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Abstract. We study the space discretization of the Cauchy problem for a
second order linear parabolic PDE, with one spatial dimension and unbounded
time and space-dependent coefficients. The PDE free term and the initial
data are also allowed to grow. Under the assumption that the PDE does
not degenerate, the problem’s weak solution is approximated in space, with
finite-difference methods. The rate of convergence is estimated. A numerical
example is given in order to illustrate the theoretical results.

1. Introduction and classical results

In this article, we make use of finite-difference methods to approximate in space
the weak solution of the Cauchy problem

(1.1) Lu− ut + f = 0 in Q, u(0, x) = g(x) in R,

where Q = [0, T ] × R, with T a positive constant, L is the second-order partial
differential operator with real coefficients

(1.2) L(t, x) = a(t, x)
∂2

∂x2
+ b(t, x)

∂

∂x
+ c(t, x),

for each t ∈ [0, T ] uniformly elliptic in the space variable, and f and g are given
real-valued functions. We allow the growth in space of the first and second-order
coefficients in L (linear and quadratic growth, respectively), and of the data f and
g (polynomial growth).

This article follows previous works by the same authors ([6, 7]), where the same
approach is utilized for the numerical approximation of the more general case of
multidimensional PDEs. In the present article, by considering the special case of
one dimension in space, a stronger convergence result holds. In particular, the
same order of accuracy is obtained under regularity assumptions weaker than those
required in [6, 7] for the corresponding convergence result.

Linear parabolic PDE problems arise in Financial Mathematics (see, e.g., [10]),
and there lies our main motivation.
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The finite-difference method for approximating PDE is a mature area of re-
search.∗ We refer to [17], for the numerical approximation study of the Cauchy
problem for general multidimensional linear parabolic PDEs of order m ≥ 2, with
bounded time and space-dependent coefficients. The approach is pursued in the
framework of the classical approach.

Also, there has been a long and extensive research on the application of finite-
difference methods to financial option pricing.† Nevertheless, most studies concern-
ing the numerical approximation of PDE problems in Finance consider the particu-
lar case where the PDE coefficients are constant (see, e.g., [1, 2, 5, 16]). This occurs,
namely, in option pricing under Black-Scholes stochastic model (in one or several
dimensions), when the asset appreciation rate and volatility are taken constant.

In this article, we deal with the challenge posed by the unboundedness of the
PDE coefficients, under the strong assumption that the PDE does not degenerate.

We consider problem (1.1) in the framework of the variational approach, and
impose weak regularity over the operator’s coefficients and the data f and g. We
make use of the L2 theory of solvability of linear PDEs in weighted Sobolev spaces
and, in particular, consider the deterministic one spatial dimension special case of
a class of weighted Sobolev spaces introduced by O. G. Purtukhia [12, 13, 14, 15],
and further generalized by I. Gyöngy and N. V. Krylov [9], for the treatment of
linear SPDEs. By considering discrete versions of these spaces, we set an appro-
priate discretized framework and investigate the spatial approximation of the PDE
problem’s weak solution. In order to facilitate the study, we make use of basic one-
step finite-difference schemes. We conclude the article by presenting a numerical
example that illustrates our analytic and numerical results.

We briefly review some facts on the solvability of problem (1.1). We first intro-
duce the above mentioned class of weighted Sobolev spaces.‡

Let U be a domain in R, i.e., an open subset of R. Let r > 0, ρ > 0 be smooth
functions in U and m ≥ 0 an integer. The weighted Sobolev space Wm,2(r, ρ)(U)
is the Banach Space of all locally integrable functions v : U → R such that for each
integer α ≥ 0, with α ≤ m, Dαv exists in the weak sense, and

|v|W m,2(r,ρ)(U) :=
( ∑

α≤m

∫

U

r2|ραDαv|2dx
)1/2

is finite. Endowed with the inner product

(v, w)W m,2(r,ρ)(U) :=
∑

α≤m

∫

U

r2ρ2αDαvDαwdx,

for all v, w ∈ Wm,2(r, ρ)(U), which generates the norm, Wm,2(r, ρ)(U) is a Hilbert
space.

Notation. In the sequel, when U = R the argument in the function space notation
is dropped. For instance, we denote Wm,2(r, ρ)(R) =: Wm,2(r, ρ).

We make some assumptions on the behaviour of the weight functions r and ρ
(see [9]).

