ

η̂{y − z ≥ v}
)

> C. ¤

As in the case of VaR and CTE, we present the specialization of this result to the

expected value principle and to loadings depending on the variance:

Proposition 11 Suppose that the premium calculation principle is (25).

If 1 + β ≤ 1
1−F (0) , then the optimal treaty is Z ≡ Y (cedence of all risk).

If 1 + β > 1
1−F (0) , then the optimal treaty is

Z(y) =





0, for y /∈ [v, VaRY (α)],

y − v, for y ∈ [v, VaRY (α)],

with v = VaRY−Z(α) ≤ VaRY (α) depending on the particular distribution of Y . ¤
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Proposition 12 Suppose that the reinsurance premium is a functional of type (27). If

Z ≡ 0 (no reinsurance at all) is not optimal, then Problem 1 admits a solution:

Z(y) =





0, for y ∈ [0, v],

y − v, for y ∈ [v, VaRY (α)],

c, for y > VaRY (α),

(49)

with c ∈ (0, VaRY (α)− v) satisfying

c = E[Z] +
1

2g′ (var[Z])
F (v)

1− F (v)
, (50)

with v = VaRY−Z(α) ∈ [0, VaRY (α)− c2) depending on the density f . ¤

Risk adjusted premium principles

Proposition 13 If the insurer’s risk measure is CTE−, the reinsurance premium is com-

puted by a functional (11), and w(α) > α
1−F (0) , then Problem 1 admits a solution

Z(y) =





y, for y ≤ VaRY (α),

c, for y > VaRY (α),

where c < VaRY (α) solves

w(1− F (c))− w(1− α− F (c))− α

1− F (0)
= 0, (51)

with c = 0 if this equation does not admit a solution in [0, VaRY (α)).

If w(α) ≤ α
1−F (0) , then Problem 1 admits a solution

Z(y) =





y, for y ≤ V,

V, for y > V,

where V ≥ VaRY (α) solves

w(1− F (V )) =
1− F (V )
1− F (0)

, (52)

with V = +∞ (i.e. Z ≡ Y ) if this equation has no solution in [VaRY (α), +∞). ¤
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7 Discussion

Since the results for the CTE− risk measure are intermediate between the results for VaR

and the results for CTE, we center our discussion on these two extreme cases.

The most evident feature of the optimal treaties obtained in Section 4 is the presence

of discontinuities. This means that these contracts cannot be applied in the real world

because any claim amount close to a point of discontinuity would lead to a conflict between

insurer and reinsurer.

Not all discontinuities are caused by the choice of risk measures: ultimately, the optimal

treaty depends both on the risk measure and the premium calculation principle. In the

case of the premium depending on moments, any discontinuities involving values of to be

refunded above Y − VaRY−Z(α) are due to the localization of the local minima of the

polynomial QZ(ζ) and hence depend on the premium principle being used. It should be

noted that for the most important principles of this type (expected value and variance-

related principles), no such discontinuities occur.

On the other hand, optimal treaties for the VaR criterion always exhibit a discontinuity

where the amount to be refunded drops from Y − VaRY−Z(α), for claim values smaller

than the discontinuity point, to a smaller constant for any claim value greater than the

discontinuity point. This type of discontinuity is a general property of VaR, irrespective

of the premium principle.

As pointed before, it is arguable that since discontinuous treaties have no practical

application, they should be ruled out a priori by constraints on the class of admissible

treaties. To this we reply that the discontinuity of the latter type should be taken as very

strong evidence in support of the often quoted critique that VaR leads to excessive focus

on small claims disregarding large losses.

This is particularly obvious when the reinsurance premium is computed by a risk

adjusted principle and all claims below VaRY (α) are fully refunded while claims above

VaRY (α) are not refunded at all. This is a self-defeating strategy because small claims

are less than the reinsurance premium. Hence the VaR-minimizing strategy only affords

protection for the events when the claim amount is greater than the reinsurance premium

but less than VaRY (α), leaving the insurer in a worse situation in all other events, as

shown in the following proposition.

Proposition 14 (under Assumptions 1, 2):

If Y is not identically zero then, for any ε > 0 and any α ∈ (0, 1) there exists a coher-
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ent premium calculation principle such that the optimal treaty for the VaR(α) criterion

satisfies:

Pr{RZ < Y − ε} = 0, Pr{RZ ≤ Y } < ε. ¤

Proof. Consider a premium calculation principle of type (11) and let Z denote the optimal

treaty for this premium and the VaR(α) risk measure. Due to Proposition 5, the difference

between the net risk after optimal reinsurance and the risk without reinsurance is

RZ − Y = P (Z)− Z =
∫ VaRY (α)

0
w(1− α− F (t)) dt− Y χ{Y≤VaRY (α)}.

