Species specific connectivity in reserve-network design using graphs

J. Orestes Cerdeira* ${ }^{* 1}$, Leonor S. Pinto ${ }^{2}$, Mar Cabeza ${ }^{3}$, Kevin J. Gaston ${ }^{4}$

Abstract

Systematic conservation planning applications based solely on the presence/absence of a large number of species are not sufficient to guarantee their persistence in highly fragmented landscapes. Recent developments have thus incorporated much desired spatial design considerations, and reserve-network connectivity has received increased attention. Nonetheless, connectivity is often determined without regard to species-specific responses to habitat fragmentation. But species differ in their dispersal ability and habitat requirements, making proximate priority areas necessary for some species, while undesirable for others. We present a novel approach that incorporates species-specific connectivity needs in reserve-network design. Importantly, our method differs from previous approaches in that connectivity is not part of the objective function, but part of the constraints, thus avoiding typical undesirable trade-offs that may result in high connectivity for some species but null connectivity for others. We use graphs to describe the dispersal pattern of each species and our goal is to iden-

[^0]tify minimum sets of reserves with connected sites for each of the species. This is not a trivial problem and we present three algorithms, one heuristic and two integer cutting algorithms that guarantee optimality, based on different 0-1 linear programming formulations. Applications to simulated data show that one of the algorithms that guarantee optimality is superior to the other, although both have limited application due to the number of sites and species they can manage. Remarkably, the heuristic can obtain very satisfactory solutions in short computational times, surpassing the limitations of the exact algorithms. Key words: Reserve selection, systematic conservation planning, graphs, connectivity, algorithms, integer programming

1. Introduction

Systematic conservation planning is the process of using quantitative data to identify locations for conservation investment. It typically aims at maximising the number of species contained in selected units given a set of constraints. Such applications are often based solely on the presence/absence of a large number of species. However the ultimate goal of conservation is not to maximise current species occurrences but to maximise persistence of biodiversity (Cabeza and Moilanen, 2001; Cabeza and van Teeffelen, 2009; Pressey et al., 2007).

Aiming at maximising persistence is not a trivial task and consequently proxies for persistence are often used. These include maximising species abundances (Rodrigues et al., 2000), incorporating measures of site vulnerability (Wilson et al., 2005) and promoting spatial designs that minimise the impacts of habitat fragmentation (Cabeza et al., 2003; Possingham et al., 2000; van Teeffelen et al., 2006). Of all these proxies spatial design has received most attention, perhaps because habitat loss and fragmentation are the most important threat to biodiversity (Millennium Ecosystem Assessment, 2005) and rates of transformation of natural habitats continue to be high. Spatial design criteria include size, shape, replication, contiguity, connectivity, spacing and directional alignment. A proper spatial design thus buffers areas from external threats, provides
insurance against catastrophes, supports the regional persistence of fragmented populations, and promotes adjustment of species ranges in response to climate change.

In recent decades, reserve design tools have evolved to move from simple spatial design guidelines derived from Island Biogeography or Metapopulation theories to the inclusion of these principles quantitatively and objectively in systematic conservation planning frameworks (see e.g. Williams et al. (2005) for a review). While the first considerations of spatial attributes included simple rules of adjacency when breaking ties in heuristic algorithms (Nicholls and Margules, 1993), a broad spectrum of approaches has developed since then. These approaches deal with a number of alternative spatial design attributes such as reserve compactness (e.g. minimising a linear combination of reserve size and boundary length: Cabeza et al. (2003); McDonnell et al. (2002); Possingham et al. (2000)), planning unit contiguity (Cerdeira and Pinto, 2005; Cerdeira et al., 2005; Fuller et al., 2006; Önal and Briers, 2005; Önal and Wang, 2008; Shirabe, 2005), or cohesion and proximity (e.g. minimising the maximum distance between planning units or the sum of inter-planning unit distances: Fischer and Church (2003); Önal and Briers (2002); Rothley (1999)). Optimisation modeling has also been used in corridor design (e.g. to minimise the amount or cost of land needed to provide a corridor link between each reserve and every other reserve: Sessions (1992); Williams (1998)).

With the methods outlined above, the desired level of connectivity is determined subjectively, without regard to species-specific responses to habitat fragmentation. However, as species differ in their dispersal ability and habitat requirements, proximate priority areas may be necessary for some species, while undesirable for others. But only a reduced number of studies have looked at species-specific connectivity requirements in efficient reserve design (e.g. Cabeza (2003); Cabeza et al. (2003); Moilanen and Cabeza (2002); Nicholson et al. (2006)). Furthermore, this handful of studies has treated connectivity by incorporating it in the objective function. This means that the goal is maximising occurrence and connectivity across species, which generates trade-offs that often

1 result in high connectivity for some species but null connectivity for others.
Here we present an alternative approach. We use graphs to describe the dispersal pattern of each species, and consider species specific connectivity requirements explicitly as part of the model constraints, and not as part of the objective function. Our goal is to identify minimum sets of reserves with connected sites for each of the species, connectivity here meaning sites occurring within the dispersal range of the species. Note that we do not aim at a completely connected reserve network, but instead, each species is required to be represented in a specified number of connected sites.

Spatial attributes increase the complexity of the reserve network design problem, as it often requires to be modeled as a non-linear expression. Linear expressions are preferred because linear optimisation problems have the potential to be solved exactly, while nonlinear problems are impossible or at least difficult to solve to exact optimality. Consequently non-linear expressions for spatial attributes are often solved with heuristic approaches. Nonetheless, some spatial attributes, such as contiguity and compactness, have been solved with both heuristic and exact methods (e.g. heuristic: Cabeza et al. (2003); McDonnell et al. (2002); exact or both: Alagador and Cerdeira (2007); Cerdeira et al. (2005); Önal and Wang (2008); Shirabe (2005)). Heuristics, such as greedy algorithms, and metaheuristics such as simulated annealing or genetic algorithms can guarantee only approximate solutions. Contrastingly exact methods can in principle find optimal solutions, at least if allowed to run to completion. However, very large problems may not be soluble in reasonable amounts of time and thus heuristics may be preferred.

To solve the problem we address here we present three algorithms, one heuristic and two integer cutting algorithms, that guarantee optimality, based on different 0-1 linear programming formulations. We apply the algorithms to simulated data sets of varying size, to evaluate and compare the practicability of the approaches and the quality of the solutions produced by the heuristic.