∗ See [17] for a brief history of the finite-difference method, and also for the references of the
original publications and further major contributions.

† The references for the seminal applications of finite differences to financial problems, and
further major research can be tracked down in the review paper [3].

‡We refer to [9] for a complete description of this class of spaces.
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Assumption 1. Let m ≥ 0 be an integer, and r > 0 and ρ > 0 smooth functions on
R. There exists a constant K such that

(1) |Dαρ| ≤ Kρ1−α for all α such that α ≤ m− 1 if m ≥ 2;
(2) |Dαr| ≤ K

r

ρα
for all α such that α ≤ m;

(3) sup
|x−y|<ε

(r(x)
r(y)

+
ρ(x)
ρ(y)

)
= K for some ε > 0, x, y ∈ R.

Now, we switch point of view and consider the functions w : Q → R as functions
on [0, T ] with values in R∞ such that, for all t ∈ [0, T ], w(t) := {w(t, x) : x ∈ R}.

We impose a coercivity condition over the operator (1.2), and make assumptions
on the growth and regularity of the operator’s coefficients and also on the regularity
of the free data f and g (see [9]):

Assumption 2. Let r > 0 and ρ > 0 be smooth functions on R, and m ≥ 0 an
integer.

(1) There exists a constant λ > 0 such that a(t, x) ≥ λρ2(x), for all t ≥ 0,
x ∈ R;

(2) The coefficients in L and their derivatives in x up to the order m are
measurable functions in [0, T ]× R such that

|Dα
x a| ≤ Kρ2−α ∀α ≤ m ∨ 1, |Dα

x b| ≤ Kρ1−α, |Dα
x c| ≤ K ∀α ≤ m,

for any t ∈ [0, T ], x ∈ R, with K a constant and Dα
x denoting the αth

partial derivative operator with respect to x;
(3) f ∈ L2([0, T ]; Wm−1,2(r, ρ)) and g ∈ Wm,2(r, ρ).

Notation. We use the notation W−1,2(r, ρ) := (W 1,2(r, ρ))∗, where (W 1,2(r, ρ))∗ is
the dual of W 1,2(r, ρ).

We define the generalized solution of problem (1.1).

Definition 1. We say that u ∈ C([0, T ];W 0,2(r, ρ)) is a generalized solution of
(1.1) on [0, T ] if

(1) u ∈ L2([0, T ];W 1,2(r, ρ));
(2) For every t ∈ [0, T ]

(u(t), ϕ) = (g, ϕ) +
∫ t

0

{− (a(s)Dxu(s), Dxϕ)

+ (b(s)Dxu(s)−Dxa(s)Dxu(s), ϕ)

+ (c(s)u(s), ϕ) + 〈f(s), ϕ〉}ds

holds for all ϕ ∈ C∞0 .

Notation. The notation ( , ) in the above definition stands for the inner product
in W 0,2(r, ρ).

Finally, we state the existence and uniqueness of the solution of problem (1.1)
(see, e.g., [9, 11]).



4 F. F. GONÇALVES, M. R. GROSSINHO, AND E. MORAIS

Theorem 1. Under (1)−(2) in Assumption 1, with m + 1 in place of m, and
(1)−(3) in Assumption 2, problem (1.1) admits a unique generalized solution u on
[0, T ]. Moreover u ∈ C([0, T ]; Wm,2(r, ρ)) ∩ L2([0, T ]; Wm+1,2(r, ρ)) and

sup
0≤t≤T

|u(t)|2W m,2(r,ρ) +
∫ T

0

|u(t)|2W m+1,2(r,ρ)dt

≤ N
(
|g|2W m,2(r,ρ) +

∫ T

0

|f(t)|2W m−1,2(r,ρ)dt
)
,

with N a constant.

2. Main results

We now proceed to the discretization of problem (1.1) in the space-variable. We
define the h-grid on R, with h ∈ (0, 1],

(2.1) Zh = {x ∈ R : x = nh, n = 0,±1,±2, . . .}.
Denote

(2.2) ∂+u = ∂+u(t, x) = h−1(u(t, x + h)− u(t, x))

and

(2.3) ∂−u = ∂−u(t, x) = h−1(u(t, x)− u(t, x− h)),

for every x ∈ Zh, the forward and backward difference quotients in space, respec-
tively. Define the discrete operator

Lh(t, x) = a(t, x)∂−∂+ + b(t, x)∂+ + c (t, x).

