
Chapter 1
Generic Hamiltonian dynamical systems: an
overview

Mário Bessa and João Lopes Dias

Abstract We present for a general audience the state of the art on the generic
properties of C2 Hamiltonian dynamical systems.

1.1 Introduction and main definitions

Hamiltonian systems form a fundamental subclass of dynamical systems. Their im-
portance follows from the vast range of applications throughout different branches
of science. Generic properties of such systems are thus of great interest since they
give us the “typical” behaviour (in some appropriate sense) that one could expect
from the class of models at hand (cf. [38]). There are, of course, considerable limita-
tions to the amount of information one can extract from a specific system by looking
at generic cases. Nevertheless, it is of great utility to learn that a selected model can
be slightly perturbed in order to obtain dynamics we understand in a reasonable way.

1.1.1 Residual sets and generic properties

A residual set is a countable intersection of dense open sets. The elements of a
residual set are called generic. A property that holds within a residual set is also
refered as generic.
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A Baire space is a topological space with the property that residual sets are dense.
The space of Cs, s ∈ N∪{0}, functions on a manifold is Baire.

1.1.2 Hamiltonian dynamics

Let M be a 2d-dimensional smooth manifold endowed with a symplectic structure,
i.e. a closed and nondegenerate 2-form ω . The pair (M,ω) is called a symplectic
manifold which is also a volume manifold by Liouville’s theorem. Let µ be the
so-called Lebesgue measure associated to the volume form ωd = ω ∧·· ·∧ω .

A diffeomorphism g : (M,ω) → (N,ω ′) between two symplectic manifolds is
called a symplectomorphism if g∗ω ′ = ω . The action of a diffeomorphism on a
2-form is given by the pull-back (g∗ω ′)(X ,Y ) = ω ′(g∗X ,g∗Y ). Here X and Y are
vector fields on M and the push-forward g∗X = DgX is a vector field on N. No-
tice that a symplectomorphism g : M →M preserves the Lebesgue measure µ since
g∗ωd = ωd .

For any smooth Hamiltonian function H : M → R there is a corresponding
Hamiltonian vector field XH : M → T M determined by ιXH ω = dH being exact,
where ιvω = ω(v, ·) is a 1-form. Notice that H is Cs iff XH is Cs−1. The Hamil-
tonian vector field generates the Hamiltonian flow, a smooth 1-parameter group
of symplectomorphisms ϕ t

H on M satisfying d
dt ϕ t

H = XH ◦ϕ t
H and ϕ0

H = id. Since
dH(XH) = ω(XH ,XH) = 0, XH is tangent to the energy level sets H−1({e}), for
some energy value e ∈ H(M).

If v ∈ TxH−1({e}), i.e. dH(v)(x) = ω(XH ,v)(x) = 0, then its push-forward by
ϕ t

H is again tangent to H−1({e}) on ϕ t
H(x) since

dH(Dϕ t
H v)(ϕ t

H(x)) = ω(XH ,Dϕ t
H v)(ϕ t

H(x)) = ϕ t
H
∗ω(XH ,v)(x) = 0.

We consider also the tangent flow Dϕ t
H : T M → T M that satisfies the linear vari-

ational equation (the linearized differential equation)

d
dt

Dϕ t
H = DXH(ϕ t

H)Dϕ t
H

with DXH : M → T T M.
We say that x is a regular point if dH(x) 6= 0 (x is not critical). We denote the

set of regular points by R(H) and the set of critical points by Crit(H). We call
H−1({e}) a regular energy level of H if H−1({e})∩Crit(H) = /0. A regular energy
surface is a connected component of a regular energy level.

Given any regular energy level or surface E , we induce a volume form ωE on the
(2d−1)-dimensional manifold E in the following way. For each x ∈ E ,

ωE (x) = ιY ωd(x) on TxE
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defines a (2d − 1) non-degenerate form if Y ∈ TxM satisfies dH(Y )(x) = 1. No-
tice that this definition does not depend on Y (up to normalization) as long as it is
transversal to E at x. Moreover,

dH(Dϕ t
H Y )(ϕ t

H(x)) = d(H ◦ϕ t
H)(Y )(x) = 1.

