
Chapter 1
KAM theory as a limit of renormalization

João Lopes Dias

Abstract This is a brief survey of recent results on the KAM stability of quasiperi-
odic dynamics using renormalization of vector fields.

1.1 Introduction

For thirty years renormalization ideas have been used in thetheory of dynamical
systems. After the pioneering work of Feigenbaum [6] in the late 1970’s, there has
been a number of different applications of renormalizationtechniques. Its core con-
cept is rescaling. That is, rescaling of space by zooming in aregion in phase space;
rescaling of time by considering a different time frame, as it takes longer to return
to the region. Complicated dynamical behaviour can then turn out to be simpler in
the new renormalized system. If by iterating the rescaling one gets convergence, it
is a clear hint that the system looks the same in smaller scales. Moreover, if this self
similarity is in some sense trivial, one can then hope to prove conjugacy between
the systems.

The connection between KAM and renormalization theories has been realized
for quite some time. Renormalization approach to KAM has several important ad-
vantages. First of all, it provides a unified setting which allows to deal with both the
cases of smooth KAM-type invariant tori and non-smooth critical tori. Secondly,
the proofs based on renormalizations are conceptually verysimple and give a differ-
ent perspective on the problem of small divisors. For the continuous-time situation,
several KAM results for small-divisor problems in quasiperiodic motion have been
obtained by studying the stability of trivial fixed sets of renormalization operators
(cf. e.g. [16, 22, 23, 19, 7]). There was however a relevant restriction when dealing
with multiple frequencies. Because renormalization methods rely fundamentally on
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the continued fractions expansion of the frequency vector,the lack of a multidimen-
sional version of continued fractions was the reason for failing to replicate KAM
in its full generality. This limitation was recently overcome in [12] by adapting La-
garias’ algorithm [21] and deriving estimates for multidimensional continued frac-
tions (MCF) expansions of diophantine vectors.

In the case of Hamiltonian systems with two degrees of freedom MacKay pro-
posed in the early 1980’s a renormalization scheme for the construction of KAM
invariant tori [27] (see also [29, 30, 31]). The scheme was realized for the con-
struction of invariant curves for two-dimensional conservative maps of the cylinder.
An important feature of MacKay’s approach is the analysis ofboth smooth KAM
invariant curves and so-called critical curves corresponding to critical values of a
parameter above which invariant curves no longer exist. From the point of view of
renormalization theory the KAM curves correspond to a trivial linear fixed point
for the renormalization transformations, while critical curves give rise to very com-
plicated fixed points with nontrivial critical behavior. MacKay’s renormalization
scheme was carried out only for a small class of Diophantine rotation numbers with
periodic continued fraction expansion (such as the golden mean). Khanin and Sinai
studied a different renormalization scheme for general Diophantine rotation num-
bers [14]. Both of the above early approaches were based on renormalization for
maps or their generating functions. Essentially, the renormalization transformations
are defined in the space of pairs of mappings which, being iterates of the same map,
commute with each other. These commutativity conditions cause difficult technical
problems, and led MacKay [28] to propose the development of alternative renormal-
ization schemes acting directly on vector fields. The same idea was realized by Koch
[16] who proves a KAM type result for analytic perturbationsof linear Hamiltonians
H0(x,y) = ω ·y, for frequenciesω which are eigenvectors of hyperbolic matrices in
SL(2,Z) with only one unstable direction. Notice that the set of suchfrequencies
has zero Lebesgue measure and in the cased = 2 corresponds to vectors with a
quadratic irrational slope. Further improvements and applications of Koch’s tech-
niques appeared in [1, 17, 22, 23, 7], emphasizing the connection between KAM
and renormalization theories.

Other renormalization ideas have appeared in the context ofthe stability of in-
variant tori for nearly integrable Hamiltonian systems inspired by quantum field
theory and an analogy with KAM theory (see e.g. [2], and [8, 9]where it is used a
graph representation of the invariant tori in terms of Feynman diagrams).