We consider the discrete problem

(2.4) Lhu− ut + fh = 0 in Q(h), u(0, x) = gh(x) in Zh,

where Q(h) = [0, T ]× Zh, with T ∈ (0,∞), and fh and gh are functions such that
fh : Q(h) → R and gh : Zh → R.

For functions v : Zh → R, we introduce the discrete version of the weighted
Sobolev space W 0,2(r, ρ):

l0,2(r) = {v : |v|l0,2(r) < ∞},
where the norm |v|l0,2(r) is defined by

|v|l0,2(r) =
( ∑

x∈Zh

r2(x)|v(x)|2h
)1/2

.

Define the inner product

(v, w)l0,2(r) =
∑

x∈Zh

r2(x)v(x)w(x)h,

for any v, w ∈ l0,2(r), which induces the above norm. Endowed with the inner
product, the space l0,2(r) is clearly a Hilbert space.

For functions v : Zh → R, we introduce also the discrete version of the weighted
Sobolev space W 1,2(r, ρ):

l1,2(r, ρ) = {v : |v|l1,2(r,ρ) < ∞},
with the norm |v|l1,2(r,ρ) defined by

|v|2l1,2(r,ρ) = |v|2l0,2(r) + |ρ∂+v|2l0,2(r).
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We endow l1,2(r, ρ) with the inner product, inducing the above norm,

(v, w)l1,2(r,ρ) = (v, w)l0,2(r) + (ρ∂+v, ρ∂+w)l0,2(r),

for any functions v, w in l1,2(r, ρ).
It can be easily checked that l1,2(r, ρ) is a reflexive and separable Banach space,

continuously and densely embedded into the Hilbert space l0,2(r).§

We switch our viewpoint and consider the functions w : Q(h) → R as functions
on [0, T ] with values in R∞, defined by

w(t) = {w(t, x) : x ∈ Zh}.
for all t ∈ [0, T ]. For these functions, we consider the space

C([0, T ]; l0,2(r))

of continuous l0,2(r)-valued functions on [0, T ], and the spaces

L2([0, T ]; lm,2(r, ρ)) =
{

w : [0, T ] → lm,2(r, ρ) :
∫ T

0

|w(t)|2lm,2(r,ρ) dt < ∞
}

,

with m = 0, 1.

Notation. We identify l0,2(r, ρ) with l0,2(r).

We make some assumptions over the regularity of the data fh and gh in (2.4).

Assumption 3. Let r > 0 be a smooth function on R.
(1) fh ∈ L2([0, T ]; l0,2(r));
(2) gh ∈ l0,2(r).

We define the generalized solution of problem (2.4).

Definition 2. We say that u ∈ C([0, T ]; l0,2(r))∩L2([0, T ]; l1,2(r, ρ)) is a generalized
solution of (2.4) if, for all t ∈ [0, T ],

(u(t), ϕ) = (gh, ϕ) +
∫ t

0

{− (a(s)∂+u(s), ∂+ϕ) + (b(s)∂+u(s)− ∂+a(s)∂+u(s), ϕ)

+ (c(s)u(s), ϕ) + 〈fh(s), ϕ〉}ds

holds for all ϕ ∈ l1,2(r, ρ).

Notation. In the above definition, ( , ) denotes the inner product in l0,2(r).

Next, we establish the existence and uniqueness of the generalized solution of
discrete problem (2.4), and determine an estimate for the solution. With this result,
we show that the numerical scheme is stable, i.e., informally, that the solution of
the discrete problem remains bounded independently of the space-step h.

Theorem 2. Under (1)−(2) in Assumption 2 and (1)−(2) in Assumption 3, prob-
lem (2.4) has a unique generalized solution u in [0, T ]. Moreover

sup
0≤t≤T

|u(t)|2l0,2(r) +
∫ T

0

|u(t)|2l1,2(r,ρ)dt ≤ N
(
|gh|2l0,2(r) +

∫ T

0

|fh(t)|2l0,2(r)dt
)
,

with N a constant independent of h.