Section 2 starts with some basic concepts of graphs and connectivity to give a description of the problem. The 0-1 linear formulations and the integer cutting
${ }_{87}$ final remarks in Section 5.

2. Material and methods

2.1. Graphs and connectivity

Graphs are mathematical objects suitable to describe the dispersal pattern of species within a given region. We refer readers to Bondy and Murty (1976) as a classical text book on graphs. A graph consists of a vertex set and an edge set, where each edge is an unordered pair of vertices. To describe the distribution of a species s, vertices are used to represent their habitat sites, and edges to specify the pairs of sites between which individuals from species s can move directly. The graph of species s will be denoted by $G_{s}=\left(H_{s}, E_{s}\right)$, where H_{s} is the set of vertices, and E_{s} the set of edges. A connected component of G_{s} is a maximal subset of vertices C such that there is a path (i.e., a sequence of edges with consecutive edges having a common vertex) linking any two vertices of C. Note that the connected components of G_{s} distinguish the different dispersal regions for the individuals of species s. The graph in Figure 1 has vertex set equal to $\{1,2, \cdots, 16\}$ and two connected components: $\{1,2, \cdots, 9\}$ and $\{10,11, \cdots, 16\}$.

Identifying connected components is a basic problem in graphs, for which the following efficient (linear time) algorithm can be used. Choose any vertex, mark it and create a queue Q with the vertices which are adjacent to it. While Q is not empty, remove an arbitrary vertex v from Q, mark it and add to Q all unmarked vertices adjacent to v. When Q becomes empty a component has been identified which consists of all the marked vertices. If an unmarked vertex

Figure 1: A graph with 16 vertices with two connected components

110 exists, remove from the graph the component already identified and repeat the 111 procedure.

We call H^{\prime} an S-connected cover if it is an s-connected cover, for every s.
If S is the set of target species, $H=\cup_{s \in S} H_{s}$ denotes the union of the sites of all target species in the area under study. Given a subset H^{\prime} from H, we use $H_{s}^{\prime}=H^{\prime} \cap H_{s}$ to represent the sites in H^{\prime} where species s is represented. The graph with vertex set H_{s}^{\prime} and whose edges are all the edges of G_{s} which connect pairs of vertices in H_{s}^{\prime} is called the subgraph of G_{s} induced by H_{s}^{\prime} and is denoted by $<H_{s}^{\prime}>$.

Suppose that a target t_{s} is assigned to each species s, indicating the minimum number of sites of H_{s} required for the protection of the species. Any subset H^{\prime} of H which contains at least t_{s} vertices from H_{s}, i.e., $\left|H_{s}^{\prime}\right| \geq t_{s}$, is called an s-cover. An S-cover is an s-cover for all s in S. We say that H^{\prime} is an s connected cover if $\left\langle H_{s}^{\prime}\right\rangle$ (the subgraph of G_{s} induced by H_{s}^{\prime}) has a connected component with t_{s} vertices. Assume that the graph represented in Figure 1 is the graph G_{s}, with $H_{s}=\{1,2, \cdots, 16\}$, for some particular species s, and consider $V=\{1,2,3,4,5,6,10,11,12,13\}$. The subgraph of G_{s} induced by V is the graph depicted in Figure 2, which has three connected components. If $t_{s}=5$, V is an s-cover. However, since no component includes five or more sites, it is not an s-connected cover Our goal is to find S-connected covers of minimum size.

Figure 2: The subgraph of the graph of Figure 1 induced by $\{1,2,3,4,5,6,10,11,12,13\}$
2.2. A first model

2.2.1. Formulation

Determining a reserve network with a minimum number of sites that has at least one site for every species is the set covering problem, a basic model in reserve network design (Possingham et al., 1993; Underhill, 1994; Revelle and Williams, 2002).

A more general model, the multicovering problem (MCP), applies when the representation requirement of each species s in S is enlarged to a target number $t_{s} \geq 1$ sites, and a minimum size S-cover is desired.

The MCP is a well known problem in combinatorial optimisation (Hall and Hochbaum, 1986, 1992) and optimal solutions can be reached with integer linear programming techniques. To formulate the MCP as a 0-1 linear programming problem assign to each candidate site i of H a binary variable x_{i} indicating whether site i is included in the solution $\left(x_{i}=1\right)$ or not $\left(x_{i}=0\right)$. The MCP consists of

$$
\begin{equation*}
\min \sum_{i \in H} x_{i} \tag{1}
\end{equation*}
$$

146 subject to:

$$
\begin{align*}
& \sum_{i \in H_{s}} x_{i} \geq t_{s} \quad s \in S \tag{2}\\
& x_{i} \in\{0,1\} \quad i \in H \tag{3}
\end{align*}
$$

If X is the set of sites in the solution, i.e., $X=\left\{i \in H: x_{i}=1\right\}$, each inequality (2) ensures that $X_{s}=X \cap H_{s}$ is an s-cover. The objective function (1) seeks that the S-cover X has minimum size.

The MCP is a difficult problem (NP-hard, see Garey and Johnson (1979)) but modern software can obtain optimal solutions for reasonably large instances (say a few thousand sites in H and some hundreds of species in S), in a few CPU seconds.

Typical MCP approaches result in a set of scattered sites. To ensure that the S-covers from the MCP are S-connected, constraints have to be added. These additional constraints can be derived from the following simple observation. Suppose K is a subset of sites such that no S-connected cover can be found in $H \backslash K$. Then, obviously every S-connected cover includes at least one site from K. Hence, and since a set of sites includes an S-connected cover if and only if it is also itself an S-connected cover, every inequality

$$
\begin{equation*}
\sum_{i \in K} x_{i} \geq 1 \quad K \subset H: H \backslash K \text { is not an } S \text {-connected cover, } \tag{4}
\end{equation*}
$$

is valid (i.e., satisfied by every S-connected cover), and together with (1),(2),(3) gives a $0-1$ linear formulation for the minimum S-connected cover problem.

2.2.2. Algorithm

The large number of inequalities (4) heavily constrains the possibility of an integer linear programming (ILP) approach to deal with formulation (1),(2),(3),(4), even for problems of small dimensions.

