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Abstract

Systematic conservation planning applications based solely on the presence/absence

of a large number of species are not sufficient to guarantee their persistence in

highly fragmented landscapes. Recent developments have thus incorporated

much desired spatial design considerations, and reserve-network connectivity

has received increased attention. Nonetheless, connectivity is often determined

without regard to species-specific responses to habitat fragmentation. But

species differ in their dispersal ability and habitat requirements, making proxi-

mate priority areas necessary for some species, while undesirable for others. We

present a novel approach that incorporates species-specific connectivity needs

in reserve-network design. Importantly, our method differs from previous ap-

proaches in that connectivity is not part of the objective function, but part

of the constraints, thus avoiding typical undesirable trade-offs that may result

in high connectivity for some species but null connectivity for others. We use

graphs to describe the dispersal pattern of each species and our goal is to iden-

✩This work was partially supported by FEDER/POCI 2010.
∗Corresponding author.
Email addresses: orestes@isa.utl.pt (J. Orestes Cerdeira), lspinto@iseg.utl.pt

(Leonor S. Pinto), cabeza@cc.helsinki.fi (Mar Cabeza), k.j.gaston@sheffield.ac.uk
(Kevin J. Gaston)

1Centro de Estudos Florestais and Departamento de Matemática, Inst. Superior de
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tify minimum sets of reserves with connected sites for each of the species. This

is not a trivial problem and we present three algorithms, one heuristic and two

integer cutting algorithms that guarantee optimality, based on different 0-1 lin-

ear programming formulations. Applications to simulated data show that one

of the algorithms that guarantee optimality is superior to the other, although

both have limited application due to the number of sites and species they can

manage. Remarkably, the heuristic can obtain very satisfactory solutions in

short computational times, surpassing the limitations of the exact algorithms.

Key words: Reserve selection, systematic conservation planning, graphs,

connectivity, algorithms, integer programming

1. Introduction1

Systematic conservation planning is the process of using quantitative data to2

identify locations for conservation investment. It typically aims at maximising3

the number of species contained in selected units given a set of constraints. Such4

applications are often based solely on the presence/absence of a large number of5

species. However the ultimate goal of conservation is not to maximise current6

species occurrences but to maximise persistence of biodiversity (Cabeza and7

Moilanen, 2001; Cabeza and van Teeffelen, 2009; Pressey et al., 2007).8

Aiming at maximising persistence is not a trivial task and consequently prox-9

ies for persistence are often used. These include maximising species abundances10

(Rodrigues et al., 2000), incorporating measures of site vulnerability (Wilson11

et al., 2005) and promoting spatial designs that minimise the impacts of habi-12

tat fragmentation (Cabeza et al., 2003; Possingham et al., 2000; van Teeffelen13

et al., 2006). Of all these proxies spatial design has received most attention,14

perhaps because habitat loss and fragmentation are the most important threat15

to biodiversity (Millennium Ecosystem Assessment, 2005) and rates of transfor-16

mation of natural habitats continue to be high. Spatial design criteria include17

size, shape, replication, contiguity, connectivity, spacing and directional align-18

ment. A proper spatial design thus buffers areas from external threats, provides19
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insurance against catastrophes, supports the regional persistence of fragmented20

populations, and promotes adjustment of species ranges in response to climate21

change.22

In recent decades, reserve design tools have evolved to move from simple23

spatial design guidelines derived from Island Biogeography or Metapopulation24

theories to the inclusion of these principles quantitatively and objectively in25

systematic conservation planning frameworks (see e.g. Williams et al. (2005)26

for a review). While the first considerations of spatial attributes included simple27

rules of adjacency when breaking ties in heuristic algorithms (Nicholls and Mar-28

gules, 1993), a broad spectrum of approaches has developed since then. These29

approaches deal with a number of alternative spatial design attributes such as30

reserve compactness (e.g. minimising a linear combination of reserve size and31

boundary length: Cabeza et al. (2003); McDonnell et al. (2002); Possingham et32

al. (2000)), planning unit contiguity (Cerdeira and Pinto, 2005; Cerdeira et al.,33

2005; Fuller et al., 2006; Önal and Briers, 2005; Önal and Wang, 2008; Shirabe,34

2005), or cohesion and proximity (e.g. minimising the maximum distance be-35

tween planning units or the sum of inter-planning unit distances: Fischer and36

Church (2003); Önal and Briers (2002); Rothley (1999)). Optimisation model-37

ing has also been used in corridor design (e.g. to minimise the amount or cost38

of land needed to provide a corridor link between each reserve and every other39

reserve: Sessions (1992); Williams (1998)).40

With the methods outlined above, the desired level of connectivity is de-41

termined subjectively, without regard to species-specific responses to habitat42

fragmentation. However, as species differ in their dispersal ability and habitat43

requirements, proximate priority areas may be necessary for some species, while44

undesirable for others. But only a reduced number of studies have looked at45

species-specific connectivity requirements in efficient reserve design (e.g. Cabeza46

(2003); Cabeza et al. (2003); Moilanen and Cabeza (2002); Nicholson et al.47

(2006)). Furthermore, this handful of studies has treated connectivity by incor-48

porating it in the objective function. This means that the goal is maximising49

occurrence and connectivity across species, which generates trade-offs that often50
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result in high connectivity for some species but null connectivity for others.51

