
For Peer Review
 O

nly
 

 
 

 
 

 
 

Modelling the machine configuration and line-balancing 

problem of a PCB assembly line with modular placement 
machines 

 
 

Journal: Engineering Optimization 

Manuscript ID: GENO-2009-0162.R1 

Manuscript Type: Original Article 

Date Submitted by the 
Author: 

03-Nov-2009 

Complete List of Authors: Rong, Aiying; Technical University of Lisbon, Applied Mathematics 
and Economics 
Toth, Attila; University of Szeged, Juhasz Gyula Faculty of 

Education 
Nevalainen, Olli; University of Turku,, Information Technology 
Knuutila, Timo; University of Turku, Information Technology 
Lahdelma, Risto; Helsinki University of Technology, Energy 
Technology 

Keywords: 
Printed circuit board assembly, reconfigurable machine modules, 
line balancing 

  
 
 

 

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization



For Peer Review
 O

nly

Modelling the machine configuration and line-balancing problem of 

a PCB assembly line with modular placement machines 

 

Aiying Rong
1,4*

, Attila Toth
2
 , Olli S Nevalainen

1
, Timo Knuutila

1
, Risto Lahdelma

1,3
  

 
1
Department of Information Technology and TUCS, University of Turku, 20014 

Turku, Finland 
2 

Juhasz Gyula Faculty of Education, University of Szeged, Szeged, Hungary 
3
 Department of Energy Technology, Helsinki University of Technology, 02150 

Espoo, Finland 
4
Cemapre (Center for Applied Mathematics and Economics),  

ISEG-Technical University of Lisbon, 

Rua do Quelhas 6, 1200-781 Lisboa, Portugal 

 

*Corresponding author, Tel: +351 213922747, Fax: +351 213922782 

Email: aiying.rong@gmail.com 

 

(Received 10 July 2009; final version received X X  XXXX) 

 Abstract 

Modular reconfigurable placement machines represent one of the most recent and most 

popular types of placement machines to respond to the needs for increased flexibility and 

productivity in automated printed circuit board (PCB) assembly. This paper studies the 

combined task of determining a favourable machine configuration and line balancing for 

an assembly line where a single type of PCB is assembled by a set of interconnected, 

reconfigurable machine modules. First, the problem is formulated as a non-linear integer 

programming model. Then it is transformed into a linear integer programming model that 

can be solved using a standard solver (e.g. Branch-and-Bound algorithm). The model 

determines the best machine configuration and allocation of components to the machine 

modules with the objective of minimizing the cycle time. Finally the effectiveness of the 

model is illustrated by numerical tests and the optimal solution from the model is 

compared with the result of a previous heuristic method.  

 
Keywords: Printed circuit board assembly; reconfigurable machine modules; line balancing; 

integer programming; mixed integer linear programming.  

 

1. Introduction 

 

In modern electronics manufacturing, automated assembly systems are used to mount 

the electronic components at pre-specified locations onto printed circuit boards 

(PCBs). An automated PCB assembly line is typically laid out as a flow line of 

different types of machines. They are connected to each other by a conveyor system 

which transfers PCBs from one machine to another in the line. Each PCB has to visit 

all the machines before it exits the line (Ayob et al., 2008; Yilmaz et al., 2009). 

The PCB assembly process consists of five major operations (Ho et al., 2008, 

Sze et al., 2001): application of adhesive or solder, component placement, reflow, 

cleaning, and testing & inspection. Among the assembly operations, the component 

placement is generally the most time-consuming (Ball and Magazine, 1988; Leipälä 

Page 1 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

and Nevalainen, 1989; Ashayeri and Selen, 2007). It is frequently a bottleneck of an 

assembly line and determines the line’s cycle time (Ji et al., 2001).  

There are three major tasks in planning and scheduling PCB assembly 

processes (Ammons et al., 1997): job grouping, line balancing (component allocation) 

and sequencing of placement operations. The first task is concerned with grouping 

various types of PCBs into families to reduce the setup time of the machines when 

moving from a product to another. The second task deals with the allocation of 

component types to machines and it defines the workload among the multiple 

machines of the assembly line when producing a single product. The third task is 

concerned with sequencing the placement operations within each machine to speed up 

the assembly. All these tasks are highly interrelated. However, each of them is in most 

cases very complex when formulated as a mathematical optimisation problem. It is 

therefore in practice impossible to solve these problems simultaneously. 

This paper focuses on the joint problem of machine configuration and line 

balancing. The problem arises and has to be solved when an assembly line is 

configured and redesigned. Meanwhile, there is a great diversity in assembly 

machines employed in the industry. Ayob and Kendall (2008) classified the surface 

mount technology (SMT) placement machines into five categories based on machine 

types: dual-delivery, multi-station, turret-type, multi-head and sequential pick-and-

place. The reconfigurable modular machines treated in this paper belong according to 

this classification to the type of multi-station machines and their modules are a kind of 

multi-head placement machines, also called collect-and-place machines (Grunow et 

al. 2004). Tirpak et al. (2002) provided a simulation toolkit for optimizing the PCB 

assembly lines based on a classification of SMT equipment.  

The need for increased flexibility and productivity in PCB assembly has 

recently led to the development of modular reconfigurable placement machines, 

consisting of a number of small individual placement units. Besides offering a higher 

assembly speed and lower effort in material handling compared with conventional 

machine types, modular reconfigurable placement machines provide the possibility to 

change the setting of machine modules flexibly so that the machine configuration is 

suitable for the particular needs of the PCB-type to be processed.  

Each reconfigurable module operates with the working principle of a collect-

and-place placement machine, i.e. collective fetching and individual placements of the 

electronic components (Grunow et al., 2004, Ho et al., 2008). This paper focuses on 

the machine configuration and line balancing problem arising in such a setting. In this 

case, the line balancing problem comprises of the simultaneous machine configuration 

and component allocation among different machines to balance the workload. This 

problem is called the machine configuration and line balancing (MCLB) problem, see 

Toth et al. (2009) for heuristic solution of the problem.    

This paper investigates a single PCB assembly line with a set of 

reconfigurable machine modules where a single type of PCB is assembled. Optimal 

configuration of a production line consisting of modular reconfigurable placement 

machine(s) is a difficult task. Each module is equipped with a stationary PCB holding 

table, stationary component feeder unit and a single moveable arm with a single 

changeable placement head. There are several different head types. Each of them may 

hold a certain set of component nozzles. As a PCB contains many components in 

different shapes, sizes and patterns, different component types require different nozzle 

types. The efficiency of the line depends on the combination of different modules 

equipped with different types of heads and nozzles. For each module, the 

compatibility of heads, nozzles and component types must then be considered. This 

Page 2 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

will give a number of constraints concerning the settings of a line of reconfigurable 

machine modules, making the MCLB problem much more complicated and harder to 

solve. When the components are mounted on the PCBs, all the modules are working 

concurrently. Therefore, the highest workload among the modules in the line 

determines the actual output rate, which is inversely related to the cycle time (i.e., the 

time for producing a single PCB). Thus, minimizing the cycle time can be taken as the 

objective of the problem.  The cycle time is the maximum time that any of the 

machine modules needs to complete its assembly task on the PCB.  