To overcome this difficulty we developed an integer cutting algorithm. The algorithm starts by solving the MCP (1),(2),(3). If the S-cover $X=\{i \in H$: $\left.x_{i}=1\right\}$ is S-connected, then X is an optimal S-connected cover and nothing more has to be done. Otherwise, consider the constraint (4) with $K=H \backslash X=$ $\left\{i \in H: x_{i}=0\right\}$, which is violated by the current solution x. If this constraint is added to the model, the next iteration either returns an optimal S-connected cover, or else identifies an inequality (4), which can be added to the model to eliminate the current solution from further consideration. This procedure can
be repeated until an S-connected cover is reached. Nevertheless, the number of constraints to be added until an S-connected cover is determined may make this procedure impractical. To accelerate the procedure we can work out the constraints according to the polyhedral combinatorics theory (see, for example, Pulleyblank (1983) or Schrijver (1995)). The same reasoning was used, in a similar context, by Cerdeira et al. (2005) to develop an integer cutting algorithm to identify the minimum number of sites satisfying the species representation targets in a unique connected component.

The key idea is to distinguish among the inequalities (4) those which are facet defining, from those which are implied by some other valid inequalities. If the algorithm determines an S-cover which is not S-connected, the inequality (4), with $K=\left\{i \in H: x_{i}=0\right\}$, is violated by the current solution x. If the inequality is facet defining, it is a suitable cut to be added to the current model, and the algorithm proceeds to find a new S-cover. If the inequality is not facet defining, then some stronger inequalities exist that can cut more deeply the set of solutions of the current model, without violating any feasible solution. (We refer the reader to Cerdeira et al. (2005) for an explanation of facets and cuts in this context.) To ilustrate this, consider a valid inequality (4) and suppose that for a given k in K, no S-connected cover exists in $(H \backslash K) \cup\{k\}$. Then, since every S-connected cover has to include at least one site from K different from $k, \sum_{i \in K \backslash\{k\}} x_{i} \geq 1$ is a valid inequality which clearly implies, and is not implied by $\sum_{i \in K} x_{i} \geq 1$, showing the latter is not facet defining.

The formulation (1), (2), (3), (4) is a particular case of a more general model for which Balas and Ng (1989) established the conditions for any valid inequality with coefficients 0 or 1 to be facet defining. (For technical reasons we assume that, for every site h in $H, H \backslash\{h\}$ is an S-connected cover.) Their result allow us to conclude that a valid inequality (4) is facet defining if and only if
a) for every k in $K,(H \backslash K) \cup\{k\}$ is an S-connected cover, and
b) for every h in $H \backslash K$ there is a site k in K such that $((H \backslash K) \backslash\{h\}) \cup\{k\}$ is an S-connected cover.

Condition a) states that K is a minimal set (with respect to inclusion) for which the inequality (4) is valid, i.e., if K^{\prime} is any proper subset of $K, \sum_{i \in K^{\prime}} x_{i} \geq$ 1 is not valid. Above we showed that this condition is necessary for (4) to be facet defining.

To show that b) is also necessary, suppose that b) fails for some h in $H \backslash K$, i.e., whenever h is not selected, there is no S-connected cover that includes only one site of K. Hence, the inequality

$$
\begin{equation*}
x_{h}+\sum_{i \in K} x_{i} \geq 2 \tag{5}
\end{equation*}
$$

is valid, as it states that if h is not selected (i.e., $x_{h}=0$) at least two sites from K are needed to get an S-connected cover. Clearly, it is stronger than (4).

The constraint (5) belongs to the general type of inequalities

$$
\begin{equation*}
\sum_{i \in V} x_{i} \geq 2 \tag{6}
\end{equation*}
$$

From the work of Balas and Ng (1989) it can also be derived when a valid inequality (6) is facet defining. To state the result we first introduce the 2 -cover graph G_{V} associated to (6), which has vertex set V and an edge joining vertices v and u if and only if $(H \backslash V) \cup\{v, u\}$ is an S-connected cover. It follows from a result in Balas and Ng (1989) that a valid inequality (6) is facet defining if and only if
c) for every h in $H \backslash V$ there is a pair v, u in V such that $((H \backslash V) \backslash\{h\}) \cup\{v, u\}$ is an S-connected cover, and
d) no connected component of graph G_{V} is bipartite.

A graph is bipartite if the vertices can be partitioned into two disjoint subsets A and B such that each edge connects a vertex from A to one from B.

When each of these conditions fails we can derive valid inequalities that imply (6).

If c) fails for some site h in $H \backslash V$, then

$$
\begin{equation*}
x_{h}+\sum_{i \in V} x_{i} \geq 3, \tag{7}
\end{equation*}
$$

is valid. It expresses that any S-connected cover that does not includes h (i.e., $x_{h}=0$) has at least three sites from V.

Suppose there is a bipartite component of G_{V} with bipartition A and B. Then both inequalities

$$
\begin{align*}
& 1.5 \sum_{i \in V \backslash(A \cup B)} x_{i}+\sum_{i \in A} x_{i}+2 \sum_{i \in B} x_{i} \geq 3 \\
& 1.5 \sum_{i \in V \backslash(A \cup B)} x_{i}+2 \sum_{i \in A} x_{i}+\sum_{i \in B} x_{i} \geq 3 \tag{8}
\end{align*}
$$

are valid, and their sum equals three times (6). These inequalities state that no S-connected cover exists with two or less sites from V if these sites are either from A, or from B.

The integer cutting algorithm incorporates these polyhedral results.
In each step the current S-cover $X=\left\{i \in H: x_{i}=1\right\}$ is tested to see if it is S-connected. If it fails, a set K, for which (4) is valid and that satisfies condition a), is identified. This is achieved with the following procedure. First, K is defined as $K=H \backslash X$. Next, for each species s, K_{s} is set to be $K_{s}=K \cap H_{s}$, and $H_{s} \backslash K_{s}$ is tested to see if it is an s-connected cover. If it is s-connected, set K is not modified and a new species s is considered. Otherwise, while there is a site k in K_{s} for which $\left(H_{s} \backslash K_{s}\right) \cup\{k\}$ is not an s-connected cover, K_{s} is updated accordingly to $K_{s}=K_{s} \backslash\{k\}$. When K_{s} is such that for every k in K_{s}, $\left(H_{s} \backslash K_{s}\right) \cup\{k\}$ is an s-connected cover, set K is modified to become $K=K_{s}$, and the procedure continues with a new species s.