Here we present an alternative approach. We use graphs to describe the52

dispersal pattern of each species, and consider species specific connectivity re-53

quirements explicitly as part of the model constraints, and not as part of the54

objective function. Our goal is to identify minimum sets of reserves with con-55

nected sites for each of the species, connectivity here meaning sites occurring56

within the dispersal range of the species. Note that we do not aim at a com-57

pletely connected reserve network, but instead, each species is required to be58

represented in a specified number of connected sites.59

Spatial attributes increase the complexity of the reserve network design prob-60

lem, as it often requires to be modeled as a non-linear expression. Linear expres-61

sions are preferred because linear optimisation problems have the potential to62

be solved exactly, while nonlinear problems are impossible or at least difficult63

to solve to exact optimality. Consequently non-linear expressions for spatial64

attributes are often solved with heuristic approaches. Nonetheless, some spa-65

tial attributes, such as contiguity and compactness, have been solved with both66

heuristic and exact methods (e.g. heuristic: Cabeza et al. (2003); McDonnell et67

al. (2002); exact or both: Alagador and Cerdeira (2007); Cerdeira et al. (2005);68

Önal and Wang (2008); Shirabe (2005)). Heuristics, such as greedy algorithms,69

and metaheuristics such as simulated annealing or genetic algorithms can guar-70

antee only approximate solutions. Contrastingly exact methods can in principle71

find optimal solutions, at least if allowed to run to completion. However, very72

large problems may not be soluble in reasonable amounts of time and thus73

heuristics may be preferred.74

To solve the problem we address here we present three algorithms, one heuris-75

tic and two integer cutting algorithms, that guarantee optimality, based on76

different 0-1 linear programming formulations. We apply the algorithms to sim-77

ulated data sets of varying size, to evaluate and compare the practicability of78

the approaches and the quality of the solutions produced by the heuristic.79

Section 2 starts with some basic concepts of graphs and connectivity to give80

a description of the problem. The 0-1 linear formulations and the integer cutting81
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algorithms are presented in Subsections 2.2 and 2.3. The heuristic is described82

in Subsection 2.4. We conclude Section 2 explaining how the simulated species83

distributions were generated, based on the neutral community theory. In Section84

3 we report the main computational results, and in Section 4 we discuss and85

compare the performance of the algorithms. We finish with conclusions and86

final remarks in Section 5.87

2. Material and methods88

2.1. Graphs and connectivity89

Graphs are mathematical objects suitable to describe the dispersal pattern90

of species within a given region. We refer readers to Bondy and Murty (1976)91

as a classical text book on graphs. A graph consists of a vertex set and an edge92

set, where each edge is an unordered pair of vertices. To describe the distribu-93

tion of a species s, vertices are used to represent their habitat sites, and edges94

to specify the pairs of sites between which individuals from species s can move95

directly. The graph of species s will be denoted by Gs = (Hs, Es), where Hs96

is the set of vertices, and Es the set of edges. A connected component of Gs97

is a maximal subset of vertices C such that there is a path (i.e., a sequence98

of edges with consecutive edges having a common vertex) linking any two ver-99

tices of C. Note that the connected components of Gs distinguish the different100

dispersal regions for the individuals of species s. The graph in Figure 1 has101

vertex set equal to {1, 2, · · · , 16} and two connected components: {1, 2, · · · , 9}102

and {10, 11, · · · , 16}.103

Identifying connected components is a basic problem in graphs, for which the104

following efficient (linear time) algorithm can be used. Choose any vertex, mark105

it and create a queue Q with the vertices which are adjacent to it. While Q106

is not empty, remove an arbitrary vertex v from Q, mark it and add to Q all107

unmarked vertices adjacent to v. When Q becomes empty a component has108

been identified which consists of all the marked vertices. If an unmarked vertex109
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Figure 1: A graph with 16 vertices with two connected components

exists, remove from the graph the component already identified and repeat the110

procedure.111

If S is the set of target species, H = ∪s∈SHs denotes the union of the sites112

of all target species in the area under study. Given a subset H ′ from H , we113

use H ′
s = H ′ ∩ Hs to represent the sites in H ′ where species s is represented.114

The graph with vertex set H ′
s and whose edges are all the edges of Gs which115

connect pairs of vertices in H ′
s is called the subgraph of Gs induced by H ′

s and116

is denoted by < H ′
s >.117

Suppose that a target ts is assigned to each species s, indicating the minimum118

number of sites of Hs required for the protection of the species. Any subset H ′
119

of H which contains at least ts vertices from Hs, i.e., |H ′
s| ≥ ts, is called an120

s-cover. An S-cover is an s-cover for all s in S. We say that H ′ is an s-121

connected cover if < H ′
s > (the subgraph of Gs induced by H ′

s) has a connected122

component with ts vertices. Assume that the graph represented in Figure 1123

is the graph Gs, with Hs = {1, 2, · · · , 16}, for some particular species s, and124

consider V = {1,2,3,4,5,6,10, 11,12,13}. The subgraph of Gs induced by V is the125

graph depicted in Figure 2, which has three connected components. If ts = 5,126

V is an s-cover. However, since no component includes five or more sites, it is127

not an s-connected cover128

We call H ′ an S-connected cover if it is an s-connected cover, for every s.129

Our goal is to find S-connected covers of minimum size.130
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Figure 2: The subgraph of the graph of Figure 1 induced by {1, 2, 3, 4, 5, 6, 10, 11, 12, 13}