The main contribution of this paper is that the combined MCLB problem is 

formulated as a mathematical optimisation model that can in principle be used to 

determine the exact solution to the problem. The modular reconfigurable placement 

machines represent one of the most recent development and popular types of SMT 

assembly machines used in electronics industries (e.g. Fuji NXT or Siemens 

SIPLACE) to respond to the application’s demanding high-speed chip placement, 

highly flexible end-of-line placement, or a combination of both. To our best 

knowledge, there is no such research work existing up to now because this machine 

type has been widely neglected in the academic literature. Due to high cost of 

placement machines, the optimisation of the assembly process can, no doubt, increase 

the manufacturing companies’ competitiveness. Furthermore, under the mathematical 

framework, the problem can be described more rigorously and more accurately under 

certain mild assumptions. This facilitates understanding the problem better. Even 

though the line balancing problem in its simple form is already a NP-hard 

combinatorial optimisation problem (Gutjahr and Nemhauser, 1964), some exact 

solution approaches such as Branch-and-Bound (BB) algorithms have been used to 

solve certain variants of the line balancing problems (Baybars, 1986). In the present 

work small-size problem instances of the more complicated MCLB problem are 

managed to solve optimally by a standard software package. Using optimal solutions 

as references, the performance of heuristic algorithms can be evaluated.  A less 

complex variant of the model can be used to find feasible (non-optimal) solutions. A 

known feasible solution can then be used to speed up both the BB search and various 

heuristic methods. In summary, the information provided in this paper is interesting 

and meaningful to both industrial practitioners and academic researchers.  

The paper is organized as follows. Section 2 gives a brief overview of the 

relevant research on the topic. Section 3 presents a mixed integer linear programming 

(MILP) formulation for the MCLB problem. In addition to the actual MCLB 

optimization model, a simpler integer formulation for checking the feasibility of the 

machine configuration of PCB assembly line is also presented. The problem 

formulation of the MCLB problem is slow to solve by means of standard MILP 

optimizers. In order to speed up the solution process, Section 4 analyzes the problem 

structure and presents a heuristic approach based on the relaxation of optimization 

model presented in Section 3.  Finally, Section 5 presents numerical results for a set 

of test problems. 

 

2. Literature review 

  

PCB assembly lines are flow oriented production systems, which have common 

characteristics of assembly lines in the industrial production of high quantity 

standardized commodities and low volume production of customized products. 

Among the optimisation problems which arise in managing such systems, assembly 

Page 3 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

line balancing is important for manufacturing companies to improve their productivity 

and minimize production costs (Becker and Scholl, 2006; Lapierre et al., 2006). The 

assembly line balancing problems are in most cases NP-hard (Gutjahr and 

Nemhauser, 1964). The line balancing problems in a general sense or in its basic form 

have attracted attention of academic researchers and industrial practitioners for many 

years (Amen 2006; Becker and Scholl, 2006; Scholl and Becker, 2006). 

In PCB assembly, the line balancing problems appear when the component 

types are allocated to the machines in the line. One can classify the solution 

approaches for the line balancing problem into three categories: mathematical 

programming based approach (optimisation approach), tailored heuristics, and meta-

heuristics.  

Ammons et al. (1997) were among the first to investigate the problem of 

balancing the workload in PCB assembly systems by allocating the component types 

to the machines in the line. They formulated the problem as an integer programming 

(IP) model and applied both a heuristic approach and a standard research software 

package to solve the problem. Lin and Tardif (1999) investigated the PCB assembly 

line balancing considering the uncertainty in demand and capacity under the 

stochastic mixed integer programming framework. Then, they presented an 

approximate solution procedure based on solving the expected value model. The 

research direction of mathematical programming based approaches was further 

pursued by many other researchers (Lapierre et al., 2000; Hillier and Brandeau, 2001; 

Sze et al., 2001; Kodek and Krisper 2004). Sze et al. (2001) presented several 

mathematical models for the line balancing problem. Then the models were compared 

with some similar models to search an applicable algorithm. Lapierre et al. (2000) 

applied Lagrangian relaxation techniques to solve the problem. Kodek and Krisper 

(2004) developed an efficient Branch-and-Bound (BB) algorithm to handle the 

problem. Hillier and Brandeau (2001) used both the BB algorithm and a specialized 

heuristic algorithm to solve the problem.  

Tailored heuristic approaches have often been used to solve the line balancing 

problem in PCB assembly. For example, Tazari et al. (2006) solved the problem by 

combing the network flow approach and shortest-path based multi-exchange local 

search. Häyrinen et al. (2000) and Yildirim et al. (2006) developed dispatching rules 

to allocate the component types to the machines in the assembly line. Choudhury et al. 

(2007) decomposed the process planning decisions into four related problems and 

proposed efficient heuristics to solve the problem. Yilmaz et al. (2009) applied some 

specialized heuristics under the simulation framework.  

Application of meta-heuristics is also common. Ji et al. (2001) and Kulak et al. 

(2007) presented a genetic algorithm (GA) to allocate the placement operations to the 

machines in the line. Wan and Ji (2001) gave a tabu search heuristic approach. Khoo 

and Alisantoso (2003) proposed an immune algorithm. For reconfigurable modular 

machines, Toth et al. (2009, submitted) used an evolutionary algorithm (EA) to solve 

the problem.  

 

3. Problem description and formulation 

3.1 Machine configuration and line balancing problem 

 

Page 4 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

The combined machine configuration and line balancing (MCLB) problem consists of 

two interrelated decisions: determining the machine configuration and allocation of 

components to be placed by different machine modules. 

 

<Figure 1 is around here> 

 

Figure 1 illustrates the machine modules and their arrangement along the 

production line. A conveyor carries the PCBs from one module to the next. The 

different modules operate concurrently, but their working areas are fairly narrow. If 

the PCB is wide, this means that each module can only access a section of the PCB at 

a time, and it may be necessary to advance the conveyor during the assembly process. 

Each module is equipped with a stationary PCB holding table, a stationary 

component feeder unit and a moveable arm with a multi-nozzle placement head. The 

component feeder unit holds a limited number of positions (slots) for component 

feeders. The component feeders may be of several different types, like tapes, sticks, 

etc. Each of the feeders holds components of a single type. Each component feeder 

occupies a certain number of slots on the feeder unit depending on the width of the 

individual components. 

The reconfigurable placement machine module works similar to a collect-and-

place machine (Grunow et al., 2004; Ho et al. 2008). The machine module operates in 

cycles of picking up and placing components on the PCB. During each cycle, the 

placement head travels first to the feeder unit and picks up a number of components 

from the component feeders one by one using nozzles attached to the head. Each 

nozzle can grasp one component on the same cycle. Then the placement head 

traverses to the PCB and places the components one by one at their predefined 

locations. The total time for these cycles depends on several factors including 

assignment of nozzles to head, placement ordering and feeder assignment etc. The 

cycle time is the sum of picking up and placing time plus the movement time of the 

placement head between the feeder unit and the PCB.  