Thus, ωE is ϕ t
H -invariant, and the measure µE induced by ωE is again invariant. In

order to obtain finite measures, we need to consider compact energy levels.
On the manifold M we also fix any Riemannian structure which induces a norm

‖ · ‖ on the fibers TxM. We will use the standard norm of a bounded linear map A
given by ‖A‖= sup‖v‖=1 ‖Av‖ and also the co-norm defined by m(A) = ‖A−1‖−1.

The symplectic structure guarantees by Darboux theorem the existence of an atlas
{h j : U j → R2d} satisfying h∗jω0 = ω with

ω0 =
d

∑
i=1

dyi∧dyd+i. (1.1)

On the other hand, when dealing with volume manifolds (N,Ω) of dimension p,
Moser’s theorem [30] gives an atlas {h j : U j →Rp} such that h∗j(dy1∧·· ·∧dyp) =
Ω .

For more on the general symplectic and Hamiltonian theories, see e.g. [1].

1.1.3 Our setting

In the following we will always assume that M is a 2d-dimensional compact smooth
symplectic manifold with a smooth boundary ∂M (including the case ∂M = /0) and
d ≥ 2. Furthermore, Cs Hamiltonians are real-valued functions on M that are con-
stant on each connected component of ∂M. We denote by Cs(M) the set of Cs Hamil-
tonians. This set is endowed with the C2-topology.

Under these conditions, the Hamiltonian flow is globally defined with respect to
time because H is constant on the components of ∂M or, equivalently, XH is tangent
to ∂M.

1.1.4 Transversal linear Poincaré flow

Given any regular point x we take the orthogonal splitting TxM = RXH(x)⊕Nx,
where Nx = (RXH(x))⊥ is the normal fiber at x. Consider the automorphism of vec-
tor bundles

Dϕ t
H : TRM → TRM

(x,v) 7→ (ϕ t
H(x),Dϕ t

H(x)v).
(1.2)
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Of course, in general, the subbundle NR is not Dϕ t
H -invariant. So we relate to the

Dϕ t
H -invariant quotient space ÑR = TRM/RXH(R) with an isomorphism φ1 : NR →

ÑR . The unique map
Pt

H : NR → NR

such that φ1 ◦Pt
H = Dϕ t

H ◦φ1 is called the linear Poincaré flow for H. Denoting by
Πx : TxM → Nx the canonical orthogonal projection, the linear map Pt

H(x) : Nx →
Nϕt

H (x) is
Pt

H(x)v = Πϕt
H (x) ◦Dϕ t

H(x)v.

We now consider
Nx = Nx∩TxH−1(e),

where TxH−1(e) = kerdH(x) is the tangent space to the energy level set with e =
H(x). Thus, NR is invariant under Pt

H . So we define the map

Φ t
H : NR →NR , Φ t

H = Pt
H |NR

,

called the transversal linear Poincaré flow for H such that

Φ t
H(x) : Nx →Nϕt

H (x), Φ t
H(x)v = Πϕt

H (x) ◦Dϕ t
H(x)v

is a linear symplectomorphism for the symplectic form induced on NR by ω .

1.1.5 Oseledets theorem

Take H ∈C2(M). Since the time-1 map of any tangent flow derived from a Hamil-
tonian vector field is measure preserving, we obtain a version of Oseledets theorem
for Hamiltonian systems. Given a point x ∈M we say that x is Oseledets regular if
there exists a splitting TxM = E1

x ⊕ ...Ek(x)
x and numbers λ 1(x)≥ ·· · ≥ λ k(x)(x) such

that for any (non-zero) vector v ∈ E i
x we have

lim
t→±∞

1
t

log‖Dϕ t
H(x)v‖= λ i(x).