In section 1.2 we describe a multidimensional continued fractions scheme, which
gives estimates to be used in the renormalization. In the remaining sections we in-
clude examples of systems and several KAM-type results obtained by renormaliza-
tion. In particular, in section 1.3 we give a sketch of the proof of almost reducibility
for analytic linear skew-product flows (cf. [5]). In section1.4 we study local conju-
gacy classes for toroidal flows. Finally, in section 1.5 we present the main ideas for
the renormalization proof of the “classical” KAM theorem inthe context of Hamil-
tonian dynamics.
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Throughout this text we denote by Homeo(M) and Diffr(M), r ∈N∪{∞,ω}, the
set of homeomorphisms andCr -diffeomorphisms onM. Moreover, we add a sub-
script 0 to distinguish the case of homotopic to the identitymaps. Finally, Vectr(M)
stands for the set ofCr -vector fields onM. Recall that the transformation of an
arbitrary vector fieldX on a manifoldM by ψ ∈ Diff (M) is given by

ψ∗X = Dψ ◦ψ−1 ·X ◦ψ−1. (1.1)

1.2 Multidimensional continued fractions

An essential ingredient of the renormalization scheme is a continued fractions de-
composition of vectors, relating the number-theoretical properties of the frequencies
and the conjugacy smoothness.

In this section we present the multidimensional continued fractions algorithm
introduced in [12] following ideas of Dani [4], Lagarias [21] and Kleinbock-
Margulis [15]. In addition, we define the class of diophantine vectors from the prop-
erties of the continued fractions expansion.

1.2.1 Flow on homogeneous space

Denote byG = SL(d,R), Γ = SL(d,Z) and take a fundamental domainF ⊂ G of
the homogeneous spaceΓ \G (the space ofd-dimensional non-degenerate unimod-
ular lattices). OnF consider the flow:

Φt : F → F , M 7→ P(t)MEt , (1.2)

where
Et = diag(e−t , . . . ,e−t ,e(d−1)t) ∈ G

andP(t) is the unique family inΓ that keepsΦtM in F for everyt ≥ 0.
Let ω = (α,1) ∈ Rd. We are interested in the orbit underΦt of the matrix

Mω =

(
I α
0 1

)
. (1.3)

1.2.2 Growth of the flow

Let the functionδ : Γ \G→ R
+ measuring the shortest vector in the latticeM be

δ (M) = inf
k∈Zd\{0}

‖⊤kM‖, (1.4)
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where‖ · ‖ stands for theℓ1-norm (in the following we will make use of the corre-
sponding matrix norm taken as the usual operator norm). Notice thatδ (ΦtMω ) =
δ (Mω Et).

Proposition 1 ([12]).There exist C1,C2 > 0 such that for all t≥ 0

‖ΦtMω‖ ≤
C1

δ (ΦtMω)d−1 and ‖(ΦtMω)−1‖ ≤
C2

δ (ΦtMω)
. (1.5)

1.2.3 Stopping times

Consider a sequence of times, calledstopping times,

t0 = 0 < t1 < t2 < · · · → +∞ (1.6)

such that the matricesP(t) in (1.2) satisfy

Pn := P(tn) 6= P(tn−1), (1.7)

with n ∈ N. We also setP0 = P(t0) = I . The sequence of matricesPn ∈ SL(d,Z)
are the rational approximates ofω , called themultidimensional continued fractions
expansion. In addition we define the transfer matrices

Tn = PnP−1
n−1, n∈ N, and T0 = I . (1.8)

The flow ofMω taken at the time sequence is thus the sequence of matrices

Mn := ΦtnMω = PnMωEtn. (1.9)

Using some properties of the flow, the above can be decomposed(see [12]) into

Mn =

(
I αn

0 1

)(
∆n 0
⊤βn γn

)
(1.10)

with γn being thed-th component of the vector e(d−1)tnPnω .
Defineωn = (αn,1), ω0 = ω and, forn∈ N,