Consider the sequence of functions {wn(t) = t
1
n }n∈N. The proof follows from the fact that

lim
∫ VaRY (α)
0 wn(1− α− F (t)) dt = VaRY (α).

Notice that the insurer is expected to make a profit only in the events when the claim

amount is not large. Thus, by buying the optimal reinsurance for the VaR criterion,

the insurer is essentially renouncing to the opportunity of making profits without gaining

protection against large claims. To see this, notice that the net revenue of the insurer

after reinsurance is the random variable c−RZ , where c is the gross revenue of insurance

premiums. Thus, if c < VaRY (α)− ε (which holds for small α, provided the distribution

of Y has a tail), then Proposition 14 shows that a VaR(α)-minimizing insurer prefers

a strategy that yields negative net revenue with probability equal to one, to alternative

profitable strategies with the same tail distribution!

Now, if we consider CTE instead of VaR, the optimal treaties are monotonic continu-

ous, at least for the expected value, variance-related and risk adjusted premium principles.

For these cases, the optimal treaties are either stop-loss or stop-loss with a ceiling, which at

first sight seem quite reasonable treaties. However, notice that for risk adjusted premium

principles, the retention threshold is always zero. This suggests that although CTE takes

into account the tail of the claim-size distribution, it does not confer it enough weight.

Indeed, CTE satisfies a weaker version of Proposition 14:

Proposition 15 Suppose that Y is an integrable continuous random variable.

For any ε > 0 and any α ∈ (0, 1) there exists a coherent premium calculation principle

such that the optimal treaty for the CTE(α) criterion satisfies:

Pr{RZ < Y − ε} = 0, Pr{RZ > Y } > 1− α− ε. ¤
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Proof. Consider a sequence of premium calculation principles

Pn(Z) =
∫ +∞

0
(Pr{Z > t}) 1

n dt, n ∈ N,

and let Zn = min{Y, Vn} denote the corresponding optimal treaties, given by Proposition

9. The proof follows from the fact that the sequence RZn = Y + Pn(Zn)− Zn, converges

uniformly from below to RZ = max{Y, VaRY (α)}.
Like in the VaR case, this implies that a CTE(α)-minimizing insurer may prefer a

strategy that yields negative net revenue with probability equal to one, to alternative

profitable strategies.

The proofs of Propositions 14 and 15 are obtained by picking sequences {wn}n∈N
converging pointwise to 1 in (0, 1], i.e., by picking sequences of premium principles with

increasing loading. Thus, the results above show that, by failing to give sufficient weight

to the tail of the claim-size distribution, CTE (and, a fortiori, VaR) contain a built-in lack

of sensitivity to the premium loading. This pushes the insurer to buy roughly the same

reinsurance (exactly the same, in the case of VaR), even when the loading is so high as to

make reinsurance virtually unaffordable.

So, there is strong evidence that all the risk measures examined in this paper fail to

weight correctly the tail events of the claim-size distribution and are not a sound basis for

choice of reinsurance strategies.

The fact that these measures lead in some cases to nonprofitable strategies also suggests

that a ”good” optimization criterion must necessarily take into account other parameters

reflecting the overall situation of the insurer. In some way, some measure of the mid- and

long-term fitness of the firm should have some bearing in the choice of the reinsurance

strategy.

In particular, it is an open question to known in which way different premium rev-

enues and/or different values of reserves held by the insurer should influence the choice of

reinsurance, for a given claim-size distribution.

It can be argued that such an approach requires elaborate models of the firm, creating

difficulties and opaqueness that override any advantage over the inherently simple quantile-

based models. It is our opinion, simplicity does not always mean a better understanding

of the issues under consideration and our results shows that, at least when applied to

reinsurance, quantile risk measures simply do not fulfill their purported function.

Let us mention that the adjustment coefficient seems to have some qualities that quan-

tile measures lack. It is related to the probability of eventual ruin in infinite time by the
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Lundberg inequality and so is related to the long-term viability of the insurer. It is criti-

cized precisely on the grounds of its relation to infinite-time survivability: it assumes that

the same scenario (i.e., distribution of claim-amounts) occurs in every period in the future,

which is unrealistic, and is concerned with putative events far off in the future, which are

of little concern to the present decision-maker.