Reconfigurable machine design means that each machine module can be 

equipped with different head types, nozzle types and feeder units to match the 

particular PCB assembly task. Only one head is assigned to each module, but the head 

can carry multiple nozzles based on the compatibility between the head and nozzle 

types. The head can be equipped with different nozzle types or multiple copies of the 

same nozzle type. The present study omits the effect of the topology of the PCB and 

the ordering of the arrangement of the component feeders within the feeder unit. The 

study thus lets the processing time of a machine module be linearly dependent on the 

number of component placements and on the number of pick-and-place cycles 

performed by the module. This simplification is partially justified by the small 

physical dimensions of the modules and thus stresses the importance of the 

partitioning of the assembly tasks to different modules. 

The compatibility between head types and nozzle types (meaning that a certain 

head type can handle a certain set of nozzle types), the component types and nozzle 

types (meaning a certain nozzle type can handle a certain set of component types), 

and the component types and head types (which transitively follows from previous 

two relations) are given by binary matrices. A value of 1 in the compatibility matrix 

means that the type represented by the row is compatible to the type represented by 

the column.  

To facilitate modelling, the present study makes the following assumptions, 

similar to Toth et al. (2009, submitted).  

Page 5 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

• A component type can be handled by only one nozzle type. 

• A nozzle type can be handled by only one head type.  

• Enough copies of each head type and nozzle type are available. 

 

The first assumption simplifies computation of the number of pick-and-place 

cycles and reduces the number of constraints in the original formulation. This 

assumption is not very restricting, because in reality, there is typically for each 

component type a primary nozzle type that is ideal for placing it. The primary nozzle 

type is applied whenever possible. Using a secondary nozzle type may impose quality 

problems in form of higher failure rates and lower quality. A secondary nozzle type is 

therefore used only if no feasible configuration using the primary nozzle can be 

found.  The first and second assumptions together impose restriction on the module-

head assignment because it follows transitively that a component type can be handled 

by only one head type. The corresponding head type that can handle the component 

type must be installed in the module once a component type is assigned to a module, 

The third assumption makes it possible to choose any head type for a module and any 

nozzle type for a head purely based on the compatibility of the matrix between head 

and nozzle types. However, it would be easy to extend our model with constraints on 

the number of copies of head and nozzle types. 

In determining the component allocation, the important considerations include 

whether a particular component can be placed by a particular machine module based 

on its configuration, the width of the component, the capacity of the feeder unit 

attached to the machine module, the amount of time required by the machine module 

to pick and place the components, and the amount of time required by the machine 

module to perform the necessary moves between the feeder unit area and the PCB 

area. The last two time factors can only be estimated when the component allocation 

is solved independently of the other tasks as described in the introduction. Here these 

two time factors are assumed to be given. 

 

3.2 Problem formulation 

 

The following notations are given to formulate the MCLB problem.  

 

Indices: 

i head type, 

j  nozzle type, 

l machine module, and  

k component type. 

Sets:  

A component types, 

H head types, 

L machine modules, and 

N  nozzle types. 

 

Parameters: 

hn

jiB ,  0-1 matrix stating whether head type i is compatible with nozzle type j, 

an

jkB ,  0-1 matrix stating whether component type k is compatible with nozzle type j, 

Page 6 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

kD  number of components of type k that need to be placed on the PCB, 

kE  feeder width of component type k,  

Fl width (capacity) of the feeder unit attached to module l, 

iG  maximum number of nozzles that can be attached to head type i, 

M a big positive number, 
pp

lT  average pick-and-place time of module l for each component, and 
tr

lT  average travelling time factor per pick-and-place cycle for module l 

performing the movements between the feeder unit and PCB. 

 

Decision variables: 

klx ,  number of components of type k that are placed by module l, 

jlz ,  number of nozzles of type j that are attached to module l ,  

lw  number of pick-and-place cycles performed by module l , 

h

ily ,  binary variable indicating whether head type i is attached to module l, and 

a

kly ,  binary variable indicating whether component type k is allocated to module l. 

 

The MCLB problem can be formulated as follows.  

 

  Minimize ( )∑ ∈∈
+

AL k l

tr

lkl

pp

l
l

wTxT ,max   (1) 

subject to  

  ,,1, L
H

∈=∑ ∈
ly

i

h

il  (2) 

  ,,,,,, NL
H

∈∈≤ ∑ ∉
jlyBMz

i

h

il

hn

jijl  (3) 

  ,,,, L
HN

∈≤∑∑ ∈∈
lyGz

i

h

ilij jl  (4) 

  ,,,,,, AL
N

∈∈≤∑ ∈
klzBy

j jl

an

jk

a

kl  (5) 

  ,,,,, AL ∈∈≤ klMyx
a

klkl  (6) 

  ,,, L
A

∈≤∑ ∈
lFyE lk

a

klk  (7) 

  ,,, A
L

∈=∑ ∈
kDx kl kl  (8) 

  ,,,,,, NL
A

∈∈≤∑ ∈
jlzwBx jllk

an

jkkl  (9) 

  ,,},1,0{, HL ∈∈∈ ily
h

il  (10) 

  ,,},1,0{, AL ∈∈∈ kly
a

kl  (11) 

  xl,k ∈ {0, …, Dk}, l∈L, k∈A,  (12)  

  wl ∈ {0, …, maxk{Dk}}, l∈L,  (13) 

  zl,j ∈ {0, …, maxi{Gi|
hn

jiB , =1}}, l∈L, j∈N.  (14) 

 

The objective function (1) is to minimize the maximum processing time of the 

machine modules. The machine module with the maximum processing time is the 

bottleneck module that determines the output of the production system. The 

processing time of the machine module consists of the picking up and placing time of 

the components allocated to the machine module (the first term) and the travelling 

Page 7 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

time between the feeder unit and PCB (the second term). Constraints (2) mean that 

exactly one head is attached to each module. Constraints (3) state that one or more 

copies of a nozzle type can be assigned to a module only if it is compatible with the 

head assigned to the module. Constraints (4) mean that the total number of nozzles 

attached to a head cannot exceed the capacity of the head. Constraints (5) mean that a 

component can be allocated to a module only if it is compatible with at least one 

nozzle that has been attached to the module. Constraints (6) allow one or more copies 

of a component type to be placed by a module only if the component type has been 

allocated to the module. Constraints (7) state that the total width of the component 

types allocated to a module can not exceed the capacity of the feeder unit. Constraints 

(8) mean that all components of each type must be allocated to modules. Constraints 

(9) determine the number of pick-and-place cycles wl for each module l. These 

inequality constraints state that for each nozzle type j the number of cycles must be 

large enough to allow the zl,j copies of the nozzle type to place out those allocated 

components that are handled by that nozzle type. (Recall the assumption that each 

component type is handled by a single nozzle type). Constraints (10)-(14) define the 

domains of the decision variables.  