§:We refer to [7], where this is proved for the more general case where l0,2(r) and l1,2(r, ρ) are
spaces of real-valued functions on a d-dimensional grid.
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Finally, we state a result on the convergence of the discrete problem’s generalized
solution to the PDE problem’s generalized solution, and compute a convergence
rate (the accuracy of the approximation is of order 1). The result is obtained by
imposing that the weights ρ are bounded from below by a positive constant. Note
that this amounts to assume that the weights ρ are increasing functions of |x|, which
is precisely the case we are studying.

Theorem 3. Assume that the hypotheses of Theorems 1 and 2 are satisfied. As-
sume additionally that (3) in Assumption 1 holds and that ρ(x) ≥ C on R, with
C > 0 a constant. Denote by u the solution of (1.1) in Theorem 1 and by uh the
solution of (2.4) in Theorem 2. Assume also that u ∈ L2([0, T ]; W 3,2(r, ρ)). Then

sup
0≤t≤T

|u(t)− uh(t)|2l0,2(r) +
∫ T

0

|u(t)− uh(t)|2l1,2(r,ρ)dt

≤ h2N

∫ T

0

|u(t)|2W 3,2(r,ρ)dt + N
(
|g − gh|2l0,2(r) +

∫ T

0

|f(t)− fh(t)|2l0,2(r)dt
)
,

for some constant N independent of h.

3. Some details

Theorem 2 is obtained by proving that the discretized problem (2.4) can be cast
in a general initial-value problem for linear evolution equations in abstract spaces,
and then making use of an existence and uniqueness result for this general problem
(see, e.g., [11] for the latter result).

Theorem 3 is proved owing both to the stability properties of the numerical
scheme (Theorem 2), and to its consistency properties. The following result con-
cerns the consistency, and asserts that the difference quotients approximate the
partial derivatives (with accuracy of order 1).

Proposition 1. Assume that (1)−(3) in Assumption 1 are satisfied and that
ρ(x) ≥ C on R, with C > 0 a constant. Let u(t) ∈ W 2,2(r, ρ), v(t) ∈ W 3,2(r, ρ),
for all t ∈ [0, T ]. Then there exists a constant N independent of h such that

(1)
∑

x∈Zh

r2(x)
∣∣ ∂

∂x
u(t, x)− ∂+u(t, x)

∣∣2ρ2(x)h ≤ h2N |u(t)|2W 2,2(r,ρ),

(2)
∑

x∈Zh

r2(x)
∣∣ ∂2

∂x2
v(t, x)− ∂−∂+v(t, x)

∣∣2ρ4(x)h ≤ h2N |v(t)|2W 3,2(r,ρ),

for all t ∈ [0, T ].

We stress that the estimates in Proposition 1 and in Theorem 3 are obtained
under regularity assumptions weaker than those in the correspondent consistency
and convergence results in [6, 7] for the more general case of multidimensional
PDEs.

For a complete description of the discretization study presented in this article,
we refer to [8].

4. A numerical example

In this section we illustrate the theoretical results and numerical scheme referred
above. We consider problem (1.1) with the following coefficient functions

a(t, x) = (1 + t)
(
1 + x2

)
, b(t, x) = 2tx, and c(t, x) = sin(tx),
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and with
f(t, x) = t

(
1 + x3

)
and g(x) =

(
1 + x3

)
sin(2πx).

Then, problem (1.1) reads

(4.1) Lu− ut + t
(
1 + x3

)
= 0 in Q, u(0, x) =

(
1 + x3

)
sin(2πx) in R,

where

L(t, x) = (1 + t)
(
1 + x2

) ∂2

∂x2
+ 2tx

∂

∂x
+ sin(tx).

We proceed in two steps:
• we observe that the assumptions of Theorems 1, 2 and 3 are satisfied and

so their conclusions hold for problem (4.1) and its space-discretized version
presented below

• we make a computational simulation using the method of lines.

4.1. Analytic and numerical solution of (4.1). Take m = 2, and consider the
functional settings of Section 1 and of Section 2 as underlying adequately the study
of (4.1) and of the corresponding space-discretized version, respectively.

Consider the weight functions (particular cases taken from [9], citing [12])

r(x) =
(
1 + x2

)β
, with β < −11/4

ρ(x) =
(
1 + x2

)1/2
.