ωn = ηnTnωn−1, (1.11)

whereηn is a normalization factor.
If d = 2 there exists a sequence of stopping times (called Hermittecritical times)

that gives an accelerated version of the standard continuedfractions of a numberα
[21].
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1.2.4 Resonance cone

Given resonance widthsσ , i.e. a sequenceσ : N0 → R+, define the resonant cones
to be

I+
n = {k∈ Z

d : |k ·ωn| ≤ σn‖k‖}. (1.12)

In addition, let

An = sup
k∈I+n \{0}

‖⊤T−1
n+1k‖

‖k‖
. (1.13)

Proposition 2 ([26]).There is c> 0 such that for any n∈ N0

An ≤ ce−δ tn+1
σnedδ tn+1 +1

δ (Mn)d−1δ (Mn+1)
, (1.14)

whereδ tn+1 = tn+1− tn.

1.2.5 Diophantine vectors

A vectorω ∈ R
d is Diophantine with exponentβ ≥ 0 if there is a constantC > 0

such that

|ω ·k| >
C

‖k‖d−1+β .

It is a well known fact that the setsDC(β ) of Diophantine vectors with expo-
nent β > 0 are of full Lebesgue measure [3]. On the other hand, the setDC(0)
has zero Lebesgue measure. A vector is said to be diophantineif it belongs to
DC = ∪β≥0DC(β ). The next proposition gives us a complete characterizationof
diophantine vectors in terms of the behaviour of the flowΦt of Mω .

Proposition 3 ([26]).Let β ≥ 0. Then,ω ∈ DC(β ) iff there is C′ > 0 such that

δ (ΦtMω ) > C′e−θt , t ≥ 0,

with θ = β/(d+ β ).

Proposition 4 ([12]).If ω ∈ DC(β ), β ≥ 0, there are constants ci > 0 such that, for
any stopping-time sequence t: N0 → R,

‖Mn‖ ≤ c1exp[(d−1)θ tn], (1.15)

‖M−1
n ‖ ≤ c2exp(θ tn), (1.16)

‖Tn‖ ≤ c5exp[(1−θ )δ tn+dθ tn], (1.17)

‖T−1
n ‖ ≤ c6exp[(d−1)(1−θ )δ tn+dθ tn], (1.18)

whereδ tn = tn− tn−1 andθ = β/(d+ β ).
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Proposition 5 ([26]). If ω ∈ DC(β ), β ≥ 0, then there is c> 0 such that for any
n∈ N0,

An ≤ ce−(1−θ)δ tn+1+dθtn
(

σnedδ tn+1 +1
)

. (1.19)

Possible choices aretn = c1(1+ β )n andσn = e−c2(1+β )n
with someci > 0.

Here we have only discussed the case of Diophantine frequency vectors. How-
ever, renormalization can be used for a larger class of vectors, cf. e.g. [24, 25, 26,
18, 20, 10, 11].

1.3 Almost reducibitity of linear skew-product flows

In this section we deal with skew-product vector fields, which are linear differential
equations of dimension two, with quasiperiodic coefficients. This is a generaliza-
tion of the classical Floquet theory. Our goal is to present the main ideas behind
renormalization for this kind of dynamics. We present a sketch of a proof on almost
reducibility of these systems.

1.3.1 Skew-product vector fields

Consider the manifoldM = Td ×SL(2,R). Let Vectrsw(M) be the set ofCr -vector
fields onM of the form:

X(x,y) = (ω , f (x)y), (x,y) ∈ M, (1.20)

whereω ∈ Rd \ {0} and f ∈Cr(Td,sl(2,R)). We will use the following notation

X = (ω , f ).

Each element of Vectr
sw(M) generates a skew-product flow onM, i.e. a flow of

the type
φ t (x,y) = (x+ ωt,Φt(x)y),

whereΦt : Td → SL(2,R).
As we want to preserve the space Vectr

sw(M) under coordinate changes, we con-
sider the set Diffr+1

sw (M) of

ψ(x,y) = (Tx,F(x)y), (x,y) ∈ M, (1.21)

whereF ∈ Cr+1(Td,SL(2,R)) andT ∈ SL(d,Z) is a linear automorphism of the
torus. For simplicity, we write

ψ = (T,F).