In our opinion, the adjustment coefficient is not a tool for planning into the far future,

let alone infinite horizon. It should be viewed as a tool to take present decisions leaving

some margin for future decisions (i.e., striking some balance between present priorities

and highly uncertain future). Notice that positive probability of survival in infinite time

requires positive expected growth of reserves. Thus, the adjustment coefficient contains a

built-in trade-off between safety and profitability. For this reason, strategies that maximize

the adjustment coefficient must provide a positive expected net revenue, avoiding some of

the shortcomings of quantile measures.

Also, optimal treaties maximizing the adjustment coefficient seem to have good prop-

erties (see Guerra and Centeno (2008) and Guerra and Centeno (2010)). In particular,

if the premium is computed by a variance related principle, then the optimal solution is

a convex increasing function which splits the tail of the claim-size distribution between

insurer and reinsurer.

Appendix: Proof of Proposition 1

As stated in the main text, Proposition 1 follows immediately from compactness of the

space M and lower semicontinuity of the functionals (13)–(17). In this appendix we

provide a rigorous proof of these properties, one by one.

Compactness of M
We introduce the short notation

〈η, g〉 =
∫

R2

gdη, η ∈M, g ∈ Cc.

The set Cc provided with the topology of uniform convergence admits a countable dense

subset {gn}n∈N. Since |〈η, g〉| ≤ max
x∈R2

|g(x)| < +∞ holds for every η ∈ M, g ∈ Cc, it

follows that every sequence {〈ηn, g〉}n∈N is a real bounded sequence and therefore contains

a convergent subsequence. Thus, we can pick
{

ηn1
k

}
k∈N

, a subsequence of {ηn ∈ M}n∈N
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such that
{〈

ηn1
k
, g1

〉}
k∈N

is convergent. Repeating the same argument, for each i ∈ N we

can pick
{

ηni+1
k

}
k∈N

, a subsequence of
{

ηni
k

}
k∈N

such that
{〈

ηni+1
k

, gi+1

〉}
k∈N

converges.

It follows that
{

ηnk
k

}
k∈N

is a subsequence of {ηn}n∈N such that all the sequences
{〈

ηnk
k
, gi

〉}
k∈N

, i ∈ N

converge. To see that all the sequences
{〈

ηnk
k
, g

〉}
k∈N

, g ∈ Cc

converge, notice that
∣∣∣
〈
ηnk

k
, g

〉
− 〈

ηnm
m

, g
〉∣∣∣ ≤

≤
∣∣∣
〈
ηnk

k
, gi

〉
− 〈

ηnm
m

, gi

〉∣∣∣ +
∣∣∣
〈
ηnk

k
, g − gi

〉∣∣∣ +
∣∣〈ηnm

m
, g − gi

〉∣∣ ≤

≤
∣∣∣
〈
ηnk

k
, gi

〉
− 〈

ηnm
m

, gi

〉∣∣∣ + 2 max
x∈R2

|g(x)− gi(x)| .

Since {gi}i∈N is dense in Cc, we see that
{〈

ηnk
k
, g

〉}
k∈N

is a Cauchy sequence and therefore

it is convergent.

This shows that the map g 7→ lim
〈
ηnk

k
, g

〉
is a well defined positive bounded linear

functional in Cc. Thus, the Riesz representation theorem (see, e.g. Rudin (1987)) states

that there is one unique regular positive measure η satisfying

〈η, g〉 = lim
〈
ηnk

k
, g

〉
, ∀g ∈ Cc.

Let B = {(y, z) : 0 ≤ z ≤ y}. Since
〈
ηnk

k
, g

〉
= 0 holds whenever Supp(g) ∩ B = ∅, it is

clear that η
(
R2 \B

)
= 0. Thus, in order to show that η ∈M, we only need to show that

η(A× R) = Pr{Y ∈ A} holds for every open set A ⊂ R.

Fix an open set A ⊂ R, a small ε > 0, and pick a compact set B ⊂ A such that

Pr{Y ∈ A \B} < ε. There is a function g ∈ Cc such that

χ{(y,z):y∈B,0≤z≤y} ≤ g ≤ χA×R.

Then,

lim ηnk
k
(A× R) ≥ lim

〈
ηnk

k
, g

〉
= 〈η, g〉.