(4.2)

It is easy to see that:
• r and ρ satisfy Assumption 1 (with m = 3 as required in Theorem 1);
• the coefficient functions a (t, x), b (t, x) and c (t, x) considered above satisfy

(1) and (2) in Assumption 2 and the functions f and g satisfy (3).
Then the assumptions of Theorem 1 are satisfied and its conclusion holds for

problem (4.1).
We now discretize problem (4.1) on the h-grid Zh on R defined by (2.1). For

x = nh ∈ Zh and t ∈ [0, T ], define

fh(t, x) := f(t, nh) = t
(
1 + (nh)3

)
and gh(x) := g(nh) =

(
1 + (nh)3

)
sin(2πnh),

discrete versions of f and g, respectively. We then obtain the family of ordinary
differential equations in the time variable t

(4.3) Lhu(t, nh)− ut(t, nh) + t
(
1 + (nh)3

)
= 0 in Q(h) = [0, T ]× Zh

satisfying

(4.4) u(0, nh) =
(
1 + (nh)3

)
sin(2πnh) in Zh,

where the operator Lh is defined by

Lh(t, x) = a(t, x)∂+∂− + b(t, x)∂+ + c(t, x),

with ∂+ and ∂− the forward and backward difference quotients in space defined,
respectively, by (2.2) and (2.3).

It is clear that fh ∈ L2([0; T ]; l0;2(r)) and gh ∈ l0;2(r) and so Assumption 3 is
satisfied. Then, we can apply Theorem 2 and so its conclusion holds for problem
(4.3 )−(4.4).
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Notice that ρ(x) =
(
1 + x2

)1/2 ≥ 1 on R. Under the above setting we can apply
Theorem 3. But before that observe that

• by the conclusion of Theorem 1 applied to our example, the generalized
solution u of problem (4.1) satisfies

∫ T

0

|u(t)|2W 3,2(r,ρ)dt ≤ N
(
|g|2W 2,2(r,ρ) +

∫ T

0

|f(t)|2W 1,2(r,ρ)dt
)
;

• due to the chosen approximation

|g − gh|2l0,2(r) +
∫ T

0

|f(t)− fh(t)|2l0,2(r) dt = 0.

Owing to these facts, we have the following upper bound for the estimate in
Theorem 3

h2N

∫ T

0

|u(t)|2W 3,2(r,ρ)dt + N
(
|g − gh|2l0,2(r) +

∫ T

0

|f(t)− fh(t)|2l0,2(r)dt
)

≤ h2N
(
|g|2W 2,2(r,ρ) +

∫ T

0

|f(t)|2W 1,2(r,ρ)dt
)
.

(4.5)

Thus, applying Theorem 3 and using the upper bound (4.5), a result concerning the
convergence of the discrete problem’s generalized solution to the PDE problem’s
generalized solution holds. This result, which falls in spirit of Theorem 3, is stated
next for the sake of completeness.

Proposition 2. Denote by u the solution of problem (4.1) and by uh the solution
of problem (4.3)−(4.4). Then

sup
0≤t≤T

|u(t)− uh(t)|2l0,2(r) +
∫ T

0

|u(t)− uh(t)|2l1,2(r,ρ)dt

≤ h2N
(
|g|2W 2,2(r,ρ) +

∫ T

0

|f(t)|2W 1,2(r,ρ)dt
)
,

for some constant N independent of h.

4.2. Computational simulation. Now we implement our example computation-
ally. In order to do so we introduce some boundary conditions.

Let 0 ≤ x ≤ 1 and take h > 0 such that h × M = 1 for some integer M > 1.
Define the h-grid in [0, 1]:

Z∗h = {0, h, 2h, ..., 1}.

Impose the boundary conditions:

u(t, 0) = 0 and u(t, 1) = 0.

The discrete problem (4.3)−(4.4) can be written
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– for 1 ≤ n ≤ M − 1,

ut(t, nh) =
(

a(t, nh)
h2

+
b(t, nh)

h

)
u
(
t, (n + 1)h

)

+
(

c(t, nh)− 2a(t, nh)
h2

− b(t, nh)
h

)
u(t, nh)

+
a(t, nh)

h2
u
(
t, (n− 1)h

)
+ f(t, nh)

u(0, nh) = (1 + (nh)3) sin(2πnh),

– for n = 0 and n = M ,
u(t, 0) = u(t, 1) = 0.

Figure 1 is a representation of the solution of the discrete problem, for h = 0.01.
The numerical scheme was implemented making use of the software Mathematica,
version 7.0.0.
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