A vector field in the new coordinates is then given by the formula
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ψ∗X(x,y) = (Tω ,LωF(T−1x) ·F(T−1x)−1y+AdF(T−1x) f (T−1x) ·y), (1.22)

where
Lω = ω ·D = ∑

i
ωi∂/∂xi (1.23)

and AdAb = AbA−1.

1.3.2 Fibered rotation number

Consider the natural projectionp: R2\{0}→T1 given by the argument of a vector.
The fibered rotation number of the flow generated byX = (ω , f ) ∈ Vect0sw(M) is
defined to be

ρ(X) = lim
t→+∞

p

(∫ t
0 f ◦φs(x,y)vds

t

)

for (x,y) ∈ M andv∈ R
2\{0}. This measures the asymptotic frequency of rotation

of the fiber flow inR2. We will be interested in vector fields for whichρ exists at
any point and directionv.

1.3.3 Almost reducibility

In some cases it is possible to find a diffeomorphism that simplifies X, in particu-
lar reducing it to a “constant” vector field. More precisely,we have the following
definition.

1. X ∈Vectrsw(M) isCs-conjugated to Y∈Vectrsw(M) if there isψ ∈Diff s
sw(M) such

thatψ∗X = Y.
2. X isCs-reducibleif its Cs-conjugacy class contains a vector fieldZ = (ω ,u), with

u∈ sl(2,R).
3. X isCs-almost reducibleif the closure of itsCs-conjugacy class contains a vector

field Z = (ω ,u), with u∈ sl(2,R).

Theorem 1.Let ω ∈ Rd be Diophantine and C> 0. There isε > 0 such that if
f ∈ Cω(Td,sl(2,R)) is ε-Cω -close to constant and|ρ(ω , f )| < C, then(ω , f ) is
Cω -almost reducible.

Notice thatε does not depend on the arithmetical properties of the rotation num-
ber. In the remaining part of this section we present the mainsteps towards the proof
of the above theorem.
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1.3.4 Non-homotopic to the identity diffeomorphism

Givenm∈ Zd, we will also be interested in the following transformationof coordi-
nates:

ψm = (I ,Rm)

whereRm: Td → SO(2,R) is

Rm(x) =

[
cos(2πm·x) −sin(2πm·x)
sin(2πm·x) cos(2πm·x)

]
.

The action on a vector fieldX = (ω , f ) is given by

ψ∗
mX =

(
ω ,2πm·ω

[
0 −1
1 0

]
+AdRm f

)
.

In particular, the rotation number is changed as

ρ(ψ∗
mX) = ρ(X)−

1
2

m·ω .

1.3.5 Lifts and complexification

Let r > 0 and consider the domain

Dr = {x∈ C
d : ‖ Imx‖ < r/2π} (1.24)

for the norm‖z‖ = ∑i |zi | onCd. Take a real-analytic map

F : Dr → SL(2,C),

Zd-periodic, on the form of the Fourier series

F(x) = ∑
k∈Zd

Fke
2π ik·x (1.25)

with Fk ∈ SL(2,C). The Banach spacesAr andA ′
r are the subspaces such that the

respective norms

‖F‖r = ∑
k∈Zd

‖Fk‖er‖k‖, (1.26)

‖F‖′r = ∑
k∈Zd

(1+2π‖k‖)‖Fk‖er‖k‖ (1.27)

are finite. Here and in the following we use the matrix norm‖A‖= maxj ∑i |Ai, j | for
any square matrixA with entriesAi, j .
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Similarly, define the spacear of real-analytic functionsDr → sl(2,C), Zd-
periodic and on the form of Fourier series, having the same type of bounded norm
as (1.26). We are interested in vector fields that can be written as