The objective function (1) and the constraints (9) introduce non-linearity in the 

model. Therefore, the above model formulation should be transformed into an 

equivalent linear model so that a standard software package can be used to solve it.  

 

3.3 Linearization of the model 

 

The objective function (1) can be linearized by standard techniques. By writing 

( )∑ ∈∈
+=

AL k l

tr

lkl

pp

l
l

wTxT ,maxτ  , objective (1) can be reduced to 

 

  Minimize τ (15) 

 .,, L
A

∈≤+∑ ∈
lwTxT

k l

tr

lkl

pp

l τ   (16) 

 

  

Linearization of the product of two variables in constraints (9) is more 

complicated. To do that, constraints (9) should be rewritten by counting values of zl,j 

sequentially, i.e. 0, 1, …. This produces sets of linear constraints. However, only one 

of these constraint sets should be active. To encode the activation and deactivation of 

the linear constraints, new binary variables n

cjly ,,   need introducing.  Variables n

cjly ,,  

indicate the c
th

 copy of nozzle type j is installed on module l for each c∈ Cj. Here, Cj 

= {1,…, maxi{Gi|
hn

jiB , =1}} is the set of copies of nozzle type j. Constraints (9) can 

now be replaced by the following two sets of linear constraints: 

 

  ,1||,...,1,,, j1,,,, −=∈∈+≤ +∈∑ CNL
A

cjlMycwBx h

cjllk

an

jkkl  (17) 

  .,,|| j,, NLC
A

∈∈≤∑ ∈
jlwBx lk

an

jkkl   (18) 

 

Constraint (17) restricts the value of wl only when exactly c copies of the 

nozzle are installed. If the next (c+1)
st
 copy of the nozzle is present, then the M-term 

deactivates the constraint. If the (c+1)
st
 copy of the nozzle is missing, then the 

constraint is dominated by the previous instance of the constraint (corresponding to c 

Page 8 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

installed nozzles). Constraint (18) treats the case corresponding to c=|Cj| copies of 

nozzle type j. 

The new binary variables replace zl,j in the model. Constraints (3) are replaced 

by the following two sets of constraints.  

 

  ,,,,,1,, NL
H

∈∈≤∑ ∈
jlyBy

i

h

il

hn

ji

n

jl   (19) 

  .||,...,2,,, j1,,,, CNL =∈∈≤ − cjlyy
n

cjl
n

cjl   (20) 

 

Constraints (19) state that the first copy of the nozzle can be assigned to a 

module only if it is compatible with the head assigned to the module. Constraints (20) 

state that the c
th

 copy of a nozzle can be added only if the (c-1)
st
 copy exists. 

Constraints (4) and (5) are replaced by 

 

  ,,,,, L
N Cj

∈≤∑∑ ∑
∈

∈ ∈
lyGy

Hi

h

ilij c

n

cjl  (21) 

  .,,1,,,, AL
N

∈∈≤∑ ∈
klyBy

j

n

jl

an

jk

a

kl  (22) 

  

Finally, the domain of new variables are defined.  

 

  ,,,},1,0{ j,, CNL ∈∈∈= cjly
n

cjl   (23) 

  τ ≥ 0.  (24) 

 

As a result of the above transformation, objective function (15) with 

constraints (2), (6)-(8), (10)-(13), and (16)-(24) form a standard mixed integer linear 

programming (MILP) model for the MCLB problem. The problem can be solved by a 

standard MILP solver. However, both the number of constraints and number of 

variables increase significantly due to this transformation.  

 

3.4 Finding feasible solutions 

 

Sometimes it is useful to find out if the MCLB problem is feasible or not, prior to 

starting the search for the optimal or even suboptimal solution. If it can be proven that 

no feasible solution exists, a more time-consuming optimisation process can be 

avoided. A known feasible solution provides an upper bound for the optimal solution, 

and during e.g. Branch and Bound search, this upper bound can be used to prune 

unpromising branches from the search tree. This can greatly speed up the search, in 

particular if the upper bound is close to the true optimum. Also several heuristic 

methods for solving the problem can benefit from a known feasible solution, either as 

a starting solution or as providing an upper bound for the optimum. 

A simpler version of the MCLB problem can be formulated in order to find 

out if the original problem has a feasible solution. Infeasibility can be caused only by 

not having enough space in the feeder units to accommodate all component types or 

by not having enough space in the heads to allocate all required types of nozzles. The 

possibility of having multiple copies of a single nozzle in one head does not affect the 

feasibility of the problem. It may speed up the operation of a single machine by 

reducing the number of cycles. Also, the allocation of a certain component type on 

Page 9 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

multiple machines does not affect feasibility; however, it may speed up operation by 

balancing the workload. 

The feasibility of the problem can therefore be detected by a relaxed model 

obtained by removing the objective function, and the equations related to the 

computation of the number of placements and cycles. In particular, this means 

• omitting the wl variables, 

• replacing the variables xl,k by a

kly ,   

• replacing the variables zl,j by n

jly , (binary variable indicating whether 

nozzle type j is attached to module l), 

• omitting constraints (6) and (9), and 

• setting Dk = 1. 

 

As a result, the feasibility can be checked by solving the following set of 

constraints as an integer linear programming problem with an arbitrary objective 

function: 

 

  ,,1, L
H

∈=∑ ∈
ly

i

h

il  (25) 

  ,,,,,, NL
H

∈∈≤∑ ∈
jlyBy

i

h

il

hn

ji

n

jl  (26)

 h

ilij

n

jl yGly ,, ,, L
N

∈≤∑ ∈
 (27) 

  ,,,,,, AL
N

∈∈≤∑ ∈
klyBy

j

n

jl

an

jk

a

kl  (28) 

  ,,, L
A

∈≤∑ ∈
lFyE lk

a

klk  (29) 

  ,,1, A
L

∈=∑ ∈
ky

l

a

kl  (30) 

  h
ily , , n

jly , , a
kly , ∈{0,1}, l∈L, i∈H, j∈N, k∈A.   (31) 

 

3.5 A sample MCLB problem 

 

To facilitate understanding the structure of the MCLB problem, a simple numerical 

example is presented in Table 1 (Toth et al., 2009, submitted).  

 

<Table 1 is around here> 

 

4. Analyzing problem structure 

 

Generally speaking, a standard MILP solver cannot handle combinatorial optimisation 

problems of Section 3 efficiently. Here the structure of the MCLB problem is briefly 

analyzed to find some ways to speed up the solution process. To facilitate this 

analysis, it is assumed that the travelling time factors tr

lT are same for all of the 

machine modules, i.e., α = tr

lT (l ∈ L). Then, parameter value α = 0 means that the 

travelling time is totally ignored.  When α ≠ 0 (>0), the value of “α” reflects the 

relative value of travelling time as compared with the pick-and-place-time.   