The Oseledets theorem [32] asserts that Oseledets regular points form a η-full
measure set for any ϕ t

H -invariant probability measure η .
Moreover,

lim
t→±∞

1
t

logsinαt = 0, (1.3)

where αt is the angle at time t between any subspaces of the splitting.
The splitting of the tangent bundle is called Oseledets splitting and the real num-

bers λ i(H,x) are called the Lyapunov exponents. The full measure set of the Os-
eledets points is denoted by O(H) = O .
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The vector field direction RXH(x) is trivially an Oseledets’s direction with zero
Lyapunov exponent.

If x ∈ R ∩O and λ i(x) 6= 0, the Oseledets splitting on TxM induces a Φ t
H(x)-

invariant splitting on Nx where N i
x = Πx(E i

x).
The next lemma makes explicit that the dynamics of Dϕ t

H and Φ t
H are coherent

so that the Lyapunov exponents for both cases are related. The proof uses (1.3).

Lemma 1 ([8]). Given x ∈R ∩O , the Lyapunov exponents of the Φ t
H -invariant de-

composition are equal to the ones of the Dϕ t
H -invariant decomposition.

We now restate the Oseledets theorem for the dynamic cocycle Φ t
H : For µ-a.e.

x ∈ M there exists a splitting of the normal bundle Nx = N 1
x ⊕ ·· · ⊕N

k(x)
x and

numbers λ 1(x)≥ ·· · ≥ λ k(x)(x) such that for any (non-zero) vector v∈N i
x we have

lim
t→±∞

1
t

log‖Φ t
H(x)v‖= λ i(x).

Observe that there exist at most 2d− 2 different exponents for Φ t
H . Moreover,

the Lyapunov exponents of Φ t
H are symmetric (i.e. if λ is one the the exponents,

then −λ is also one of the exponents and their multiplicity is the same). Finally,
dim(N +

x ) = dim(N −
x ) and since dim(N +

x ) is even we obtain that dim(N 0
x ) is

also even.

1.1.6 Hyperbolicity and dominated splitting

Let H ∈C2(M). Given any compact and ϕ t
H -invariant set Λ ⊂ H−1(e), we say that

Λ is a hyperbolic set for ϕ t
H if there exist m ∈ N and a Dϕ t

H -invariant splitting
TΛ H−1(e) = E+

Λ ⊕E−Λ ⊕EΛ such that for all x ∈Λ we have:

• ‖Dϕm
H (x)|E−x ‖ ≤ 1

2 (uniform contraction),
• ‖Dϕ−m

H (x)|E+
x
‖ ≤ 1

2 (uniform expansion),
• E includes the directions of the vector field and of the gradient of H.

Similarly, we can define a hyperbolic structure for the transversal linear Poincaré
flow Φ t

H . We say that Λ is hyperbolic for Φ t
H on Λ if Φ t

H |Λ is a hyperbolic vector
bundle automorphism. The next lemma relates the hyperbolicity for Φ t

H with the
hyperbolicity for ϕ t

H . It is an immediate consequence of a result by Doering [22]
for the linear Poincaré flow extended to our Hamiltonian setting and the transversal
linear Poincaré flow.

Lemma 2. Let Λ be an ϕ t
H -invariant and compact set. Then Λ is hyperbolic for ϕ t

H
iff Λ is hyperbolic for Φ t

H .

We now consider a weaker form of hyperbolicity. Let Λ ⊂M be an ϕ t
H -invariant

set and m ∈ N. A splitting of the bundle NΛ = N 1
Λ ⊕N 2

Λ is an m-dominated split-
ting for the transversal linear Poincaré flow if it is Φ t

H -invariant and continuous such
that
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‖Φm
H (x)|N 2

x ‖
m(Φm

H (x)|N 1
x )

≤ 1
2
, for all x ∈Λ . (1.4)

We call NΛ = N 1
Λ ⊕N 2

Λ a dominated splitting if it is m-dominated for some
m ∈ N.

If Λ has a dominated splitting, then we may extend the splitting to its closure,
except to critical points. Moreover, the angle between N 1 and N 2 is bounded
away from zero on Λ . Under the four-dimensional assumption the decomposition is
unique. For more details about dominated splitting see [20].