When all species have been considered, either X is an (minimum) S-connected cover, or else the resulting set K is such that the corresponding inequality (4) is valid, and verifies a).

If X is not an S-connected cover, the algorithm proceeds checking condition b) as follows. Take a site h of $H \backslash K$, and let K_{h} be initialized with $K_{h}=K$. For each species s such that $h \in H_{s}, K_{h}$ is updated by removing those sites k for which $\left(\left(H_{s} \backslash K\right) \backslash\{h\}\right) \cup\{k\}$ is not an s-connected cover. If $K_{h}=\emptyset$, condition b) fails, and inequality (5) holds. Otherwise, the procedure will continue with a new site h of $H \backslash K$. At the end either some h is found for which b) fails and

257 (5) holds, or else the inequality (4) is facet defining and is added to the current 258 model, and the algorithm proceeds finding a new S-cover. and the inequality

$$
\begin{equation*}
2 x_{h}+\sum_{i \in K} x_{i} \geq 3 \tag{9}
\end{equation*}
$$

In the case condition b) fails, (5) is a valid inequality. To check whether it is facet defining the 2-cover graph associated to (5) is defined. Note that in this graph site h is adjacent to every site of K. Therefore, the graph is bipartite if and only if there are no edges linking pairs of sites in K. Let set E_{K} be initialized with $E_{K}:=\{[u, v]: u \neq v \in K\}$, i.e., all the unordered pairs of different sites in K. For each species s such that $h \in H_{s}, E_{K}$ is updated by removing those pairs of sites $[u, v]$ for which $\left(\left(H_{s} \backslash K\right) \backslash\{h\}\right) \cup\{u, v\}_{s}$ is not an s-connected cover. If $E_{K}=\emptyset$, the 2-cover graph is bipartite, condition d) fails,
is valid. Actually, for this particular case (9) is the first inequality in (8) which implies the second one.

At the end of this procedure, either (9), which is stronger than (5), is added to the current model and the algorithm proceeds seeking a new S-cover, or else $V:=K \cup\{h\}$ is defined and condition c) is examined.

To check c) we used the (non-bipartite) 2-cover graph G_{V} whose edge set (E_{K} together with $[h, u]$, for every u in K) has just been determined.

Take a site h of $H \backslash V$, and let E_{h} be initialized with every edge of the 2-cover graph G_{V}. For each species s such that $h \in H_{s}, E_{h}$ is updated by removing those edges $[u, v]$ for which $\left(\left(H_{s} \backslash V\right) \backslash\{h\}\right) \cup\{u, v\}_{s}$ is not an s-connected cover. If $E_{h}=\emptyset$, condition c) fails, and inequality (7) is valid. Otherwise, the procedure will continue with a new site h of $H \backslash V$. At the end either some h is found for which c) fails and (7) holds, or else the inequality (6) is facet defining. Accordingly, inequality (7) or (6) is added to the current model, and the algorithm proceeds to find a new S-cover.

This integer cutting algorithm, that will be referred to as IC, makes no use of the fact that, for every species s, there has to be a connected component of G_{s} with t_{s} sites selected. Next we present a formulation that takes this into

$$
\begin{equation*}
\sum_{i \in K} x_{i} \geq Y_{C}^{s} \quad K \subset C \in \mathcal{C}_{s}:<C \backslash K>\text { has no component with } t_{s} \text { sites, } s \in S \text {. } \tag{13}
\end{equation*}
$$

Constraints (13), together with (10), (11) and (12), state that for C such that $Y_{C}^{s}=1$, the subgraph induced by $X \cap C$ includes a connected component with t_{s} sites

Hence, finding a minimum size S-connected cover consists of (1) subject to (3), (10), (11), (12), (13). We call this formulation the specialized model.

Compared with the formulation (1), (2), (3), (4), the specialized model exhibits a feature which is very convenient for algorithmic proposes. The starting point for the integer cutting procedure, which is the outcome of (1) subject to $(3),(10),(11),(12)$, is "closer" to an optimal S-connected cover than the S-cover resulting from (1), (2), (3). More precisely, the lower bounds on the
minimum sizes of S-connected covers obtained from the specialized model without the connectivity constraints (13) are likely to be significantly larger than those resulting from dropping the connectivity constraints (4) in the first formulation.

2.3.2. Algorithm

The algorithm, although being less involved, is similar to the algorithm IC designed for the model described in Section 2.2.

First, the problem (1), (3), (10), (11), (12) is solved to produce an initial S-cover $X=\left\{i \in H: x_{i}=1\right\}$.

The algorithm proceeds checking, for each species s, if there is a connected component C^{\prime} of G_{s} such that the subgraph induced by $X \cap C^{\prime}$ includes a component with t_{s} sites. When this happens X is an s-connected cover, and a new species s is considered. Otherwise, a set K is identified for which the inequality (13) is valid, and minimal for inclusion. Set K is initialized with $K=C \backslash X$, where C is the component marked by $Y_{C}^{s}=1$, and it is sequentially updated deleting from K some site k such that for $K:=K \backslash\{k\}$ every connected component of the subgraph $<C \backslash K>$ has less than t_{s} sites. At the end of this process K is such that (13) is valid, and K is minimal in the sense that, for every k in K, some component of the subgraph induced by $(C \backslash K) \cup\{k\}$ has at least t_{s} sites.

After considering all species, either X is an (minimum) S-connected cover and nothing more has to be done, or else the valid connectivity inequalities (13) previously determined are included in the current model and a new S-cover is obtained.

We call this algorithm the sIC (specialized integer cutting).

2.4. Heuristic approach

We have also devised a heuristic for seeking minimum S-connected covers.
The heuristic makes use of the following procedure to turn an arbitrary S connected cover X into a minimal one. First, every site of X is marked as
non-considered. Then, some non-considered site i of X is selected. If $X \backslash\{i\}$ is still an S-connected cover, X is updated with $X:=X \backslash\{i\}$. Otherwise, site i is marked as considered. When all sites in X have been considered, X is minimal.

In the implementation of this minimal procedure site i is selected with a probability inversely proportional to its richness (number of species in i) among the non-considered sites of the current X.

The heuristic, that we will refer to as GH, is a genetic type algorithm. Genetic algorithms (Mühlenbein, 1997) start with an initial population of p feasible solutions which are mated to produce children (i.e., other feasible solutions) that inherit properties of their parents. The next generation will consist of elements selected among those from the previous generation and their children.