Page 10 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

4.1 Ignoring travelling time 

 

When α = 0, it is equivalent to ignoring the second term in objective function (1). The 

problem becomes easier and the size of the problem decreases significantly. Variable 

wl and constraints (9) of the original formulation then become unnecessary. In the 

meanwhile, a general integer variable zl, reduces to a binary variable and M  equals 1 

in constraints (3) (see constraints (26)). This means that a single copy of each nozzle 

type is sufficient and all constraints in the model are linear. In fact, the feasibility test 

model presented in Section 3.4 is related to the case α = 0.   That is, the linearity 

transformation of the non-linear constraints is needed only when α ≠ 0. The objective 

function only introduces trivial non-linearity, which can be handled by the standard 

techniques as shown in Section 3. Consequently, the number of constraints and the 

number of decision variables decreases significantly as compared with the case for α 

≠ 0.   

Under the assumptions made in Section 3.1, since a component type can be 

handled by only one nozzle type and a nozzle type can be handled by one head type, it 

follows transitively that a component type can be handled by only one head type. 

Consequently, the solution structure of the case with α = 0 bears some similarity to 

the case for α ≠ 0. Both the cases with α = 0 and α ≠ 0 consider the balance of 

component allocation among the machine modules. This means that module-head 

assignment should be the same for α = 0 and for α ≠ 0 because the corresponding only 

one head type must be installed in the module once a component type is allocated to a 

module.   The difference for α ≠ 0 lies in the fact that more copies of some nozzle 

types are needed to handle some frequently used component types to reduce the 

number of pick-and-place cycles for a module.  

Therefore, when the problem instance with α ≠ 0 is solved, one can fix the 

module-head assignment beforehand based on the solution for α = 0. This can speed 

up the solution process significantly. In addition, when α = 0, the solution can 

identify the potential bottleneck modules and give the rough number of components 

that the bottleneck modules should handle. It is possible that more than one module 

can become a potential bottleneck module.  However, in a general situation, if a 

nozzle type can be handled by more than one head type, and a component type can be 

handled more than one nozzle type, then this may cause that a component type to be 

handled by more than one head type. Consequently, the head-module assignment for 

α = 0 may not be same as that for α ≠ 0.  

 

4.2 Partial model relaxation 

 

When problem instances with α ≠ 0 are solved, one can relax the integer variables xl,k 

(the number of components of type k that are placed by module l) and wl (the 

maximum number of pick-and-place cycles of module l) into continuous (real) 

variables. In most cases, such a relaxed problem is much easier to solve than the 

original integer programming problem. The solution of the relaxed problem serves as 

a lower bound for the original problem. This solution gives a rough number of 

components that the potential bottleneck nozzle handles and a rough number of 

components that the potential bottleneck module handles. This relaxed solution 

Page 11 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

maintains the feasibility of the module-head and nozzle-head assignment but the 

number of components assigned to each module may be a fractional number.  

However, a straightforward round-up (down) process may not give a good 

feasible solution, especially when α is relatively large. When α is a small positive 

number, the pick-and-place time of the components accounts for a large portion of 

cycle time, and the amounts of the components allocated to the potential bottleneck 

modules are roughly same. However, for a large α, the travelling time between feeder 

unit and PCB would account for a large portion of the total processing time. 

Component allocation among the potential bottleneck modules tends then not to be as 

even as for smaller α. There is a trade-off between the travelling time and pick-and-

place time. It is all possible that the bottleneck module would change if both xl,k and 

wl  are restricted to be integers. The component allocation among the potential 

bottleneck modules needs adjusting to get a good trade-off. For example, when the 

number of components is rounded to an integer, the changes of wl  for a module 

should be checked. Several trial-and-error adjustments are needed to get a suitable 

integer for both xl,k and wl .  

4.3 Heuristic solution approach 

 

The above analysis gives us the following heuristic solution procedures for solving 

the original MCLB problem by solving the relaxed problem first. 

  

Step 1.   Solve the problem (15) with constraints (2), (6)-(8), (10)-(13) and (16)-(24) 

for α = 0. 

Step 2. Solve the relaxed problem of Section 4.2 with the fixed module-head 

assignment from Step 1.  

Step 3.   Restore the feasibility (i.e. integer requirements for the number of 

components and pick-and-place cycles) of the relaxed solution of Step 2. 

5. Computational results 

 

To evaluate the effectiveness of the model presented in Section 3 and the heuristic 

solution procedure of Section 4.3, a standard MILP software package is used to solve 

the small MCLB instances and one bigger instance reported in Toth et al. (2009, 

submitted).  The test instances reflect the real life PCB instances in the proportional 

sense. Though the number of head types, number of nozzle types, and number of 

component types are smaller than those in reality, the proportion of them follows the 

real life PCB instances. The bigger instance approximates real life instances.    Table 

2 shows these problem instances and their sizes as MILP models (number of 

constraints ×number of decision variables). It is assumed that the travelling time 

factors α = tr

lT ( l ∈ L) are the same for all of the machine modules. The MCLB 

problems are solved using five travelling time factors: α = 0, 1, 2, 5 and 10. α = 0 

means that the arm travelling time is totally ignored. Parameter value α = 1 and 2 

mean moderate relative travelling time. α = 5 and 10 mean large relative travelling 

time.  The values of “α” affect the problem size as shown in Table 2. When α = 0, the 

problem size is much smaller than that for α ≠ 0 as discussed in Section 4.  When α ≠ 

0, the relative value of “α” can affect how the components are allocated among the 

machines. This also has an impact on the solution time of the solver (see Table 3).  

For all these cases, the optimisation model was run in two modes. The first is 

the relaxation mode (R) as discussed in Section 4.2. The second is the true 

Page 12 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

optimisation mode (O) of the model presented in Section 3.3. For α = 0, the results of 

the two modes are same. All the test runs were performed in a 2.79 GHz (1 GB RAM) 

Pentium 4 PC under the Windows XP operating systems.  

 

<Table 2 is around here> 

 

For both optimisation and relaxation modes, the solution process can be 

speeded up by first solving the problem instance with α = 0 as discussed in Section 

4.3. Table 3 gives the solution times of the optimisation modes O and R with α = 0, 1, 

2, 5 and 10. Table 4 gives the solutions (i.e. values of formula (15)) generated by 

optimisation mode (O) and relaxation mode (R) with α = 0, 1, 2, 5 and 10 as well as 

the gap of the relaxed solution against optimal solution.  

  GAP (%) = 100*(zo-zR)/zo,  (32) 

 

where zR is the solution generated by the relaxation mode and zo is the optimal 

solution. The solution time for the optimisation model with α ≠ 0 is the running time 

of the optimizer when module-head assignment is fixed based on the solution with α = 

0. The solution time can be improved from 2 to 5 times as compared with the situation 

when the solution process starts from the scratch. 

 

<Table 3 is around here> 

<Table 4 is around here> 

 

Based on Table 3, the solution time for the optimisation model is sensitive to 

the problem size and travelling time factor α. The computational time is related to the 

size of the mathematical model (see Table 2) but not purely determined by the size. 