We say that a dominated splitting NΛ = N −
Λ ⊕N 0

Λ ⊕N +
Λ over the set Λ is

partially hyperbolic if the bundle N −
Λ is uniformly contractive and the bundle N +

Λ
is uniformly expanding.

The proof of the next lemma (see [8, Lemma 2.6]) hints to the fact that the four-
dimensional setting is crucial in obtaining hyperbolicity from the dominated split-
ting structure.

Lemma 3. Let H ∈C2(M) and a regular energy surface E . If Λ ⊂ E has a domi-
nated splitting for Φ t

H , then Λ is hyperbolic.

Actually, the previous lemma is a version of the following general fact proved in
[18, Theorem 11] which we trivially adapt for Hamiltonians.

Theorem 1. Let H ∈ C2(M) and let NΛ = N 1
Λ ⊕N 2

Λ be a dominated splitting
over a ϕ t

H -invariant set Λ . Assume that dimN 1
Λ ≤ dimN 2

Λ and let N +
Λ = N 1

Λ .
Then N 2

Λ splits invariantly as N 0
Λ ⊕N −

Λ with dimN +
Λ = N −

Λ , and the splitting
NΛ = N +

Λ ⊕N 0
Λ ⊕N −

Λ is partially hyperbolic.

1.1.7 Elliptic, parabolic and hyperbolic closed orbits

Let Γ ⊂M be a closed orbit of least period τ . The characteristic multipliers of Γ are
the eigenvalues of Φτ

H(p), which are independent of the point p ∈ Γ . We say that Γ
is

• k- elliptic iff 2k characteristic multipliers are simple, non-real and of modulus 1;
• parabolic iff the characteristic multipliers are real and of modulus 1;
• hyperbolic iff the characteristic multipliers have modulus different from 1.

We call d−1-elliptic orbits total elliptic. In case d = 2 we have that 1-elliptic are
total.

It is clear that under small perturbations, d-elliptic and hyperbolic orbits are sta-
ble whilst parabolic ones are unstable.

We refer to a point in a closed orbit as periodic. Periodic points are classified in
the same way as the respective closed orbit.
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1.1.8 Perturbation lemmas

We include here several perturbation results in our setting. The first is the celebrated
Pugh’s closing lemma [37, §9]:

Theorem 2 (Pugh’s closing lemma). If ε > 0 and x ∈ M is a recurrent point for
the flow ϕ t

H associated to H ∈C2(M), then there exists H̃ ∈C2(M) ε-C2-close to H
such that x is a periodic point for ϕ t

H̃
.

An important upgrade is the Arnaud’s closing lemma [4]. It states that the orbit
of a non-wandering point can be approximated for a very long time by a closed orbit
of a nearby Hamiltonian.

Theorem 3 (Arnaud’s closing lemma). Let H ∈Cs(M), 2≤ s≤∞, a non-wandering
point x ∈M and ε,r,τ > 0. Then, we can find H̃ ∈Cs(M) ε-C2-close to H, a closed
orbit Γ of H̃ with least period `, p ∈ Γ and a map g : [0,τ] → [0, `] close to the
identity such that:

• dist
(

ϕ t
H(x),ϕg(t)

H̃
(p)

)
< r, 0≤ t ≤ τ , and

• H = H̃ on M \A, where A =
⋃

0≤t≤`

(
B(p,r)∩B(ϕ t

H̃
(p),r)

)
.

The next theorem is a version of Franks’ lemma for Hamiltonians proved by
Vivier [41]. Roughly, it says that we can realize a Hamiltonian corresponding to
a given perturbation of the transversal linear Poincaré flow. It is proved for 2d-
dimensional manifolds with d ≥ 2.