To create each individual of the initial population, for each species s a set I_{s} is initialized with a randomly selected site among the sites of the components of G_{s} with at least t_{s} sites. While $\left|I_{s}\right|<t_{s}$, the set I_{s} is successively enlarged adding a randomly selected site adjacent to some site in I_{s}. When all I_{s} are defined, the minimal procedure turns $X=\cup_{s} I_{s}$ into a minimal S-connected cover to became one of the p members of the initial population.

To form a child-bearing couple $(F, M), F$ is selected among the members of the population with a probability inversely proportional to its size. Thus, better S-connected covers are likely to be chosen. The mate M is selected in the same way among the members of the population different from F.

The couple (F, M) generates an offspring O which is the outcome of the minimal procedure on the input $X=F \cup M$. The algorithm counts the number of existing replicates of O among the current population, and among the children already created. If this number exceeds a given value r, the child is rejected and is replaced by an S-connected cover obtained in the same way as each individual of the initial population. The rational for this is to avoid excessive consanguinity that could lead the algorithm to get stuck in a population with only a few different individuals.

Each new generation is formed by the p individuals, from among the previous generation and their offspring, which have the lowest number of sites.

The number of generations is used as the stopping criterion.
For the computational tests reported in Section 3, the following specifications of the algorithm were used. We defined $p=100$ to be the size of the initial population, which is also the number of individuals in each new generation. The number of child-bearing couples is 50 , which is half the size of the population. Therefore, each new generation consists of the 100 elements with the lowest number of sites, among the 100 individuals of the previous generation and the 50 offspring generated. We set $r=10$ to be the upper bound on the number of replicates allowed of each new child. We set the number of generations, which is the stopping criterion, equal to 100 . Thus, the algorithm stops at iteration 100 , producing a list of 100 , possibly not all distinct, S-connected covers.

2.5. Simulating species distributions

To compare the algorithms and test the limits of their computational practicability we generated virtual species distributions following the assumptions of neutral community models.

Neutral community models are stochastic processes meant to explain, at least in part, the patterns of distribution, abundance and diversity of ecological communities. These models assume that all individuals have identical demographic properties (Bell, 2001; Chave et al., 2002; Hubbell, 2001).

We implemented a neutral model in which individuals from a pool of 1000 species are distributed over 2500 sites, where each site is a cell from a 50×50 grid. At each iteration, and in each site:
(i) a single individual of each species is added to the community with probability $m=0.001$;
(ii) each resident individual gives birth with probability $b=0.5$ and dies with probability $d=0.5$;
(iii) with probability $u=0.01$ each newborn moves to a random adjacent site and continues to move until the criterion fails, and it settles in the site to which it moved last;
(iv) if the number of individuals in the community exceeds $K=100000$, excess individuals are removed at random.

We started with 1000 individuals from each species in every site, and stopped after 5000 iterations have been performed.

From the outcome of this procedure we produced several data sets for the computational experiments we carried out. This was done by randomly selecting, for different values of n, an $n \times n$ square from the 50×50 grid, and subsets S of 50,100 and 150 species among the species represented on that square. We then consider the species of S ordered by nondecreasing degrees of representation, and call the first 25% rare and the remaining 75% common. Representation targets $t_{s}=1$ are assigned to every common species s, and t_{s} equal to 3,5 and 10, for each rare species s of S. Whenever G_{s} has no connected components with t_{s} sites, then t_{s} is set to be equal to the maximum component size. Ten instances were created for the same values of $n,|S|$ and t_{s}. This gives a total of 90 instances with the same value of n.

We considered all species to have an equal level of dispersal in every instance, and assume that species s can move directly between sites u and v from its habitat sites H_{s} (i.e. $[u, v]$ is an edge of graph G_{s}) if and only if u and v have a common edge or corner in the $n \times n$ grid. This allows the identification of the connected components of each species directly in the grid, as the adjacency relation describing the species s dispersal is the neighbourhood relation of sites of H_{s} in the $n \times n$ grid.

3. Results

We performed computational tests to assess and compare the practicality of the integer cutting algorithms IC and sIC, as well as the quality of the S connected covers determined by the heuristic GH.

The results reported here were obtained using an Intel Pentium IV, 2.8 GHz with 504 MB RAM. The integer programming solver used was CPLEX 9.0.0.

With respect to the running times, both algorithms IC and sIC succeeded in finding optimal S-connected covers in less than 60 CPU seconds for $n=15$. While, the integer cutting algorithm IC of Subsection 2.2 took an average of 7 CPU time seconds, the algorithm for the specialized model only once took more than 1 second (1.3 sec).

Table 1 reports information on the running times of the algorithms IC and sIC on instances where $n=20$.
$|S| \quad t_{s}<15 \mathrm{sec} . \quad 15-60 \mathrm{sec} . \quad 1-30 \mathrm{~min} . \quad 30-60 \mathrm{~min} . \quad$ not solved

		IC	sIC								
50	3	0	10	0	0	6	0	1	0	3	0
	5	0	8	1	2	4	0	0	0	5	0
	10	3	7	0	0	2	2	1	0	4	1
100	3	0	4	0	4	0	2	0	0	10	0
	5	0	5	0	2	0	3	0	0	10	0
	10	0	6	0	2	5	1	1	0	4	1
150	3	0	0	0	2	0	8	0	0	10	0
	5	0	3	0	1	0	5	0	0	10	1
	10	0	7	2	1	2	0	1	1	5	1

Table 1: Running times of the algorithms IC and sIC on 20×20 cells instances.

The first two columns refer to the number of species $|S|$ and the representations target t_{s} for each of the 10 instances considered in each row. The columns not solved indicate, for each algorithm, the number of instances for which computations were not finished at the end of 1 hour CPU time. The other columns report the number of instances for which solutions were found within the time indicated in the first row of the corresponding column. The four instances for which the sIC algorithm did not succeed in finding minimum S-connected covers, were not solved either within 1 hour by the algorithm design for the first model.

When we increased the size of the $n \times n$ grid to values of $n \geq 25$, the
algorithm IC, based on the initial model, was incapable of solving any instance in less than 1 CPU hour.

For $n=25$ the algorithm working on the specialized model also did not solve 34 of the 90 instances within 1 hour. However, 30 instances were solved within no more than 1 CPU minute, and 22 more in less than 30 minutes.