2.2. A first model131

2.2.1. Formulation132

Determining a reserve network with a minimum number of sites that has133

at least one site for every species is the set covering problem, a basic model in134

reserve network design (Possingham et al., 1993; Underhill, 1994; Revelle and135

Williams, 2002).136

A more general model, the multicovering problem (MCP), applies when the137

representation requirement of each species s in S is enlarged to a target number138

ts ≥ 1 sites, and a minimum size S-cover is desired.139

The MCP is a well known problem in combinatorial optimisation (Hall and140

Hochbaum, 1986, 1992) and optimal solutions can be reached with integer linear141

programming techniques. To formulate the MCP as a 0-1 linear programming142

problem assign to each candidate site i of H a binary variable xi indicating143

whether site i is included in the solution (xi = 1) or not (xi = 0). The MCP144

consists of145

min
∑

i∈H

xi (1)

subject to:146

∑

i∈Hs

xi ≥ ts s ∈ S, (2)

147

xi ∈ {0, 1} i ∈ H. (3)
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If X is the set of sites in the solution, i.e., X = {i ∈ H : xi = 1}, each148

inequality (2) ensures that Xs = X ∩ Hs is an s-cover. The objective function149

(1) seeks that the S-cover X has minimum size.150

The MCP is a difficult problem (NP-hard, see Garey and Johnson (1979))151

but modern software can obtain optimal solutions for reasonably large instances152

(say a few thousand sites in H and some hundreds of species in S), in a few153

CPU seconds.154

Typical MCP approaches result in a set of scattered sites. To ensure that the155

S-covers from the MCP are S-connected, constraints have to be added. These156

additional constraints can be derived from the following simple observation.157

Suppose K is a subset of sites such that no S-connected cover can be found in158

H \K. Then, obviously every S-connected cover includes at least one site from159

K. Hence, and since a set of sites includes an S-connected cover if and only if160

it is also itself an S-connected cover, every inequality161

∑

i∈K

xi ≥ 1 K ⊂ H : H \ K is not an S-connected cover, (4)

is valid (i.e., satisfied by every S-connected cover), and together with (1),(2),(3)162

gives a 0-1 linear formulation for the minimum S-connected cover problem.163

2.2.2. Algorithm164

The large number of inequalities (4) heavily constrains the possibility of an165

integer linear programming (ILP) approach to deal with formulation (1),(2),(3),(4),166

even for problems of small dimensions.167

To overcome this difficulty we developed an integer cutting algorithm. The168

algorithm starts by solving the MCP (1),(2),(3). If the S-cover X = {i ∈ H :169

xi = 1} is S-connected, then X is an optimal S-connected cover and nothing170

more has to be done. Otherwise, consider the constraint (4) with K = H \X =171

{i ∈ H : xi = 0}, which is violated by the current solution x. If this constraint172

is added to the model, the next iteration either returns an optimal S-connected173

cover, or else identifies an inequality (4), which can be added to the model to174

eliminate the current solution from further consideration. This procedure can175
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be repeated until an S-connected cover is reached. Nevertheless, the number176

of constraints to be added until an S-connected cover is determined may make177

this procedure impractical. To accelerate the procedure we can work out the178

constraints according to the polyhedral combinatorics theory (see, for example,179

Pulleyblank (1983) or Schrijver (1995)). The same reasoning was used, in a180

similar context, by Cerdeira et al. (2005) to develop an integer cutting algorithm181

to identify the minimum number of sites satisfying the species representation182

targets in a unique connected component.183

The key idea is to distinguish among the inequalities (4) those which are184

facet defining, from those which are implied by some other valid inequalities. If185

the algorithm determines an S-cover which is not S-connected, the inequality186

(4), with K = {i ∈ H : xi = 0}, is violated by the current solution x. If the187

inequality is facet defining, it is a suitable cut to be added to the current model,188

and the algorithm proceeds to find a new S-cover. If the inequality is not facet189

defining, then some stronger inequalities exist that can cut more deeply the set190

of solutions of the current model, without violating any feasible solution. (We191

refer the reader to Cerdeira et al. (2005) for an explanation of facets and cuts192

in this context.) To ilustrate this, consider a valid inequality (4) and suppose193

that for a given k in K, no S-connected cover exists in (H \ K) ∪ {k}. Then,194

since every S-connected cover has to include at least one site from K different195

from k,
∑

i∈K\{k} xi ≥ 1 is a valid inequality which clearly implies, and is not196

implied by
∑

i∈K
xi ≥ 1, showing the latter is not facet defining.197

The formulation (1), (2), (3), (4) is a particular case of a more general model198

for which Balas and Ng (1989) established the conditions for any valid inequality199

with coefficients 0 or 1 to be facet defining. (For technical reasons we assume200

that, for every site h in H , H \ {h} is an S-connected cover.) Their result allow201

us to conclude that a valid inequality (4) is facet defining if and only if202

a) for every k in K, (H \ K) ∪ {k} is an S-connected cover, and203

b) for every h in H \ K there is a site k in K such that ((H \ K) \ {h}) ∪ {k}204

is an S-connected cover.205
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Condition a) states that K is a minimal set (with respect to inclusion) for206

which the inequality (4) is valid, i.e., if K ′ is any proper subset of K,
∑

i∈K′ xi ≥207

1 is not valid. Above we showed that this condition is necessary for (4) to be208

facet defining.209

To show that b) is also necessary, suppose that b) fails for some h in H \K,210

i.e., whenever h is not selected, there is no S-connected cover that includes only211

one site of K. Hence, the inequality212

xh +
∑

i∈K

xi ≥ 2 (5)

is valid, as it states that if h is not selected (i.e., xh = 0) at least two sites from213