Other parameters such as α can affect solution time. The solution efficiency of the 

optimisation model with the two modes differs significantly. The solution time for the 

relaxation mode is much shorter than that for the optimisation mode if the problem is 

solvable. Generally speaking, for the same problem instance, the solution times for 

both modes O and R have tendency to increase as α increases (though not strictly 

monotonically). For α = 0, the solution time is short. This means that the trade-off 

between pick-and-place time and travelling time becomes more difficult to manage as 

the travelling time factor α becomes large for both modes. Therefore, it is not 

surprising to see that it is even difficult to solve the relaxed version of the problem for 

α >1 of the problem instance 4. In addition, the solution time increases (though not 

strictly monotonically) as the problem size increases (shown in Table 2). Furthermore, 

it is easy to check whether the configuration of the modular system is feasible based 

on the feasibility test model in Section 3.4 because the structure of the feasibility test 

model is similar to the case α = 0 but a little simpler.  

Based on Table 4, GAP varies without any clear trend. However, a feasible 

solution of the original problem can always be obtained based on the relaxed solution.  

Next, suppose that the MCLB problem has been solved using the R mode.  

Then, a feasible integer solution needs to be found on the basis of it.  The process is 

illustrated by using the sample MCLB problem given in Section 3.5 (problem instance 

2 in Table 2) for α=10. Table 5 shows the module-head and module-nozzle-nozzle 

number assignment found by relaxation mode. The index c of variable n

cjly ,, means the 

copy number of nozzle type j on module l. Similarly, h

ily ,  indicates the assignment of 

Page 13 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

head type i to module l.   Table 6 shows the module-component assignment for the 

problem instance 2 in Table 2.   

 

<Table 5 is around here> 

<Table 6 is around here> 

 

Based on Table 5, there are two copies of head type 1: one copy is assigned to 

module 1 and the other to module 3. There are also two copies of head type 2 in 

modules 2 and 4. Based on Table 1, head type 1 is compatible with nozzle types 1, 2 

and 3 and head type 2 is compatible with nozzle types 4 and 5.  Further, Table 5 states 

that the module-nozzle assignment, e.g. module 1 uses three copies of nozzle type 1 

and one copy of nozzle type 3.  

The assignment of Table 6 is optimal (feasible) for the relaxation mode R. The 

processing time of the bottleneck module 3 is 32.2×2+10×10 = 164.4. If the fractional 

values of the components (type1) are rounded directly: for example 7.8 � 8, 22.2 � 

22, w1= 10, then the processing times of module 1 and module 3 are 172 and 164, 

respectively.  This means that module 1 becomes the bottleneck module. However, if 

the number of the components are rounded in the other way: 7.8 � 7, 22.2 � 23, w1 = 

9, then the processing times of module 1 and module 3 are 160 and 166, respectively. 

Module 3 becomes then the final bottleneck module. The objective value 166 is 

known from Table 4 to be the true optimal solution.  

Next, the above trial-and-error methods were used to solve all the problem 

instances of Table 2 with good success. All the problems were solved optimally in 

this way. Although there is no guarantee that the true optimal solution can be obtained 

from the relaxed solution in general, a good feasible solution is found if the gap 

between relaxed solution and optimal solution is not large and a good feasibility 

restoring process is used.  

Finally, the solutions by the evolutionary algorithm (EA) of Toth et al. (2009, 

submitted) were compared with those for the optimisation model for instances α = 0, 

1 and 10.  Here, the optimal solution is used to evaluate the performance of the EA 

heuristic method. This method divides the optimization process into three 

subproblems which are solved successively: assignment of heads to machine modules, 

assignment of component placements to machine modules and assignment of nozzles 

to heads. The first and the last subproblems are solved using a greedy method whereas 

the second one is solved by an EA. This algorithm is based on the component-to-

machine mapping, similar to variable xl,k here in the optimization model and its 

objective function is (1) with the difference that  the number of pick-and-place cycles 

wl  is relaxed to a real number. The EA of Toth et al. (2009) was applied by using 10 

individuals in each population and 100 generations. The solutions of EA reported in 

Table 8 were the best among 20 independent runs. Accordingly, the solution times for 

the EA were the total times for running 20 independent runs. The solution times of 

EA were reported in Table 7. EA was coded in Toth et al. (2009) in MatLab  and 

performed in a PC with 2.33 GHz (2 GB RAM) under the Windows Vista operating 

systems.  Therefore, to facilitate comparison, an equivalent relaxation solution was 

also constructed from the solution of the relaxation mode (R), this approach was 

called R’. It is worth mentioning that the solutions obtained from approach R’ 

coincide with the optimal solution for the related relaxation problems based on our 

computational experiences. Table 8 gives the GAP (%) of EA against the optimal 

solution. GAP measure is similar to that introduced in (32).  

 

Page 14 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

<Table 7 is around here> 

<Table 8 is around here> 

 

As compared with the solution time in Table 3, the solution time of EA (Table 

7) is not sensitive to both problem size and parameter α. Based on Table 8, the 

solutions generated by EA are not bad in general. The optimality gap is reasonably 

small. This means that the EA has good potential to handle large size problems with 

different travelling factors α based on both the solution quality and solution time.  

 

6. Conclusions 

 

This paper investigates the machine configuration and line balancing (MCLB) 

problem of a printed circuit board (PCB) assembly line with modular reconfigurable 

machines and a single PCB type to be processed. Such lines are becoming popular 

due to their great flexibility. A reconfigurable machine module can be seen as a multi-

head placement machine. However, the mathematical modelling of the MCLB 

problem has not been extensively researched so far. The MCLB problem was 

formulated as a non-linear integer programming model and then the non-linear model 

was transformed into a linear form for solution.  

The MCLB problem is more complicated than the traditional versions of the 

line balancing problem (Baybars, 1986; Gutjahr and Nemhauser, 1964). It has to 

consider the component allocation and machine configuration at the same time. In 

addition, the machine-head assignment and machine-nozzle-component assignment 

were needed to solve while considering the compatibility between head and nozzle 

types, and the compatibility between nozzle and component types.  

In the present study, this problem was solved as a two-phase process. The first 

phase solved the simpler problem obtained by omitting the travelling time between 

the feeder unit and PCB area. This resulted in a feasible machine-head assignment. In 

the second phase, the machine-head assignment served as an initial feasible solution 

for the general problem which takes also the travelling time into account. This two-

phase approach improves the solution time from 2 to 5 times as compared with 

solving the general problem from scratch.  

However, this trick does not necessarily give an optimal solution in general 

where the module-head assignment may be different for the first and second stage 

problems if the component type can be handled by more than one nozzle type, which 

may cause that a component type can be handled by more than one head type.  A 

number of small-size problem instances (up to 10 component types, 5 modules, 100 

component placements) were solved optimally. For a bigger problem instance, the 

running time with α ≠ 0 became unbearably long. A recommended action was first to 

solve the relaxed versions of the problem (integers are relaxed to real numbers) and 

then to obtain a feasible solution by adjusting the relaxed solution. For our test 

problems, the feasible solution obtained from the relaxed solution coincided with the 

optimal solution, which was obtained directly by solving the MILP formulation 

presented in Section 3.  An advantage of the above action was much shorter running 

time of the solution algorithm. 