With $n=30$ no instance with 150 species was solved in less than 1 hour, and only for those instances with 50 species minimum S-connected covers were found within 1 minute.

Information about the running times of the algorithm for the specialized model for $n=25$ and $n=30$ is given in Appendix A tables S1 and S2, respectively.

For $n=15$, except in one case, the list produced by the genetic heuristic on each of the 90 instances included minimum size S-connected covers. The time spent on the longest run was about 2.6 seconds. The heuristic did not find any optimal solution in an instance with $|S|=50$ species and representation target $t_{s}=3$. However, among the 100 solutions produced by the heuristic, 86 distinct S-connected covers with 31 sites were found when 30 sites is known to be the minimum size.

Two measures were used to assess the quality of the solutions obtained by the GH algorithm on larger instances. Let O and H be the sizes of a minimum S-connected cover and of the best solutions produced by the GH heuristic, respectively. The measures are:
\#opt - the number of instances for which H and O coincide, and
$m r e$ - the mean relative error, defined as the mean of the ratios $\frac{H-O}{O}$, with respect to the 10 instances having the same values of $n,|S|$ and t_{s}.

In several instances with $n \geq 20$, the algorithms IC and sIC did not succeed in identifying S-connected covers before the computations were interrupted, at the end of the pre-established CPU time limit of 1 hour. Hence, we are not sure about the true values of O. In those cases the value of O used to calculate \#opt and $m r e$ is the size of the (unconnected) S-cover of the last iteration of the sIC

474 algorithm based on the specialized model. In such situations, the values of \#opt 475 and mre may lead to a pessimist judgment of the accuracy of the heuristic in 476 finding good solutions.
${ }_{47} \quad$ The values of \#opt and mre for the instances with $n=20, n=25$ and $n=30$ ${ }_{478}$ are presented in Table 2. The CPU times varied between 3 and 34 seconds. The 479 table does not include the values of the instances for which $n=30$ and $|S|=150$.
${ }_{480}$ For several of these instances, 1 hour was not sufficient for CPLEX to identify ${ }_{481}$ the initial S-cover that minimises (1) subject to (3), (10), (11), (12), and we ${ }_{482}$ have no alternative reliable lower bounds on the true values of O to evaluate, ${ }_{483}$ in a minimally credible way, the performance of the heuristic.

$\|S\|$	t_{s}	mre	\#opt	mre	\#opt	mre	\#opt
50	3	0.022	6	0.119	7	0.053	3
	5	0.002	9	0.039	3	0.057	3
	10	0.001	9	0.005	8	0.037	2
100	3	0.023	5	0.054	2	0.090	1
	5	0.012	5	0.039	4	0.079	0
	10	0.003	6	0.018	0	0.086	0
150	3	0.022	4	0.079	0	-	-
	5	0.021	2	0.074	0	-	-
	10	0.003	4	0.033	0	-	-
$n=20$						$n=25$	$n=30$

Table 2: Values of \#opt and mre for the instances with $20 \times 20,25 \times 25$ and 30×30 cells.

4. Discussion

The sIC algorithm based on the specialized model (1), (3), (10), (11), (12), ${ }_{486}$ (13), with more variables, is clearly better than the approach for the first for${ }_{487}$ mulation (1), (2), (3), (4). The ability to produce lower bounds on the sizes of ${ }_{488}$ the optimal S-connected covers significantly larger than those obtained using
the first formulation, is decisive for the superiority of the sIC algorithm. This is a consequence of the requirement incorporated in the specialized model forcing, for each species s, the existence of a connected component with t_{s} sites in every intermediate S-cover. As a result, the initial S-covers obtained with the specialized model are much "closer" to the optimal S-connected covers than the minimum S-cover solutions of (1), (2), (3). (See in Figure S2 of Appendix B the initial S-covers produced by algorithms IC and sIC in an instance with $n=25$, $|S|=100$ and $t_{s}=5$.)

Whilst the use of the IC algorithm appears to be limited to instances with $400=20 \times 20$ sites, the bounds for the practicability of the sIC algorithm are instances consisting of $625=25 \times 25$ to $900=30 \times 30$ sites, and approximately 50 species, sizes that can be considered quite reasonable for seeking guaranteed optimality for such an involved problem.

The genetic heuristic approach largely surpasses these limitations (it took 139.9 seconds to run on the entire $2500=50 \times 50$ cells grid, with $|S|=150$, $t_{s}=10$), at the cost of guaranteed optimality. The computations of the GH algorithm are dominated by the minimal procedure designed to turn minimal (with respect to inclusion) any given S-connected cover X. Each execution entails, for each site $i \in X$ and each species s, with $i \in H_{s}$, defining the connected components of the graph $<(X \backslash\{i\})_{s}^{\prime}>$. To identify connected components we used the (linear time) approach described in Subsection 2.1, which is therefore called a number of times of order $|S||X|$ in each execution of the minimal procedure. The minimal procedure is used whenever a new child is generated, and when creating each member of the initial population. Thus, it is executed a number of times which is the order of the size of the initial population plus the number of offspring in each generation multiplied by the number of generations. This gives $100+50 \times 100=5100$ in our implementation.

Nevertheless, the GH heuristic is revealed to be capable of finding good solutions with no excessive computational weight. On average, for the 240 instances for which the mre values were calculated, the sizes of the S-connected covers produced by the GH algorithm do not exceed 4% of the optimal sizes. Actually,
the rate of 4% undervalues the quality of the solutions obtained, since the lower bounds used to estimate O in expression mre are likely to be considerably lower than the sizes of the corresponding minimum S-connected covers.

5. Conclusion and final remarks

We have presented three algorithms to solve a reserve design problem that has been overlooked to date. Two integer cutting algorithms, that guarantee optimality, and a genetic heuristic. Of the two integer cutting algorithms, the specialized formulation is superior, being able to find solutions for most of the instances assessed and in faster computational times. Nonetheless, both algorithms have limitations regarding the magnitude of the instances for which solutions can be found. It is unlikely that the most efficient of the two algorithms is able to handle instances with more than 900 sites and more than 50 species. The heuristic algorithm surpasses these limitations. An instance with 2500 sites and 50 species was run in less than 2.5 CPU minutes. Despite running reasonably quickly, the solutions obtained are of good quality. Only in one case, among 240 instances, was the size of the solution produced by the heuristic larger 10% by of the minimum size.