K are needed to get an S-connected cover. Clearly, it is stronger than (4).214

The constraint (5) belongs to the general type of inequalities215

∑

i∈V

xi ≥ 2. (6)

From the work of Balas and Ng (1989) it can also be derived when a valid216

inequality (6) is facet defining. To state the result we first introduce the 2-cover217

graph GV associated to (6), which has vertex set V and an edge joining vertices218

v and u if and only if (H \V )∪{v, u} is an S-connected cover. It follows from a219

result in Balas and Ng (1989) that a valid inequality (6) is facet defining if and220

only if221

c) for every h in H \V there is a pair v, u in V such that ((H \V )\{h})∪{v, u}222

is an S-connected cover, and223

d) no connected component of graph GV is bipartite.224

A graph is bipartite if the vertices can be partitioned into two disjoint subsets225

A and B such that each edge connects a vertex from A to one from B.226

When each of these conditions fails we can derive valid inequalities that227

imply (6).228

If c) fails for some site h in H \ V , then229

xh +
∑

i∈V

xi ≥ 3, (7)
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is valid. It expresses that any S-connected cover that does not includes h (i.e.,230

xh = 0) has at least three sites from V .231

Suppose there is a bipartite component of GV with bipartition A and B.232

Then both inequalities233

1.5
∑

i∈V \(A∪B) xi +
∑

i∈A
xi + 2

∑
i∈B

xi ≥ 3

1.5
∑

i∈V \(A∪B) xi + 2
∑

i∈A
xi +

∑
i∈B

xi ≥ 3

(8)

are valid, and their sum equals three times (6). These inequalities state that no234

S-connected cover exists with two or less sites from V if these sites are either235

from A, or from B.236

The integer cutting algorithm incorporates these polyhedral results.237

In each step the current S-cover X = {i ∈ H : xi = 1} is tested to see if238

it is S-connected. If it fails, a set K, for which (4) is valid and that satisfies239

condition a), is identified. This is achieved with the following procedure. First,240

K is defined as K = H\X . Next, for each species s, Ks is set to be Ks = K∩Hs,241

and Hs \ Ks is tested to see if it is an s-connected cover. If it is s-connected,242

set K is not modified and a new species s is considered. Otherwise, while there243

is a site k in Ks for which (Hs \ Ks) ∪ {k} is not an s-connected cover, Ks is244

updated accordingly to Ks = Ks \{k}. When Ks is such that for every k in Ks,245

(Hs \ Ks) ∪ {k} is an s-connected cover, set K is modified to become K = Ks,246

and the procedure continues with a new species s.247

When all species have been considered, either X is an (minimum) S-connected248

cover, or else the resulting set K is such that the corresponding inequality (4)249

is valid, and verifies a).250

If X is not an S-connected cover, the algorithm proceeds checking condition251

b) as follows. Take a site h of H \ K, and let Kh be initialized with Kh = K.252

For each species s such that h ∈ Hs, Kh is updated by removing those sites k for253

which ((Hs \ K) \ {h}) ∪ {k} is not an s-connected cover. If Kh = ∅, condition254

b) fails, and inequality (5) holds. Otherwise, the procedure will continue with255

a new site h of H \K. At the end either some h is found for which b) fails and256
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(5) holds, or else the inequality (4) is facet defining and is added to the current257

model, and the algorithm proceeds finding a new S-cover.258

In the case condition b) fails, (5) is a valid inequality. To check whether it259

is facet defining the 2-cover graph associated to (5) is defined. Note that in this260

graph site h is adjacent to every site of K. Therefore, the graph is bipartite261

if and only if there are no edges linking pairs of sites in K. Let set EK be262

initialized with EK := {[u, v] : u 6= v ∈ K}, i.e., all the unordered pairs of263

different sites in K. For each species s such that h ∈ Hs, EK is updated by264

removing those pairs of sites [u, v] for which ((Hs \K) \ {h})∪ {u, v}s is not an265

s-connected cover. If EK = ∅, the 2-cover graph is bipartite, condition d) fails,266

and the inequality267

2xh +
∑

i∈K

xi ≥ 3 (9)

is valid. Actually, for this particular case (9) is the first inequality in (8) which268

implies the second one.269

At the end of this procedure, either (9), which is stronger than (5), is added270

to the current model and the algorithm proceeds seeking a new S-cover, or else271

V := K ∪ {h} is defined and condition c) is examined.272

To check c) we used the (non-bipartite) 2-cover graph GV whose edge set273

(EK together with [h, u], for every u in K) has just been determined.274

Take a site h of H \V , and let Eh be initialized with every edge of the 2-cover275

graph GV . For each species s such that h ∈ Hs, Eh is updated by removing276

those edges [u, v] for which ((Hs \ V ) \ {h}) ∪ {u, v}s is not an s-connected277

cover. If Eh = ∅, condition c) fails, and inequality (7) is valid. Otherwise, the278

procedure will continue with a new site h of H \ V . At the end either some279

h is found for which c) fails and (7) holds, or else the inequality (6) is facet280

defining. Accordingly, inequality (7) or (6) is added to the current model, and281

the algorithm proceeds to find a new S-cover.282

This integer cutting algorithm, that will be referred to as IC, makes no use283

of the fact that, for every species s, there has to be a connected component of284