Benefits of the mathematical optimisation are that one can describe the 

problem rigorously and get an optimal solution for at least some small-size problem 

instances. This can be used to evaluate the optimality performance of the heuristic 

approaches (see Tables 4 and 8 for this kind of comparisons). However, even the 

Page 15 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

relaxed version of the model is difficult to solve when the problem instance becomes 

larger. 

 For the future research, one can follow several directions. First, a general case 

of multiple assembly lines with multiple PCB-types is of practical interest. Second, 

the assumptions presented in Section 3 can be removed, i.e., one can then allow that a 

nozzle type is carried by multiple head types and a component type is handled by 

multiple nozzle types. Finally, it is possible to develop specialized optimisation 

algorithms by exploring the structure of the problem.  

 

Acknowledgements 
 

The first author would like to thank postdoctoral fellowship in University of Turku 

(Finland) and FCT (science and technology foundation) support (Portugal) through 

program POCI 2010 for partial funding of this research.  

 

References  

 

Ahmadi, R.H. and Wurgaft, H., 1994. Design for synchronized flow manufacturing. 

Management Science, 40, 1469-1483.  

Amen, M., 2006. Cost-oriented assembly line balancing: Model formulations, solution 

difficulty, upper and lower bounds. European Journal of Operational Research, 

168, 747-770.  

Ammons, J.C., Carlyle, M., Granmer, L., Depuy, G.W., Ellis, K.P., McGinnis, L.F., 

Tovey, C.A. and Xu, H., 1997. Component allocation to balance workloads in 

printed circuit card assembly. IIE Transactions, 29, 265-275.  

Ashayeri, J. and Selen, W., 2007. A planning and scheduling model for onsertion in 

printed circuit board assembly. European Journal of Operational Research, 183, 

909-925. 

Ayob, M. and Kendall, G. 2008. A survey of surface mount device placement 

machine optimization: machine classification. European Journal of Operational 

Research, 186, 893-914. 

Ball, O.M. and Magazine, M.J., 1988. Sequencing of insertions in printed circuit 

board assembly. Operations Research, 36(2), 192-201 

Baybars, I., 1986. A survey of exact algorithms for the simple assembly line 

balancing problem. Management Science, 32, 909-932. 

Becker, C. and Scholl, A., 2006. A survey on problems and methods in generalized 

assembly line balancing. European Journal of Operational Research, 168, 694-

715.  

Choudhury, N.D., Wilhelm, W.E., Rao, B., Gott, J. and Khotekar, N., 2007. Process 

planning for circuit card assembly on a series of dual head placement machines. 

European Journal of Operational Research, 182, 626-639.  

Grunow, M., Gunther, H.O., Schleusener, M. and Yilmaz, I.O., 2004. Operations 

planning for collect-and-place machines in PCB assembly. Computer & Industrial 

Engineering, 47, 409-429. 

Gutjahr, A.L. and Nemhauser, G.L., 1964. An algorithm for the line balancing 

problem. Management Science, 11, 308-315. 

Page 16 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Häyrinen, T., Johsson, M., Johtela, T., Smed J. and Nevalainen, O., 2000. Scheduling 

algorithms for computer-aided line balancing in printed circuit board assembly. 

Production Planning and Control, 11, 497-510. 

Hiller, M.S. and Brandeau, M.L., 2001. Cost minimization and workload balancing in 

printed circuit board assembly. IIE Transactions, 33, 547-557. 

Ho, W., Ji, P. and Dey, P.K., 2008. Optimization of PCB component placements for 

the collect-and-place machines. International Journal of Advanced Manufacturing 

Technology, 37, 828-836. 

Ji, P., Sze, M.T. and Lee, W.B., 2001. A genetic algorithm of determining cycle time 

for printed circuit board assembly. European Journal of Operational Research, 

128, 175-184. 

Khoo, L.P. and Alisantoso, D., 2003. Line balancing of PCB assembly line using 

immune algorithms. Engineering with Computers, 19, 92-100. 

Kodek, D.M. and Krisper, M., 2004. Optimal algorithm for minimizing production 

cycle time of a printed circuit board assembly line. International Journal of 

Production Research, 42(23), 5031-5048. 

Kulak, O., Yilmaz, I.O. and Gunther, H.O., 2008. GA-based solution approach for 

balancing printed circuit board assembly line. OR Spectrum, 30, 469-491.  

Lapierre, S.D, Debargis L. and Soumis F., 2000. Balancing printed board assembly 

line systems. International Journal of Production Research, 38(16), 3899-3911. 

Lapierre, S.D., Ruiz, A. and Soriano, P., 2006. Balancing assembly lines with tabu 

search. European Journal of Operational Research, 168, 826-837.  

Leipälä, T. and Nevalainen, O., 1989. Optimization of the movements of a component 

placement machine. European Journal of Operational Research, 38, 167-177.  

Lin, W.L. and Tardif, V., 1999. Component partitioning under demand and capacity 

uncertainty in printed circuit board assembly. International Journal of Flexible 

Manufacturing Systems, 11, 159-176. 

Scholl, A. and Becker, C., 2006. State-of-art exact and heuristic solution procedures 

for simple assembly line balancing. European Journal of Operational Research, 

168, 666-693.  

Sze, M.T., Ji, P. and Lee, W.B., 2001. Modeling component assignment problem in 

PCB assembly. Assembly Automation, 21, 55-60. 

Tazari, S., Muller-Hannemann, M. and Weihe, K., 2006. Workload balance in multi-

stage production processes. Lecture Notes in Computer Science, 4007, 49-60.  

Tirpak, T.M., Mohapatra, P.K., Nelson, P.C. and Rajbhandari, R.R., 2002. A generic 

classification and object-oriented simulation toolkit for SMT assembly equipment. 

IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and 

Humans, 32(1), 104-121. 

Toth, A., Knuutila, T. and Nevalainen, O.S., 2009. Reconfiguring flexible machine 

modules of a PCB assembly line (in submission).  

Wan, Y.F. and  Ji P., 2001. A tabu search heuristic for the component assignment 

problem in PCB assembly. Assembly Automation, 21(3), 236-240. 

Yildirim, MB., Duman, E. and Duman, D., 2006. Dispatching rules for allocation of 

component types in automated assembly of printed circuit boards. Lecture Notes 

in Computer Science, 4263, 55-64. 

Page 17 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Yilmaz, I.O., Gunther H.O. and Jain S., 2009. Simulation of mixed model PCB 

assembly lines with group setup and bypass conveyors. International Journal of 

Advanced Manufacturing Technology, 42(3-4), 335-347. 

 

Page 18 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Figure 1. Modular component placement systems. 