Theorem 4 (Vivier’s lemma). Let H ∈ Cs(M), 2 ≤ s ≤ ∞, ε,τ > 0 and x ∈ M.
There exists δ > 0 such that for any flowbox V of an injective arc of orbit Σ =
ϕ [0,t]

H (x), t ≥ τ , and a transversal symplectic δ -perturbation F of Φ t
H(x), there is

H̃ ∈Cmax{2,s−1}(M) ε-C2-close to H satisfying:

• Φ t
H̃
(x) = F,

• H = H̃ on Σ ∪ (M \V ).

In order to perform local perturbations to our original Hamiltonians, we need an
improved version of a lemma by Robinson [39] that provides us with symplectic
flowbox coordinates. Consider the canonical symplectic form on R2d given by ω0
as in (1.1). The Hamiltonian vector field of any smooth H : R2d → R is then

XH =
[

0 I
−I 0

]
∇H,

where I is the d×d identity matrix. Let the Hamiltonian function H0 : R2d → R be
given by y 7→ yd+1, so that

XH0 =
∂

∂y1
.

Theorem 5 (Symplectic flowbox coordinates [8]). Let H ∈ Cs(M), 2 ≤ s ≤ ∞,
and x ∈ M. If x 6∈ Crit(M), there exists a neighborhood U of x and a local Cs−1-
symplectomorphism g : (U,ω)→ (R2d ,ω0) such that H = H0 ◦g on U.
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1.2 Abundance of zero Lyapunov exponents away from
hyperbolicity

The computation of Lyapunov exponents is one of the main problems in the mod-
ern theory of dynamical systems. They give us fundamental information on the
asymptotic exponential behaviour of the linearized system. It is therefore impor-
tant to understand these objects in order to study the time evolution of orbits. In
particular, Pesin’s theory deals with non-vanishing Lyapunov exponents systems
(non-uniformly hyperbolic). This setting jointly with a Cα regularity, α > 0, of the
tangent map allows us to derive a very complete geometric picture of the dynam-
ics (stable/unstable invariant manifolds). On the other hand, if we aim at under-
standing both local and global dynamics, the presence of zero Lyapunov exponents
creates lots of obstacles. An example is the case of conservative systems: using
enough differentiability, the celebrated KAM theory guarantees persistence of in-
variant quasiperiodic motion on tori yielding zero Lyapunov exponents.

In this section we study the dependence of the Lyapunov exponents on the dy-
namics of Hamiltonian flows. For a survey of the theory see [18] and references
therein. In Theorem 6 we state that zero Lyapunov exponents for four-dimensional
Hamiltonian systems are very common, at least for a C2-residual subset. This pic-
ture changes radically for the C∞ topology, the setting of most common Hamiltonian
systems coming from applications. In this case Markus and Meyer showed that there
exists a residual of C∞ Hamiltonians neither integrable nor ergodic [28].

Theorem 6 ([8]). Let d = 2. For a C2-generic Hamiltonian H ∈C2(M), the union
of the regular energy surfaces E that are either Anosov or have zero Lyapunov ex-
ponents µE -a.e. for the Hamiltonian flow, forms an open µ-mod 0 and dense subset
of M.

Geodesic flows on negative curvature surfaces are well-known systems yielding
Anosov energy levels. An example of a mechanical system which is Anosov on each
positive energy level was obtained by Hunt and MacKay [25].

Another dichotomy result for the transversal linear Poincaré flow on the tangent
bundle is the following:

Theorem 7 ([8]). Let d = 2. There exists a C2-dense subset D of C2(M) such that,
if H ∈D, there exists an invariant decomposition M = D∪Z (mod 0) satisfying:

• D =
⋃

n∈NDmn , where Dmn is a set with mn-dominated splitting for the transversal
linear Poincaré flow of H,

• the Hamiltonian flow of H has zero Lyapunov exponents for x ∈ Z.

The proof of the above theorems is based on a result that allows us to decay the
Lyapunov exponents of points without dominated splitting. This is possible by first
constructing a local perturbation in the coordinates given by Lemma 5, that mixes
the transversal directions of non-zero Lyapunov exponents along an orbit segment.
Thus the effects of contraction and expansion average out.
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The following problem is the generalization of the recent result by Bochi [15] to
our context.