Gs with ts sites selected. Next we present a formulation that takes this into285
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account.286

2.3. A specialized model287

2.3.1. Formulation288

In this formulation additional variables Y s
C

associated with each connected289

component C of the graph Gs of species s are considered.290

Variables Y s
C

are used to ensure that the ts sites required by the s-cover291

inequalities (2) belong to the same component of Gs. This can be achieved with292

∑

i∈C

xi ≥ tsY
s

C C ∈ Cs, s ∈ S, (10)

293 ∑

C∈Cs

Y s

C = 1 s ∈ S, (11)

294

Y s

C ∈ {0, 1} C ∈ Cs, s ∈ S, (12)

where Cs denotes the set of connected components of Gs.295

Conditions (10), (11), (12) constrain X = {i : xi = 1} to be an s-cover with296

ts sites in the component C for which Y s
C

= 1.297

To ensure that the s-cover X is s-connected the following inequalities are298

added299

∑

i∈K

xi ≥ Y s

C K ⊂ C ∈ Cs :< C \K > has no component with ts sites, s ∈ S.

(13)

Constraints (13), together with (10), (11) and (12), state that for C such that300

Y s
C

= 1, the subgraph induced by X ∩ C includes a connected component with301

ts sites.302

Hence, finding a minimum size S-connected cover consists of (1) subject to303

(3), (10), (11), (12), (13). We call this formulation the specialized model.304

Compared with the formulation (1), (2), (3), (4), the specialized model ex-305

hibits a feature which is very convenient for algorithmic proposes. The starting306

point for the integer cutting procedure, which is the outcome of (1) subject307

to (3), (10), (11), (12), is “closer” to an optimal S-connected cover than the308

S-cover resulting from (1), (2), (3). More precisely, the lower bounds on the309
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minimum sizes of S-connected covers obtained from the specialized model with-310

out the connectivity constraints (13) are likely to be significantly larger than311

those resulting from dropping the connectivity constraints (4) in the first for-312

mulation.313

2.3.2. Algorithm314

The algorithm, although being less involved, is similar to the algorithm IC315

designed for the model described in Section 2.2.316

First, the problem (1), (3), (10), (11), (12) is solved to produce an initial317

S-cover X = {i ∈ H : xi = 1}.318

The algorithm proceeds checking, for each species s, if there is a connected319

component C′ of Gs such that the subgraph induced by X ∩ C′ includes a320

component with ts sites. When this happens X is an s-connected cover, and321

a new species s is considered. Otherwise, a set K is identified for which the322

inequality (13) is valid, and minimal for inclusion. Set K is initialized with323

K = C \X , where C is the component marked by Y s
C

= 1, and it is sequentially324

updated deleting from K some site k such that for K := K\{k} every connected325

component of the subgraph < C \K > has less than ts sites. At the end of this326

process K is such that (13) is valid, and K is minimal in the sense that, for327

every k in K, some component of the subgraph induced by (C \ K) ∪ {k} has328

at least ts sites.329

After considering all species, either X is an (minimum) S-connected cover330

and nothing more has to be done, or else the valid connectivity inequalities (13)331

previously determined are included in the current model and a new S-cover is332

obtained.333

We call this algorithm the sIC (specialized integer cutting).334

2.4. Heuristic approach335

We have also devised a heuristic for seeking minimum S-connected covers.336

The heuristic makes use of the following procedure to turn an arbitrary S-337

connected cover X into a minimal one. First, every site of X is marked as338
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non-considered. Then, some non-considered site i of X is selected. If X \ {i} is339

still an S-connected cover, X is updated with X := X \ {i}. Otherwise, site i is340

marked as considered. When all sites in X have been considered, X is minimal.341

In the implementation of this minimal procedure site i is selected with a342

probability inversely proportional to its richness (number of species in i) among343

the non-considered sites of the current X .344

The heuristic, that we will refer to as GH, is a genetic type algorithm. Ge-345

netic algorithms (Mühlenbein, 1997) start with an initial population of p feasible346

solutions which are mated to produce children (i.e., other feasible solutions) that347

inherit properties of their parents. The next generation will consist of elements348

selected among those from the previous generation and their children.349

To create each individual of the initial population, for each species s a set Is350

is initialized with a randomly selected site among the sites of the components351

of Gs with at least ts sites. While |Is| < ts, the set Is is successively enlarged352

adding a randomly selected site adjacent to some site in Is. When all Is are353

defined, the minimal procedure turns X = ∪sIs into a minimal S-connected354

cover to became one of the p members of the initial population.355

To form a child-bearing couple (F, M), F is selected among the members356

of the population with a probability inversely proportional to its size. Thus,357

better S-connected covers are likely to be chosen. The mate M is selected in358

the same way among the members of the population different from F .359

The couple (F, M) generates an offspring O which is the outcome of the360

minimal procedure on the input X = F ∪M . The algorithm counts the number361

of existing replicates of O among the current population, and among the children362

already created. If this number exceeds a given value r, the child is rejected363

and is replaced by an S-connected cover obtained in the same way as each364

individual of the initial population. The rational for this is to avoid excessive365

consanguinity that could lead the algorithm to get stuck in a population with366

only a few different individuals.367

Each new generation is formed by the p individuals, from among the previous368

generation and their offspring, which have the lowest number of sites.369
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The number of generations is used as the stopping criterion.370