X(x,y) = (ω , f (x)y), (x,y) ∈ Dr ×SL(2,C). (1.28)

The space of such vector fields is denoted byVr wheneverf is in ar . The norm on
this space is defined to be

‖X‖r = ‖ω‖+‖ f‖r. (1.29)

1.3.6 Uniformization

The theorem below states the existence of a nonlinear changeof coordinates isotopic
to the identity that cancels the

I− = {k∈ Z
d : |k ·ω | > σ‖k‖}

Fourier modes of a sufficiently close to constantX ∈ Vr , with σ > 0. We are only
eliminating the far from resonance modes, this way avoidingthe complications usu-
ally related to small divisors.

Let u∈ sl(2,C) and

Br(u,ε) = { f ∈ ar : ‖ f −u‖r < ε}

where

ε =
Cσ2

‖ω‖+‖u‖
. (1.30)

In order to simplify notations, here and in the followingC stands for some positive
universal constant, not necessarily the same.

Theorem 2.Let |ρ | ≤ σ/4 and u∈ sl(2,R) with eigenvalues±iρ . There is an ana-
lytic mapU : Br(u,ε) → A ′

r such that

I
−ψ∗(X) = 0 where ψ = (I ,U( f ))

and

‖U( f )− I‖′r ≤
C
σ
‖I

−X‖r

‖ψ∗X−EX‖r ≤C‖(I−E)X‖r.
(1.31)

Moreover,U( f ) : Rd → SL(2,R).
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1.3.7 Proof of Theorem 2

We now prove Theorem 2.

1.3.7.1 Homotopy method

The coordinate transformationψ will be determined by someU in

Bδ =
{
U ∈ I

−
A

′
r : ‖U − I‖′r < δ

}
,

for
δ = Cε/σ < 1. (1.32)

Define the operator

F : Bδ → I
−
Ar

U 7→ I
−(LωU ·U−1 +AdU f ).

(1.33)

If U is real-analytic, thenF (U) is also real-analytic. The derivative ofF at U is
the linear map fromI−A ′

r to I−Ar given by

DF (U)H = I
−(Lω H −LωU ·U−1H −AdU f ·H +H f )U−1. (1.34)

We want to find a solution of

F (Ut) = (1− t)F (U0), (1.35)

with 0≤ t ≤ 1 and initial conditionU0 = I . Differentiating the above equation with
respect tot, we get

DF (Ut)
dUt

dt
= −F (I). (1.36)

Proposition 6. There isδ > 0 such that if U∈Bδ , then DF (U)−1 : I−Ar → I−A ′
r

is bounded and
‖DF (U)−1‖ < δ/ε.

From the above proposition (to be proved in Section 1.3.7.2)we integrate (1.36)
with respect tot, obtaining the integral equation:

Ut = I −
∫ t

0
DF (Us)

−1
F (I)ds. (1.37)

In order to check thatUt ∈ Bδ for any 0≤ t ≤ 1, we estimate its norm:

‖Ut − I‖′r ≤ t sup
v∈Bδ

‖DF (v)−1
F (I)‖′r

≤ t sup
v∈Bδ

‖DF (v)−1‖‖I
− f‖r < tδ‖I

− f‖r/ε,
(1.38)
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so,‖Ut − I‖′r < δ . Therefore, the solution of (1.35) exists inBδ and is given by
(1.37). Moreover, ifX is real-analytic, thenUt takes real values for real arguments.

In view of

I
+(AdU f −u) = I

+
[
(U − I) f (U−1− I)+ (U − I) f̃ + f̃ (U−1− I)+ f̃

]
, (1.39)

where f̃ = f −u, we get

‖U∗
t X−EX‖r ≤‖I

+Lω (U − I) · (U−1− I)‖r +‖I
+(AdU f −u)‖r +(1− t)‖I

− f‖r

≤2‖ω‖‖U‖r ‖U − I‖r‖U − I‖′r +2‖U‖(‖u‖+‖ f̃‖)‖U − I‖2
r

+‖ f̃‖r(1+2‖U‖r)‖U − I‖r +‖ f̃‖r +(1− t)‖I
− f‖r

≤(3− t)‖ f̃‖r .