Open problem 1. Show that Theorem 7 holds for d > 2.

1.3 Denseness of elliptic points away from hyperbolicity

In this section we recall a related C2-generic dichotomy by Newhouse [31]: for a
C2-generic Hamiltonian, an energy surface through any p∈M is Anosov or is in the
closure of 1-elliptical periodic orbits.

The Newhouse dichotomy was first proved for C1-generic symplectomorphisms
in [31], and extensions have appeared afterwards [3, 40, 24]. Those were all done
for discrete-time dynamics.

Theorem 8 ([9]). Let d = 2. Given ε > 0 and an open subset U ⊂M, if H ∈C2(M)
has a far from Anosov regular energy surface intersecting U, then there is H̃ ∈
C∞(M) ε-C2-close to H having a closed elliptic orbit through U.

The above theorem is proved in [9] (see [10] for divergence-free 3-flows) by
looking first at the case of hyperbolic closed orbits with a small angle between the
stable and unstable directions. Those are then showed to become elliptic by a small
perturbation. On the other hand, for hyperbolic closed orbits with large angles and
without dominated splitting, an adaptation of Mañé’s perturbation techniques [10]
leads again to elliptic orbits by a perturbation. The remaining case of hyperbolic
closed orbits with dominated splitting and large angle is not true generically (as the
case of parabolic ones).

As an almost direct consequence we arrive at the Newhouse dichotomy for four-
dimensional Hamiltonians. Recall that for a C2-generic Hamiltonian all but finitely
many points are regular.

Theorem 9 ([9]). Let d = 2. For a C2-generic H ∈C2(M), the union of the Anosov
regular energy surfaces and the closed elliptic orbits, forms a dense subset of M.

Open problem 2. Prove the related result for d > 2: For a C2-generic Hamiltonian,
the union of the partially hyperbolic regular energy surfaces and the closed elliptic
orbits, forms a dense subset of M.

1.4 Star energy surfaces

Consider the set M = M×C2(M) endowed with the standard product topology.
Given (p,H) ∈M , we denote by Ep,H the energy surface in H−1(H(p)) contain-
ing p. We say that Ep,H is a star energy surface if it is regular and there exists a
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neighbourhood U of (p,H) such that all energy surfaces Ep̃,H̃ , with (p̃, H̃) ∈ U ,
are regular and have all closed orbits hyperbolic.

Denote by G the set of (p,H) ∈ M such that Ep,H is star, and by A if Ep,H
is Anosov. If there exists a homeomorphism between Ep,H and any nearby Ep̃,H̃
preserving orbits and their orientations, we say that (p,H) is structurally stable, i.e.
(p,H) ∈S .

The next theorem is classical in the theory of dynamical systems, namely Anosov
systems are open and structurally stable (see e.g. [13]).

Theorem 10. Let d ≥ 2. A is open and A ⊂S .

In the d = 2 case, there is already a good characterization of Anosov energy
surfaces.

Theorem 11 ([13]). G = A = S for d = 2.

In rough terms the proof of the previous theorem goes as follows. By Lemma 3, in
the four-dimensional context, dominated splitting is tantamount to hyperbolicity. So,
we are left to show that in the absence of domination it is possible to create a non-
hyperbolic closed orbit by an arbitrary small C2 perturbation of the Hamiltonian.

Assume that we do not have dominated splitting (cannot be Anosov) and we still
have the star property. We claim that we must be far from systems exhibiting elliptic
closed orbits, and moreover we must have good uniform constants of hyperbolicity
over closed orbits. Since we do not have domination, we use the ideas from the proof
of Theorem 6 to obtain an Oseledets regular point with (almost) zero exponents.
Then, the closing lemma (Theorem 3) produce a closed orbit without good constants
of hyperbolicity, contradicting our assumption.

We say that (p,H) is isolated in the boundary of A if Ep,H is not Anosov but any
nearby Ep̃,H̃ such that H 6= H̃ or p̃ 6∈ Ep,H is Anosov. As a consequence of Theorem
11, we obtain the following.