We have considered that all sites are equally relevant, i.e., all variables x_{i} have a coefficient equal to 1 in the objective function. However, in some situations it may be desirable to distinguish between different reserve networks with the same number of sites (Rodrigues et al., 2000), for example those of differing total area (where sites vary in size) or monetary value. In this case the objective function (1) is replaced by

$$
\begin{equation*}
\min \sum_{i \in H} c_{i} x_{i} \tag{14}
\end{equation*}
$$

where c_{i} is the cost (area, monetary value, or some other adequate measure) of site i.

With respect to the integer cutting algorithms, this modification introduces nothing more than giving the objective function (14) instead of (1) to the integer programming solver.

The heuristic can also be easily be modified to handle (14) instead of (1). In the minimal procedure, site i could be selected, among the sites in X, with probability directly proportional to c_{i}. This will make sites with larger costs more likely to be eliminated from the resulting minimal S-connected covers. In addition, the selection of child-bearing couples, and the members of each new generation should be made according to their costs instead of their sizes.

It may also be relevant, for conservation purposes, to require the representation of more than one population (or metapopulation) of certain species. This means that instead of requiring for species s only one connected component with t_{s} sites, it may be desirable that the S-connected covers have $n_{s}>1$ different components, each with at least t_{s}. It is not at all obvious how to incorporate this generalization in the 0-1 formulations of Section 2. However, it is straightforward to have the genetic heuristic working on this generalization. It amounts to generalizing the concept of the S-connected cover to incorporate the additional requisites.

The heuristic can also accommodate other realistic assumptions, such as the need for inclusion of a certain number of sites with specific functional purposes (e.g. breading, shelter and feeding grounds) for each species.

In every instance, we have assumed equal targets and equal dispersal distances for all species. These could be variable, without compromising the performance of the algorithms. However, we realise that for practical conservation, the difficulties are in setting meaningful targets and, in many cases, assessing the dispersal capabilities for a large number of species. Nonetheless, reserve designs that consider species specific connectivities should be encouraged, and here we provide some tools to achieve such designs

Acknowledgements

We are grateful to Diogo Alagador for assistance and discussion.

References

${ }_{576}$ Alagador, D., Cerdeira, J.O., 2007. Designing spatially-explicit reserve networks in the presence of mandatory sites. Biological Conservation 137, 254-262.

Balas, E., Ng, S.M., 1989. On the set covering polytope: I. all facets with coefficients in $\{0,1,2\}$. Mathematical Programming 43, 57-69.

Bell, G., 2001. Neutral macroecology. Science 293, 2413-2418.

Bondy, J.A., Murty, U.S.R., 1976. Graph Theory with Applications, NorthHolland, New York.

Cabeza, M., 2003. Habitat loss and connectivity of reserve networks in probability approaches to reserve design. Ecology Letters 6, 665-67.

Cabeza, M., Araújo, M.B., Wilson, R.J., Thomas, C.D., Cowley, M.J.R. Moilanen, A., 2003. Combining probabilities of occurrence with spatial reserve design. Journal of Applied Ecology 41, 252-262.

Cabeza, M., Moilanen, A., 2001. Design of reserve networks and the persistence of biodiversity. Trends in Ecology and Systematics 16, 242-247.

Cabeza, M., van Teeffelen, A., 2009. Strategies of reserve selection. Encyclopedia of Life Sciences, John Wiley \& Sons, Ltd., Chichester.

Cerdeira, J.O., Pinto, L.S., 2005. Requiring connectivity in the set covering problem. Journal of Combinatorial Optimization 9, 35-47

Cerdeira, J.O., Gaston, K.J., Pinto, L.S., 2005. Connectivity in priority area selection for conservation. Environmental Modelling and Assessment 10, 183192.

Chave, J., Muller-Landau, H.C., Levin, S. A., 2002. Comparing classical community models: theoretical consequences for patterns of diversity. American Naturalist 159, 1-23.

Fischer, D., Church, R.L., 2003. Clustering and compactness in reserve site selection: An extension of the biodiversity management area selection model. Forest Science 49, 555-65.

Fuller, T., Mungua, M., Mayfield, M., Snchez-Corderdo, V., Sarkar, S., 2006. Incorporating connectivity into conservation planning: A multi-criteria case study from central Mexico. Biological Conservation 133, 131-142.

Garey, M.R., Johnson, D.S., 1979. Computers and Intractability: A Guide to the Theory of NP Completeness, W.H. Freeman \& Company, San Franscico.

Hall, N.G., Hochbaum, D.S., 1986. A fast approximation algorithm for the multicovering problem. Discrete Applied Mathematics 15, 35-40.

Hall, N.G., Hochbaum, D.S., 1992. The multicovering problem. European Journal of Operational Research 62, 323-339.

Hubbell, S.P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography, Princeton University Press, Princeton.

McDonnell, M.D., Possingham, H.P., Ball, I.R., Cousins, E.A., 2002. Mathematical methods for spatially cohesive reserve design. Environmental Modeling and Assessment 7, 107-14.

Millennium Ecosystem Assessment (MEA), 2005. Ecosystems and Human WellBeing: Biodiversity Synthesis. World Resources Institute: Washington, DC.

Moilanen, A., 2005. Reserve selection using nonlinear species distribution models. American Naturalist 165, 695-706.

Moilanen, A., Cabeza, M., 2002. Single-species dynamic site selection. Ecological Applications 12, 913-926.

Mühlenbein, H., 1997. Genetic algorithms, Aarts, E., Lenstrain, J.K. (Eds.), Local Search in Combinatorial Optimization. John Wiley \& Sons, pp. 137171.

Nicholls, A.O., Margules, C.R., 1993. An upgraded reserve selection algorithm. Biological Conservation 64, 165-169.

Nicholson, E., Westphal, M.I., Frank, K., Rochester, W.A., Pressey, R.L., Lindenmayer, D., Possingham, H.P., 2006. A new method for conservation planning for the persistence of multiple species. Ecology Letters 9, 1049-1060.

Önal, H., Briers, R.A., 2002. Incorporating spatial criteria in optimum reserve network selection. Proceedings of the Royal Society of London B 269, 14861491.

Önal, H., Briers, R.A., 2005. Designing a conservation reserve network with minimal fragmentation: a linear integer programming approach. Environmental Modeling and Assessment 10, 193-202, 2005.