By taking a sequence gk converging monotonically from below to χA×R, we see that

lim ηnk
k
(A × R) ≥ η(A × R). Also, lim ηnk

k
(A × R) ≤ lim

〈
ηnk

k
, g

〉
+ ε = 〈η, g〉 + ε ≤

η(A× R) + ε. Making ε go to zero, we see that lim ηnk
k
(A× R) ≤ η(A× R).

To prove lower semicontinuity of the risk measures, we use the following lemma:
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Lemma 1 Consider a sequence {ηn ∈M}n∈N converging to η ∈M, continuous functions

g : R2 7→ [0,+∞[, h : R2 7→ R and a sequence {an ∈ R}n∈N converging to a ∈ R. Then,
∫

{(y,z):h(y,z)>a}
gdη ≤ lim inf

∫

{(y,z):h(y,z)>an}
gdηn. ¤

Proof. Fix ε > 0 and pick φ ∈ Cc such that 0 ≤ φ ≤ χ{h>a+ε}. Then,

lim inf
∫

{h>an}
gdηn ≥ lim inf

∫

{h>an}
φgdηn = lim inf

∫
φgdηn =

∫
φgdη.

Making ε go to zero it is possible to pick a monotonically increasing sequence {φn}n∈N
converging to χ{h>a}. Using Lebesgue’s monotone convergence theorem, we obtain the

desired inequality.

Lower semicontinuity of η 7→ ˆVaRη(α)

Fix a sequence {ηn ∈ M}n∈N converging to η ∈ M. Without loss of generality, we may

assume that the sequence {VaRηn(α)}n∈N converges (take a subsequence if necessary). By

Lemma 1, we have

η{y − z > limVaRηn(α)} ≤ lim inf ηn{y − z > VaRηn(α)} ≤ α.

This shows that VaRη(α) ≤ lim VaRηn(α) and hence η 7→ VaRη(α) is lower semicontinuous.

Lower semicontinuity of η 7→ ˆCTEη(α)

Suppose that lim CTEηn(α) < CTEη(α). Then, we can pick ε > 0 such that CTEηn(α) +

ε < CTEη(α) for every sufficiently large n ∈ N. This is

α− η{y − z > V }
α

V +

∫
{y−z>V }(y − z)dη

α
−

− α− ηn{y − z > Vn}
α

Vn −
∫
{y−z>Vn}(y − z)dηn

α
> ε,

where V = VaRη(α), Vn = VaRηn(α). Rearranging, the inequality above becomes

(α− ηn{y − z > Vn})(V − Vn)+

+
∫

{y−z>V }
y − z − V dη −

∫

{y−z>Vn}
y − z − V dηn > αε.
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This implies

(α− ηn{y − z > Vn})(V − Vn)+

+
∫

{y−z>V }
y − z − (V − αε

2
)dη −

∫

{y−z>Vn}
y − z − (V − αε

2
)dηn >

αε

2
.

Due to Lemma 1 and lower semicontinuity of η 7→ VaRη(α), the limit of the left-hand term

cannot be greater than zero while the right-hand side is strictly positive. This shows that

limCTEηn(α) ≥ CTEη(α) must hold and hence η 7→ CTEη(α) is lower semicontinuous.

Lower semicontinuity of η 7→ ˆCTE
−
η (α)

Let V , Vn be as above. Fix δ > 0 and notice that

η {y − z ≤ V + δ} ≥ 1− α, ηn {y − z < lim Vk − δ} ≤ 1− α,

for every sufficiently large n ∈ N. It follows that

η {V + δ < y − z < limVk − δ} =

=η {y − z < lim Vk − δ} − η {y − z ≤ V + δ} ≤
≤ lim sup ηn {y − z < limVk − δ} − η {y − z ≤ V + δ <} ≤
≤1− α− (1− α) = 0.

By making δ go to zero, we obtain

η {VaRη(α) < y − z < lim supVaRηk
(α)} = 0. (53)

Due to (53), we have

CTE−
η (α) =

∫
{y−z≥V }(y − z)dη

η{y − z ≥ V } =
η{y − z = V }V +

∫
{y−z≥lim Vn}(y − z)dη

η{y − z = V }+ η{y − z ≥ limVn} =

=
η{y − z = V }V + η{y − z ≥ lim Vn}(limVn − ε)

η{y − z = V }+ η{y − z ≥ lim Vn} +

+

∫
{y−z>lim Vn}(y − z − (limVn − ε))dη

η{y − z = V }+ η{y − z ≥ lim Vn} .