 

Table 1. A sample MCLB problem. 

 

Table 2. Three small-size problem instances and one big problem instance (instance 

4) and related sizes of the mixed linear integer programming model (number of 

constraints ×number of decision variables). 

 

Table 3. Solution times (seconds) of the optimisation model for the problem instances 

using optimisation mode (O), and relaxation mode (R). O/R is the ratio of solution 

time for the optimisation mode against relaxation mode. For instance 4 with α >1, it 

was too time-consuming to solve the problem.  The tests were performed in a 2.79 

GHz(1 GB RAM) Pentium 4 PC under the Windows  XP operating systems.  

 

Table 4. Values of the objective functions for the optimisation mode (O) and 

relaxation mode (R) as well as the gap of the relaxed solution. For instance 4 with α 

>1, it was too time-consuming to solve the problem.  

 

Table 5. Module-head and module-nozzle-nozzle copy assignment for the problem 

instance 2 in Table 2.  

 

Table 6. Module-component assignment for the relaxation mode for the problem 

instance 2 in Table 2. 

 

Table 7. Solution times (seconds) of EA for running 20 independent runs. The EA 

was coded in Matlab and performed in a PC with 2.33 GHz (2 GB RAM) under the 

Windows Vista operating systems. 

 

Table 8. Comparison of EA solutions against optimal solution.  

 

 

Page 19 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

 

3 2 1

PCB

Conveyor

PCB1PCB2PCB3

Robot arm

Placement head

Feeder units

Machine modules
 

 

Figure 1. Modular component placement systems. 

Page 20 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

Table 1. A sample MCLB problem. 

 

Number of component types |A| 8 

Number of machine modules |L| 4 

Number of head types |H| 2 

Number of nozzle types |N| 5 

Number of placements for component type k, Dk 

(k∈A) 

D1 = 30; D2 = 20; D3 = 10;  

D4 = 5;  

 D5 = 3; D6 = 3; D7 = 2; D8 = 1;  

Head-nozzle compatibility matrix B
hn

 

(|H|×|N|=2×5) 11000

00111
 

Component-nozzle compatibility matrix B
an

  

(|A|×|N|= 8×5) 

10000

10000

01000

00100

00100

00010

00001

00001

 

Feeder width of component type k, Ek (k∈A) 
E1 = 1; E2 = 2; E3 = 3; E4 = 4;  

 E5 = 5; E6 = 5; E7 = 5; E8 = 7;  

Number of nozzles attached to head type i, Gi 

(i∈H) 

G1 = 1; G2 = 2 

Feeder capacity Fl (l∈L) F1= F2= F3= F4= 12 

Picking and placing time, 
pp

lT (l∈L) 

ppT1 = ppT2 = pp
T3 = ppT4  =2 

Time 

factors 
Travelling time tr

lT  ( l∈L) trT1 = trT2 = tr
T3 = trT4 = 1 

 

Page 21 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

Table 2. Three small-size problem instances and one big problem instance (instance 

4) and related sizes of the mixed linear integer programming model (number of 

constraints ×number of variables). 

 

 

Variables Constraints Instance Component 

types 

 |A| 

Modules 

|L| 

Head 

types |H| 

Nozzle 

types |N| 

Placements 

Σk|Dk| 

Feeder 

capacity 

F  
α =0 α ≠0 α =0 α ≠0 

1 8 5 2 5 55 10 121 166 131 248 

2 8 4 2 5 74 12 97 131 108 200 

3 10 5 3 8 100 20 161 331 170 550 

4 20 8 4 10 320 30 441 753 452 1156 

Page 22 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

Table 3. Solution times (seconds) of the optimisation model for the problem instances 

using optimisation mode (O), and relaxation mode (R). O/R is the ratio of solution 

time for the optimisation mode against relaxation mode. For instance 4 with α >1, it 

was too time-consuming to solve the problem.  The tests were performed in a 2.79 

GHz(1 GB RAM) Pentium 4 PC under the Windows  XP operating systems.  

 

Instance α = 0  α = 1  α = 2  α = 5  α = 10 

 O(R)  O R O/R  O R O/R  O R O/R  O R O/R 

1 0.31  150 78 1.9  832 72.7 11.4  704 79.5 8.9  3215 171 18.8 

2 0.2  6.7 4.9 1.4  8.2 4.8 1.7  51.7 3.2 16.2  93 7.9 11.8 

3 0.24  2684 1437 1.9  1299 806 1.6  22733 660 34.4  15339 391 39.2 

4 2.2  51208 419 122  -- -- --  -- -- --  -- -- -- 

 

Page 23 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

 

Table 4. Solutions of the optimisation mode (O) and relaxation mode (R) as well as 

the gap of the relaxed solution. For instance 4 with α >1, it was too time-consuming to 

solve the problem.  

 

 

Instance α = 0  α = 1  α = 2  α = 5  α =1 0 

 O(R)  O R GAP(%)  O R GAP(%)  O R GAP(%)  O R GAP(%) 

1 34  39 37.8 3.08  44 42.2 4.09  59 55.6 5.76  84 78 7.38 

2 68  78 77.4 0.77  88 86.9 1.25  116 116 0.34  166 164 0.96 

3 90  96 95.8 0.21  102 102 0.29  120 119 0.67  150 149 0.93 

4 112  120 119 0.75  -- -- --  -- -- --  -- -- -- 

Page 24 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

 

Table 5. Module-head and module-nozzle-nozzle copy assignment for the problem 

instance 2 in Table 2.  

 

Module-head  1,1,1,1 2,41,32,21,1 ==== hhhh
yyyy  

Module-nozzle-nozzle copy 1,1 1,3,13,1,12,1,11,1,1 ==== hnnn
yyyy  

 11,4,2 =n
y  

 1,1 1,2,33,1,32,1,31,1,3 ==== nnnn
yyyy  

 11,5,4 =n
y  

Page 25 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

Table 6. Module-component assignment for the relaxation mode for the problem 

instance 2 in Table 2. 

 

 Component 1 2 3 4 5 6 7 8 wl 

Module           

1  7.8 20  5 3    9.27 

2       3   3 

3  22.2  10      10 

4        2 1 3 

Dk  30 20 10 5 3 3 2 1  

 

 

 

 

 

 

 

Page 26 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

Table 7. Solution times (seconds) of EA for running 20 independent runs. 

 

 

Instance α = 0 α = 1 α = 10 

1 354 350 344 

2 306 307 308 

3 474 480 480 

4 500 510 510 

Page 27 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

 

Table 8. Comparison of EA solutions against optimal solution.  

 

 

Instance α = 0  α = 1  α = 10 

 O(R') EA GAP(%)  R' EA GAP(%)  R' EA GAP(%) 

1 34 34 0  38.3 38.3 0  78 78 0 

2 68 68 0  78 78 0  166 168 1.2 

3 90 90 0  96 96.7 0.73  149.6 152 1.6 

4 112 112 0  120 121 0.83  -- 190 -- 

 

Page 28 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