Önal, H., Wang, Y., 2008. A graph theory approach for designing conservation reserve networks with minimal fragmentation. Networks 52, 142-152.

Possingham, H., Day, J., Goldfinch, M., Salzborn, F., 1993. The mathematics of designing a network of protected areas for conservation, in: Sutton, D., Cousins E., Pierce, C. (Eds.), Decision Sciences, Tools for Today, Proceedings of the 12th Australian Operations Research Conference, ASOR, Adelaide, pp. 536-545, 1993.

Possingham, H., Ball, I., Andelman, S., 2000. Mathematical methods for identifying representative reserve networks, in: Ferson, S., Burgman, M. (Eds.) Quantitative Methods for Conservation Biology. Springer, New York, pp. 291306.

Pressey, R.L., Cabeza, M., Watts, M.E., Cowling, R.M., Wilson, K.A., 2007. Conservation planning in a changing world. Trends in Ecology and Evolution 22, 583-592.

Pulleyblank, W.R., 1983. Mathematical programming - The state of the art in: Bachem, A., Grö̈schel, M., Korte, B. (Eds.), Polyhedral Combinatorics, Springer, Berlin, pp. 312-345.

Revelle, C., Williams, J.C., 2002. Reserve design and facility siting, in: Drezner, Z., Hamacher, H.W. (Eds.), Facility Location, Springer, Berlin, pp. 307-328.

Rodrigues, A.S.L., Cerdeira, J.O., Gaston, K.J., 2000. Flexibility, efficiency, and accountability: adapting reserve selection algorithms to more complex conservation problems. Ecography 23, 565-574.

Rodrigues, A.S.L., Gregory, R., Gaston, K.J., 2000. Robustness of reserve selection procedures under temporal species turnover. Proceedings of the Royal Society of London B 267, 49-55.

Rothley, K.D., 1999. Designing bioreserve networks to satisfy multiple, conflicting demands. Ecological Applications 9, 741-750.

Schrijver, A., 1995. Polyhedral combinatorics, in: Graham, R.L., Grötschel, M., Lovász, L., (Eds.), Handbook of Combinatorics, Elsevier, Amesterdam, pp. 1649-1704.

Sessions, J., 1992. Solving for habitat connections as a Steiner network problem. Forest Science 38, 203-207.

Shirabe, T., 2005. A model of contiguity for spatial unit allocation. Geographical Analysis 37, 2-16.

Underhill, L., 1994. Optimal and suboptimal reserve selection algorithms. Biological Conservation 70, 85-87.
van Teeffelen, A., Cabeza, M., Moilanen, A., 2006. A comparison of reserve selection algorithms with respect to the predicted persistence of species in the reserve. Biodiversity and Conservation 15, 899-919.

Williams, J.C., 1998. Delineating protected wildlife corridors with multiobjective programming. Environmental Modeling and Assessment 3, 77-86.

Williams, J.C., ReVelle, C. S., Levin, S.A., 2005. Spatial attributes and reserve design models: A review. Environmental Modeling and Assessment 10, 163181.
${ }_{681}$ Wilson, K.A., Pressey, R.L., Newton, A.N., Burgman, M.A., Possingham, H.P., Weston, C.J., 2005. Measuring and incorporating vulnerability into conserva683 tion planning. Environmental Management 35, 527-543.

684 A. Running times of the sIC algorithms

$\|S\|$	t_{s}	<15	$15-60$	$1-30$	$30-60$	not
		sec.	sec.	min.	min.	solved
50	3	5	5	0	0	0
	5	5	3	2	0	0
	10	4	2	3	0	1
100	3	0	3	5	2	0
	5	0	1	6	2	1
	10	0	1	2	0	7
150	3	0	0	0	0	10
	5	0	0	0	0	10
	10	0	1	4	0	5

Table S1: Running times of the sIC algorithm on 25×25 cells instances.

$\|S\|$	t_{s}	<15	$15-60$	$1-30$	$30-60$	
		sec.	sec.	min.	min.	solved
50	3	6	1	3	0	0
	5	3	6	0	0	1
	10	3	0	5	0	2
100	3	0	0	3	1	6
	5	0	0	0	2	8
	10	0	0	0	0	10
150	3	0	0	0	0	10
	5	0	0	0	0	10
	10	0	0	0	0	10

Table S2: Running times of the sIC algorithm on 30×30 cells instances.
B. Results of an instance with $n=25,|S|=100$ and $t_{s}=5$

Here we give some results obtained with an instance I with $625=25 \times 25$ sites, the number of species $|S|=100$ and target representations $t_{s}=5$ for rare species.

A minimum size S-connected cover, consisting of 51 sites, is depicted in Figure S1.

The initial S-covers produced by the algorithms IC and sIC are presented in Figure S2a) and b), respectively.

The best S-connected covers obtained by the heuristic GH have 53 sites. One of these solutions is depicted in Figure S3.

Figure S1: A 51 sites minimum size S-connected cover for instance I.

Figure S2: a) The initial 25 sites minimum size S-cover obtained with the IC algorithm, and b) The initial 48 sites S-cover obtained with the sIC algorithm, on instance I.

Figure S3: A 53 sites S-connected cover obtained by the heuristic GH on instance I.

[^0]: 却This work was partially supported by FEDER/POCI 2010.
 *Corresponding author.
 Email addresses: orestes@isa.utl.pt (J. Orestes Cerdeira), lspinto@iseg.utl.pt
 (Leonor S. Pinto), cabeza@cc.helsinki.fi (Mar Cabeza), k.j.gaston@sheffield.ac.uk (Kevin J. Gaston)
 ${ }^{1}$ Centro de Estudos Florestais and Departamento de Matemática, Inst. Superior de Agronomia, Technical University of Lisbon (TULisbon), Tapada da Ajuda, 1349-017 Lisboa, Portugal
 ${ }^{2}$ CEMAPRE and Inst. Sup. de Economia e Gestão, Technical University of Lisbon (TULisbon) Rua do Quelhas 6, 1200-781 Lisboa, Portugal
 ${ }^{3}$ Metapopulation Research Group, Dept. of Biological and Environmental Sciences, P.O. Box 65, FIN-00014 University of Helsinki, Finland and Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences, CSIC, Madrid, ES-28006, Spain
 ${ }^{4}$ Dept of Animal and Plant Sciences, Univ. of Sheffield, Sheffield, U.K. S10 2TN