For the computational tests reported in Section 3, the following specifications371

of the algorithm were used. We defined p = 100 to be the size of the initial372

population, which is also the number of individuals in each new generation. The373

number of child-bearing couples is 50, which is half the size of the population.374

Therefore, each new generation consists of the 100 elements with the lowest375

number of sites, among the 100 individuals of the previous generation and the376

50 offspring generated. We set r = 10 to be the upper bound on the number of377

replicates allowed of each new child. We set the number of generations, which378

is the stopping criterion, equal to 100. Thus, the algorithm stops at iteration379

100, producing a list of 100, possibly not all distinct, S-connected covers.380

2.5. Simulating species distributions381

To compare the algorithms and test the limits of their computational prac-382

ticability we generated virtual species distributions following the assumptions383

of neutral community models.384

Neutral community models are stochastic processes meant to explain, at least385

in part, the patterns of distribution, abundance and diversity of ecological com-386

munities. These models assume that all individuals have identical demographic387

properties (Bell, 2001; Chave et al., 2002; Hubbell, 2001).388

We implemented a neutral model in which individuals from a pool of 1000389

species are distributed over 2500 sites, where each site is a cell from a 50 × 50390

grid. At each iteration, and in each site:391

(i) a single individual of each species is added to the community with proba-392

bility m = 0.001;393

(ii) each resident individual gives birth with probability b = 0.5 and dies with394

probability d = 0.5;395

(iii) with probability u = 0.01 each newborn moves to a random adjacent site396

and continues to move until the criterion fails, and it settles in the site to397

which it moved last;398
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(iv) if the number of individuals in the community exceeds K = 100000, excess399

individuals are removed at random.400

We started with 1000 individuals from each species in every site, and stopped401

after 5000 iterations have been performed.402

From the outcome of this procedure we produced several data sets for the403

computational experiments we carried out. This was done by randomly select-404

ing, for different values of n, an n×n square from the 50× 50 grid, and subsets405

S of 50, 100 and 150 species among the species represented on that square. We406

then consider the species of S ordered by nondecreasing degrees of representa-407

tion, and call the first 25% rare and the remaining 75% common. Representation408

targets ts = 1 are assigned to every common species s, and ts equal to 3, 5 and409

10, for each rare species s of S. Whenever Gs has no connected components410

with ts sites, then ts is set to be equal to the maximum component size. Ten411

instances were created for the same values of n, |S| and ts. This gives a total412

of 90 instances with the same value of n.413

We considered all species to have an equal level of dispersal in every instance,414

and assume that species s can move directly between sites u and v from its415

habitat sites Hs (i.e. [u, v] is an edge of graph Gs) if and only if u and v have416

a common edge or corner in the n × n grid. This allows the identification of417

the connected components of each species directly in the grid, as the adjacency418

relation describing the species s dispersal is the neighbourhood relation of sites419

of Hs in the n × n grid.420

3. Results421

We performed computational tests to assess and compare the practicality422

of the integer cutting algorithms IC and sIC, as well as the quality of the S-423

connected covers determined by the heuristic GH.424

The results reported here were obtained using an Intel Pentium IV, 2.8 GHz425

with 504 MB RAM. The integer programming solver used was CPLEX 9.0.0.426

17



With respect to the running times, both algorithms IC and sIC succeeded427

in finding optimal S-connected covers in less than 60 CPU seconds for n = 15.428

While, the integer cutting algorithm IC of Subsection 2.2 took an average of 7429

CPU time seconds, the algorithm for the specialized model only once took more430

than 1 second (1.3 sec).431

Table 1 reports information on the running times of the algorithms IC and432

sIC on instances where n = 20.433

|S| ts < 15 sec. 15 − 60 sec. 1 − 30 min. 30 − 60 min. not solved

IC sIC IC sIC IC sIC IC sIC IC sIC

50 3 0 10 0 0 6 0 1 0 3 0

5 0 8 1 2 4 0 0 0 5 0

10 3 7 0 0 2 2 1 0 4 1

100 3 0 4 0 4 0 2 0 0 10 0

5 0 5 0 2 0 3 0 0 10 0

10 0 6 0 2 5 1 1 0 4 1

150 3 0 0 0 2 0 8 0 0 10 0

5 0 3 0 1 0 5 0 0 10 1

10 0 7 2 1 2 0 1 1 5 1

Table 1: Running times of the algorithms IC and sIC on 20 × 20 cells instances.