Corollary 1. Let d = 2. The boundary of A has no isolated points.

Open problem 3. Show that Theorem 11 holds for d > 2.

1.5 Robust transitivity

We say that a dynamical system is transitive if it has a dense orbit. Moreover, it is
Cr-robustly transitive if in addition any arbitrarily Cr-close system is transitive.

Theorem 12 (Horita-Tahzibi [24]). Any robustly transitive symplectomorphism
defined in a compact symplectic manifold is partially hyperbolic.

Working in the Hamiltonian context, we have that a regular energy surface is
transitive if it has a dense orbit, and it is robustly transitive if the restriction of any
sufficiently C2-close Hamiltonian to a nearby regular energy surface is still transi-
tive.
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Theorem 13 (Vivier [41]). Let d = 2. Any Hamiltonian admitting a robustly transi-
tive regular energy surface is Anosov on that surface.

We observe that the proof of this theorem uses the Hamiltonian version of Franks’
lemma (Lemma 4).

It is easy to see that Theorem 8 also implies Theorem 13. In fact, if a regular
energy surface E of H ∈C2(M) is far from Anosov, then by Theorem 8 there exists
a C2-close C∞-Hamiltonian with an elliptic closed orbit on a nearby regular energy
surface. This invalidates the chance of robust transitivity for H according to a KAM-
type criterium (see [41, Corollary 9]).

Taking into account Theorem 1 we get the following question.

Open problem 4. Let d > 2. Show that if a Hamiltonian admits a robustly transitive
regular energy surface, then it is partially hyperbolic there.

1.6 Genericity of dense orbits

It follows from Poincaré’s recurrence theorem that, in the volume-preserving con-
text, almost any point is recurrent. However, the points can be restricted to some
region of the manifold both for the past and for the future. The problem of knowing
if a given dynamical system exhibits only one “piece” or, in other words, if there
is any dense orbit, is a central problem in the modern theory of dynamical systems.
A partial answer to this problem was given by Bonatti and Crovisier in [19] for the
volume-preserving discrete-time case and by the same authors and Arnaud in the
symplectomorphism framework [5]. They proved that for some C1-residual subset
any map has a dense orbit.

In the continuous-time case the first author proved in [7] the corresponding ver-
sion for divergence-free flows, and recently Ferreira announced the following result.

Theorem 14 ([23]). For a C2-generic Hamiltonian H and e ∈ H(M), we have that
H−1({e}) has a transitive energy surface.

Theorem 14 is a central tool in order to obtain important results in the generic
theory of Hamiltonians (e.g. Open Problems 2, 3 and 4).

The main tool to conclude the proof of the previous result is the next theorem, a
version for Hamiltonians of the connecting lemma for pseudo-orbits.

We say that the numbers σ1, ...,σ2d satisfy a trivial resonance relation if

σi =
2d

∏
j=1

σ k j
j , i = 1, . . . ,2d,

where ki ∈ N such that either ki 6= 1 or there exists j 6= i verifying k j 6= 0.

Theorem 15. Let (p,H)∈M such that Ep,H ⊂H−1({p}) is a regular surface. Sup-
pose that every closed orbit there has a trivial resonance relation between the Flo-
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quet exponents. Then, for any x,y ∈ Ep,H connectected by a pseudo-orbit, there is a
C2-nearby H̃ and t > 0 such that ϕ t

H̃
(x) = y.

1.7 On Palis’ conjecture

It is known from Peixoto’s work [35, 36] that structurally stable flows on surfaces
form a dense open set. A few years later Palis formulated the following conjec-
ture for general dynamical systems defined on a closed manifold (flows, diffeo-
morphisms, or even more general transformations). Any system can always be C1

approximated by another one which is uniformly hyperbolic or else it exhibits either
a homoclinic tangency or a heterodimensional cycle [34].