(1.40)

Theorem 2 corresponds to the caset = 1.

1.3.7.2 Proof of Proposition 6

Lemma 1. DF (I)−1 : I−Ar → I−A ′
r is bounded and

‖DF (I)−1‖ <
5

σ −10‖(I−E) f‖r
. (1.41)

Proof. Let g = (I−E) f . From (1.34) one has

DF (I)H = I
−(Lω +adf )H

=
[
I+ I

−adg (Lω +adu)
−1](Lω +adu)H,

(1.42)

where adbA = Ab−bA. Thus, the inverse of this operator, if it exists, is given by

DF (I)−1 = (Lω +adu)
−1[

I+ I
−adg (Lω +adu)

−1]−1
. (1.43)

By looking at the spectral properties of the operator(2π ik ·ω I + adu), with the
spectrum of adu being{0,±4π iρ}, it is possible to write

(Lω +adu)H(x) = ∑
k∈I−

SΛkS
−1Hke

2π ik·x (1.44)

where
Λk = (2π i)diag(k ·ω ,k ·ω ,k ·ω +2ρ ,k ·ω −2ρ) (1.45)

and
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S=




0 1 −1 −1
1 0 i −i
−1 0 i −i
0 1 1 1


 . (1.46)

So, we have the linear map fromI−Ar to I−A ′
r ,

(Lω +adu)
−1F(x) = ∑

k∈I−
SΛ−1

k S−1Fke
2π ik·x. (1.47)

Now, for k∈ I−,

‖(Lω +adu)
−1F‖′r ≤

4
2π ∑

k∈I−

1+2π‖k‖
|k ·ω |

‖Fk‖er‖k‖

<
5
σ
‖F‖r .

(1.48)

It is possible to bound from above the norm of adg by 2‖g‖r. Therefore,

‖I
−adg (Lω +adu)

−1‖ <
10
σ
‖g‖r < 1,

and ∥∥∥
[
I+ I

−adg (Lω +adu)
−1]−1

∥∥∥ <
1

1− 10
σ ‖g‖r

.

The statement of the lemma is now immediate.
As r is constant, in the following we drop it from our notations.

Lemma 2. Given U∈ Bδ , the linear operator DF (U)−DF (I) mappingI−A ′
r

into I−Ar , is bounded and

‖DF (U)−DF (I)‖ < 2‖U‖
[
‖ω‖(1+2‖U‖)+2‖ f‖(1+‖U‖+‖U‖2)

]
‖U − I‖.

(1.49)

Proof. In view of (1.34), we have

[DF (U)−DF (I)] H =I
−LωH · (U−1− I)−LωU ·U−1HU−1

+H f (U−1− I)+ f H−AdU f ·HU−1.
(1.50)

It is possible to estimate the norms of the above terms by

‖LωH · (U−1− I)‖ ≤ ‖ω‖‖U−1− I‖‖H‖′,

‖LωU ·U−1HU−1‖ ≤ ‖ω‖‖U−1‖2‖U − I‖′‖H‖,

‖H f (U−1− I)‖ ≤ ‖ f‖‖U−1− I‖‖H‖,

‖ f H −AdU f ·HU−1‖ = ‖ f H(U−1− I)+ f (U−1− I)HU−1+(U−1− I) fU−1HU−1‖

≤ ‖ f‖(1+‖U−1‖+‖U−1‖2)‖U−1− I‖‖H‖.

(1.51)
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Finally, notice that‖U−1− I‖ ≤ ‖U−1‖‖U − I‖ ≤ 2‖U‖‖U − I‖.
Proposition 6 now follows from‖U‖ < 1+ δ and

‖DF (U)−1‖ ≤
(
‖DF (I)−1‖−1−‖DF (U)−DF (I)‖

)−1

<
{

σ/5− ε−2δ‖U‖
[
‖ω‖(1+2‖U‖)+2‖ f‖(1+‖U‖+‖U‖2)

]}−1

< {σ/5− ε −Cδ (‖ω‖+‖ f‖)}−1 .