Takin ε > 0, using Lemma 1 and then making ε → 0+, we obtain

CTE−
η (α) ≤

≤ η{y − z = V }V
η{y − z = V }+ η{y − z ≥ lim Vn}+

+
η{y − z ≥ limVn} limVn + lim

k→∞
∫
{y−z>Vk}(y − z − lim Vn)dηk

η{y − z = V }+ η{y − z ≥ limVn} . (54)

39



Now,

η{y − z ≥ limVn} limVn + lim
k→∞

∫

{y−z>Vk}
(y − z − limVn)dηk =

= lim Vn

(
η{y − z ≥ lim Vn} − lim

k→∞
ηk{y − z ≥ Vk}

)
+

+ lim ηk{y − z ≥ Vk}Vk + lim
k→∞

∫

{y−z>Vk}
(y − z − Vk)dηk =

= lim Vn

(
η{y − z ≥ lim Vn} − lim

k→∞
ηk{y − z ≥ Vk}

)
+ lim

k→∞

∫

{y−z≥Vk}
(y − z)dηk.

Hence, the right-hand-side of (54) is a convex combination of numbers no greater than

lim
∫
{y−z≥Vn}(y−z)dηn

ηn{y−z≥Vn} . This proves that CTE−η (α) ≤ limCTE−ηn
(α), therefore η 7→ CTE−η (α)

is lower semicontinuous.

Lower semicontinuity of P̂ (η) = γ
(∫
R2(z, z

2, . . . , zm)dη
)

For each M ∈ (0, +∞) let gM ∈ Cc denote a function taking values in the interval [0, 1] such

that gM (y, z) = 1 whenever 0 ≤ z ≤ y ≤ M . Fix η ∈ M and a sequence {ηn ∈ M}n∈N,

converging to η. Then, for every M ∈ (0, +∞), we have

lim inf
n→∞ 〈ηn, zm〉 ≥ lim inf

n→∞ 〈ηn, zmgM 〉 = 〈η, zmgM 〉 .

Making M go to ∞ and using Lebesgue’s monotone convergence theorem, we see that

lim inf
n→∞ 〈ηn, zm〉 ≥ 〈η, zm〉, i.e., the map η 7→ 〈η, zm〉 is lower semicontinuous.

If lim
n→∞ 〈ηn, zm〉 = +∞ then, uniform convergence of γ implies lim P̂ (ηn) = +∞ ≥ P̂ (η).

Suppose instead that {〈ηn, zm〉}n∈N is bounded. For each M ∈ (0,+∞), we have

〈ηn, zm〉 ≥
∫

{(y,z):y≥M}
zmdηn ≥ M

∫

{(y,z):y≥M}
zm−1dηn.

Hence,

〈
ηn, zm−1

〉
=

〈
ηn, zm−1gM

〉
+

〈
ηn, zm−1(1− gM )

〉 ≤

≤ 〈
ηn, zm−1gM

〉
+

∫

{(y,z):y≥M}
zm−1dηn ≤

〈
ηn, zm−1gM

〉
+

Const.

M
.

Since lim
n→∞

〈
ηn, zm−1gM

〉
=

〈
η, zm−1gM

〉 ≤ 〈
η, zm−1

〉
and M can be made arbitrarily

large, it follows that

lim
n→∞

〈
ηn, zm−1

〉
=

〈
η, zm−1

〉
.
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Thus, using the continuity and monotonicity of γ, we obtain

lim inf
n→∞ P̂ (ηn) =γ

(
〈η, z〉 , . . . , 〈η, zm−1

〉
, lim inf

n→∞ 〈ηk, z
m〉

)
≥

≥γ
(〈η, z〉 , . . . , 〈η, zm−1

〉
, 〈η, zm〉) = P̂ (η),

which proves lower semicontinuity of (16).

Lower semicontinuity of P̂ (η) =
∫ +∞

0
w(η{z > t})dt

Fix η ∈M and a sequence {ηn ∈M}n∈N, converging to η. For each b ∈ (0, +∞), we have

lim ηn(R× [0, b]) = η(R× [0, b]).

Also, for every M ∈ (0, +∞), we have

P̂ (ηn) ≥
∫ M

0
w (1− ηn(R× [0, t]) dt,

hence, the dominated convergence theorem guarantees

lim inf
n→∞ P̂ (ηn) ≥

∫ M

0
w (η(R× (t,+∞)) dt.

Thus, making M → +∞, one obtains lim inf
n→∞ P̂ (ηn) ≥ P̂ (η), which proves lower semicon-

tinuity of (17).
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