In the conservative setting a more accurate result holds. In fact, Bessa and Rocha
recently proved that any volume-preserving diffeomorphism of dimension d ≥ 3 (or
symplectomorphism of dimension d ≥ 4) can be C1 approximated by a volume-
preserving (symplectic) diffeomorphism which is Anosov or else it exhibits a het-
erodimensional cycle [12].

In respect to the two-dimensional area-preserving discrete-time case, we have the
following.

Theorem 16. Any area-preserving diffeomorphism in a compact surface can always
be C1 approximated by another area-preserving diffeomorphism which is either
Anosov or it exhibits a homoclinic tangency.

Proof. By Newhouse’s dichotomy [31] for a C1-dense subset D of the Baire space
of area-preserving diffeomorphisms endowed with the C1-topology, we have that: if
f ∈ D , then f is Anosov or the elliptic points of f are dense in the manifold. It is
sufficient to show that if f is in the C1-interior of the complementary set of Anosov
maps, we can C1-approximate f by an area-preserving diffeomorphism g displaying
a homoclinic tangency.

Now, we choose one elliptic point p for f . Since the C2 area-preserving diffeo-
morphisms are C1-dense in the C1 area-preserving diffeomorphisms [42] and the
elliptic points are stable, we can C1-approximate f by f0 ∈ C2 such that the ana-
lytic continuation p0 of p is elliptic. Now, since f0 is of class C2, we use the weak
pasting lemma for diffeomorphisms [2] to create an invariant curve for some area-
preserving diffeomorphism f1 arbitrarily close to f0. Finally, [29] is used to obtain
persistence of homoclinic tangencies for g arbitrarily close to f1.

Taking into account the previous result, we believe that the following result
should hold.

Open problem 5. Let d = 2. Given H ∈ C2(M), e ∈ H(M) and ε > 0, then there
exists H̃ ε-C2-close to H such that some regular energy surface in H̃−1({e}) is
Anosov or else it contains a homoclinic tangency associated to some hyperbolic
closed orbit.
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Open problem 6. Let d > 2. Given H ∈ C2(M), e ∈ H(M) and ε > 0, then there
exists H̃ ε-C2-close to H such that some regular energy surface in H̃−1({e}) is
Anosov or else it contains a heterodimensional cycle.

1.8 Subclasses of Hamiltonian systems

There are many subclasses of C2(M) for which it would be very interesting to find
generic properties. We will only brifly mention below two of them, because of their
high importance in many branches of science: mechanical systems and geodesic
flows.

Let Q be a d-dimensional smooth compact manifold and take there the local
coordinates q = (q1, . . . ,qd). We can write any σ ∈ T ∗q Q as σ = p · dq where p ∈
Rd and dq = (dq1, . . . ,dqd). Therefore, local coordinates on the cotangent bundle
M = T ∗Q are given by (q, p). Notice that ω = dq∧d p is a symplectic form defined
locally on M. For these local coordinates a mechanical system is a Hamiltonian
H ∈C∞(T ∗M) given by H = T +V , where T is the kinetic energy and V : Q → R
the potential. The function T is chosen to be homogeneous of degree 2, i.e. T =
1
2 〈p, p〉q. This is the general setting of most classical mechanics.

The results in the previous sections do not hold if we restrict to mechanical sys-
tems, because we would need to perturb in the same class, i.e. on the Riemannian
metric 〈·, ·〉 or on the potential V . It is thus an open question whether any sort of
generic property would remain true in this context. In particular, we have the fol-
lowing question.

Open problem 7. Can we C2 approximate any given mechanical system by another
mechanical system which has the dichotomy in Theorem 6?

A somewhat first step would be to deal with a simpler situation:

Open problem 8. Let Q be a closed surface. Given a C2 Hamiltonian on T ∗Q of
the form H = T , is there V arbitrarly C2 small such that H̃ = T +V has the above
mentioned dichotomy?

Geodesic flows on the unit tangent bundle M = SQ are a particular example of
Hamiltonian mechanical systems, given by H = T . It would be of great interest to
answer related questions specifically for those systems.
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