The first two columns refer to the number of species |S| and the representa-434

tions target ts for each of the 10 instances considered in each row. The columns435

not solved indicate, for each algorithm, the number of instances for which com-436

putations were not finished at the end of 1 hour CPU time. The other columns437

report the number of instances for which solutions were found within the time438

indicated in the first row of the corresponding column. The four instances for439

which the sIC algorithm did not succeed in finding minimum S-connected cov-440

ers, were not solved either within 1 hour by the algorithm design for the first441

model.442

When we increased the size of the n × n grid to values of n ≥ 25, the443
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algorithm IC, based on the initial model, was incapable of solving any instance444

in less than 1 CPU hour.445

For n = 25 the algorithm working on the specialized model also did not solve446

34 of the 90 instances within 1 hour. However, 30 instances were solved within447

no more than 1 CPU minute, and 22 more in less than 30 minutes.448

With n = 30 no instance with 150 species was solved in less than 1 hour,449

and only for those instances with 50 species minimum S-connected covers were450

found within 1 minute.451

Information about the running times of the algorithm for the specialized452

model for n = 25 and n = 30 is given in Appendix A tables S1 and S2, respec-453

tively.454

For n = 15, except in one case, the list produced by the genetic heuristic on455

each of the 90 instances included minimum size S-connected covers. The time456

spent on the longest run was about 2.6 seconds. The heuristic did not find any457

optimal solution in an instance with |S| = 50 species and representation target458

ts = 3. However, among the 100 solutions produced by the heuristic, 86 distinct459

S-connected covers with 31 sites were found when 30 sites is known to be the460

minimum size.461

Two measures were used to assess the quality of the solutions obtained by462

the GH algorithm on larger instances. Let O and H be the sizes of a minimum463

S-connected cover and of the best solutions produced by the GH heuristic,464

respectively. The measures are:465

#opt - the number of instances for which H and O coincide, and466

mre - the mean relative error, defined as the mean of the ratios H−O

O
,467

with respect to the 10 instances having the same values of n, |S| and ts.468

In several instances with n ≥ 20, the algorithms IC and sIC did not succeed469

in identifying S-connected covers before the computations were interrupted, at470

the end of the pre-established CPU time limit of 1 hour. Hence, we are not sure471

about the true values of O. In those cases the value of O used to calculate #opt472

and mre is the size of the (unconnected) S-cover of the last iteration of the sIC473
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algorithm based on the specialized model. In such situations, the values of #opt474

and mre may lead to a pessimist judgment of the accuracy of the heuristic in475

finding good solutions.476

The values of #opt and mre for the instances with n = 20, n = 25 and n = 30477

are presented in Table 2. The CPU times varied between 3 and 34 seconds. The478

table does not include the values of the instances for which n = 30 and |S| = 150.479

For several of these instances, 1 hour was not sufficient for CPLEX to identify480

the initial S-cover that minimises (1) subject to (3), (10), (11), (12), and we481

have no alternative reliable lower bounds on the true values of O to evaluate,482

in a minimally credible way, the performance of the heuristic.483

|S| ts mre #opt mre #opt mre #opt

50 3 0.022 6 0.119 7 0.053 3

5 0.002 9 0.039 3 0.057 3

10 0.001 9 0.005 8 0.037 2

100 3 0.023 5 0.054 2 0.090 1

5 0.012 5 0.039 4 0.079 0

10 0.003 6 0.018 0 0.086 0

150 3 0.022 4 0.079 0 – –

5 0.021 2 0.074 0 – –

10 0.003 4 0.033 0 – –

n = 20 n = 25 n = 30

Table 2: Values of #opt and mre for the instances with 20 × 20, 25 × 25 and 30 × 30 cells.

4. Discussion484

The sIC algorithm based on the specialized model (1), (3), (10), (11), (12),485

(13), with more variables, is clearly better than the approach for the first for-486

mulation (1), (2), (3), (4). The ability to produce lower bounds on the sizes of487

the optimal S-connected covers significantly larger than those obtained using488
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the first formulation, is decisive for the superiority of the sIC algorithm. This489

is a consequence of the requirement incorporated in the specialized model forc-490

ing, for each species s, the existence of a connected component with ts sites in491

every intermediate S-cover. As a result, the initial S-covers obtained with the492

specialized model are much “closer” to the optimal S-connected covers than the493

minimum S-cover solutions of (1), (2), (3). (See in Figure S2 of Appendix B the494

initial S-covers produced by algorithms IC and sIC in an instance with n = 25,495

|S| = 100 and ts = 5.)496

Whilst the use of the IC algorithm appears to be limited to instances with497

400 = 20 × 20 sites, the bounds for the practicability of the sIC algorithm are498

instances consisting of 625 = 25× 25 to 900 = 30× 30 sites, and approximately499

50 species, sizes that can be considered quite reasonable for seeking guaranteed500

optimality for such an involved problem.501

The genetic heuristic approach largely surpasses these limitations (it took502

139.9 seconds to run on the entire 2500 = 50 × 50 cells grid, with |S| = 150,503

ts = 10), at the cost of guaranteed optimality. The computations of the GH504

algorithm are dominated by the minimal procedure designed to turn minimal505

(with respect to inclusion) any given S-connected cover X . Each execution506

entails, for each site i ∈ X and each species s, with i ∈ Hs, defining the507

connected components of the graph < (X \ {i})′s >. To identify connected508

components we used the (linear time) approach described in Subsection 2.1,509

which is therefore called a number of times of order |S||X | in each execution of510

the minimal procedure. The minimal procedure is used whenever a new child511

is generated, and when creating each member of the initial population. Thus,512

it is executed a number of times which is the order of the size of the initial513

population plus the number of offspring in each generation multiplied by the514

number of generations. This gives 100+50×100 = 5100 in our implementation.515

Nevertheless, the GH heuristic is revealed to be capable of finding good solu-516

tions with no excessive computational weight. On average, for the 240 instances517

for which the mre values were calculated, the sizes of the S-connected covers518

produced by the GH algorithm do not exceed 4% of the optimal sizes. Actually,519
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the rate of 4% undervalues the quality of the solutions obtained, since the lower520

bounds used to estimate O in expression mre are likely to be considerably lower521

than the sizes of the corresponding minimum S-connected covers.522

5. Conclusion and final remarks523

We have presented three algorithms to solve a reserve design problem that524

has been overlooked to date. Two integer cutting algorithms, that guarantee525

optimality, and a genetic heuristic. Of the two integer cutting algorithms, the526

specialized formulation is superior, being able to find solutions for most of the527

instances assessed and in faster computational times. Nonetheless, both al-528

gorithms have limitations regarding the magnitude of the instances for which529

solutions can be found. It is unlikely that the most efficient of the two algo-530

rithms is able to handle instances with more than 900 sites and more than 50531

species. The heuristic algorithm surpasses these limitations. An instance with532

2500 sites and 50 species was run in less than 2.5 CPU minutes. Despite run-533

ning reasonably quickly, the solutions obtained are of good quality. Only in one534

case, among 240 instances, was the size of the solution produced by the heuristic535

larger 10% by of the minimum size.536

We have considered that all sites are equally relevant, i.e., all variables xi537

have a coefficient equal to 1 in the objective function. However, in some situa-538

tions it may be desirable to distinguish between different reserve networks with539

the same number of sites (Rodrigues et al., 2000), for example those of differing540

total area (where sites vary in size) or monetary value. In this case the objective541

function (1) is replaced by542

min
∑

i∈H

cixi (14)

where ci is the cost (area, monetary value, or some other adequate measure) of543

site i.544

With respect to the integer cutting algorithms, this modification introduces545

nothing more than giving the objective function (14) instead of (1) to the integer546

programming solver.547
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The heuristic can also be easily be modified to handle (14) instead of (1).548

In the minimal procedure, site i could be selected, among the sites in X , with549

probability directly proportional to ci. This will make sites with larger costs550

more likely to be eliminated from the resulting minimal S-connected covers. In551

addition, the selection of child-bearing couples, and the members of each new552

generation should be made according to their costs instead of their sizes.553

It may also be relevant, for conservation purposes, to require the representa-554

tion of more than one population (or metapopulation) of certain species. This555

means that instead of requiring for species s only one connected component with556

ts sites, it may be desirable that the S-connected covers have ns > 1 different557

components, each with at least ts. It is not at all obvious how to incorporate this558

generalization in the 0-1 formulations of Section 2. However, it is straightfor-559

ward to have the genetic heuristic working on this generalization. It amounts to560

generalizing the concept of the S-connected cover to incorporate the additional561

requisites.562

The heuristic can also accommodate other realistic assumptions, such as the563

need for inclusion of a certain number of sites with specific functional purposes564

(e.g. breading, shelter and feeding grounds) for each species.565

In every instance, we have assumed equal targets and equal dispersal dis-566

tances for all species. These could be variable, without compromising the per-567

formance of the algorithms. However, we realise that for practical conservation,568

the difficulties are in setting meaningful targets and, in many cases, assessing569

the dispersal capabilities for a large number of species. Nonetheless, reserve570

designs that consider species specific connectivities should be encouraged, and571

here we provide some tools to achieve such designs572
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A. Running times of the sIC algorithms684

|S| ts < 15 15 − 60 1 − 30 30 − 60 not

sec. sec. min. min. solved

50 3 5 5 0 0 0

5 5 3 2 0 0

10 4 2 3 0 1

100 3 0 3 5 2 0

5 0 1 6 2 1

10 0 1 2 0 7

150 3 0 0 0 0 10

5 0 0 0 0 10

10 0 1 4 0 5

Table S1: Running times of the sIC algorithm on 25 × 25 cells instances.
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|S| ts < 15 15 − 60 1 − 30 30 − 60 not

sec. sec. min. min. solved

50 3 6 1 3 0 0

5 3 6 0 0 1

10 3 0 5 0 2

100 3 0 0 3 1 6

5 0 0 0 2 8

10 0 0 0 0 10

150 3 0 0 0 0 10

5 0 0 0 0 10

10 0 0 0 0 10

Table S2: Running times of the sIC algorithm on 30 × 30 cells instances.

B. Results of an instance with n = 25, |S| = 100 and ts = 5685

Here we give some results obtained with an instance I with 625 = 25 × 25686

sites, the number of species |S| = 100 and target representations ts = 5 for rare687

species.688

A minimum size S-connected cover, consisting of 51 sites, is depicted in689

Figure S1.690

The initial S-covers produced by the algorithms IC and sIC are presented691

in Figure S2a) and b), respectively.692

The best S-connected covers obtained by the heuristic GH have 53 sites.693

One of these solutions is depicted in Figure S3.694
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Figure S1: A 51 sites minimum size S-connected cover for instance I.

a) b)

Figure S2: a) The initial 25 sites minimum size S-cover obtained with the IC algorithm, and

b) The initial 48 sites S-cover obtained with the sIC algorithm, on instance I.
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Figure S3: A 53 sites S-connected cover obtained by the heuristic GH on instance I.
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