(1.52)

Therefore, forδ andε as in (1.32) and (1.30), respectively,

‖DF (U)−1‖ <
δ
ε

. (1.53)

1.3.8 Rescaling

The rescaling that we are interested comes from the continued fractions expansion
of ω . That is, we want to use skew diffeomorphisms of the type(Tn, I) whereTn are
as in section 1.2. Futhermore, we rescale time byηn.

Applying the rescaling to a vector fieldX with no I− Fourier modes has the effect
of improving its analyticity radius and thusCω -approximatingX to a constant by a
factor of ordere−C/An.

1.3.9 One-step renormalization operator

The renormalization step is briefly summarized below.

1. Letm= argmin{|k·ω +2ρ | : k∈ I−}. So,‖m‖ ≤ C|ρ |
1−σ and|ρ ′|= |ρ − 1

2m·ω | ≤
σ/4.

2. Useψ∗
m to obtain a vector field with rotation numberρ ′. TheCω -distance be-

tween the vector field and a constant will be increased by a factor eC‖m‖.
3. Eliminate the modes inI−.
4. Use the rescaling introduced in 1.3.8.

After one step, the vector field will getCω -closer to constant if the norm im-
provement by the rescaling overcomes the opposite effect byψ∗

m. This indeed holds
for ω Diophantine, using the bounds obtained at the end of section1.2.

Notice that‖m‖ only depends on|ρ | andσ . On the other hand,σ is chosen at
each step according to the arithmetic properties ofω .

By iterating the renormalization step we are able to show convergence to a trivial
limit set, namely a set of constant vector fields. That is, therenormalization con-
tracts a small neighbourhood around that set. We remark thatthe diameter of that
neighbourhood does not depend on the arithmetical properties ofρ , but only on|ρ |.
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1.4 Conjugacy classes of torus translations

Consider thed-torusTd. We want to study flows on this manifold. Define the rota-
tion vector of a flowφ t at eachx∈ Td to be the asymptotic direction of the corre-
sponding orbit of the liftΦt(x) to the universal cover:

rot(φ)(x) = lim
t→+∞

Φt (x)−x
t

, (1.54)

if the limit exists. If the rotation vector exists atx for a flowφ t generated by a vector
field X onTd (i.e. d

dt φ
t = X ◦φ t), it is the time average of the vector field along the

orbit:

rot(φ)(x) = lim
t→+∞

1
t

∫ t

0
X ◦φs(x)ds. (1.55)

When the rotation vector exists for allx∈ Td, the rotation set ofφ is

rot(φ) = {rot(φ)(x) : x∈ T
d}. (1.56)

Lemma 3 ([26]).Let h∈ Homeo0(Td), λ 6= 0 and T∈GL(d,Z). If rot(φ) 6= /0, then

rot(h−1◦φ ◦h) = rot(φ) and rot(T−1◦φλ · ◦T) = λT−1 rot(φ). (1.57)

Proposition 7 ([26]).Let φ t be the flow generated by X∈ Vect0(Td) andω ∈ Rd.
If rotφ = {ω}, then

‖EX−ω‖ ≤ d‖X−EX‖C0, (1.58)

whereEX =
∫
Td X dm and m denotes the Lebesgue measure onTd.

We will be interested in vector fields generating flows that possess the same ro-
tation vector for all orbits. Hence, for a vector fieldX we will write rotX to mean
the unique rotation vector associated to the flow generated by X.

TheCω -conjugacy classes of constant Diophantine vector fields can be described,
at least locally, by the rotation vector.

Theorem 3 ([26]).Let ω ∈ Rd be Diophantine. If X is a real-analytic vector field
on Td sufficiently Cω -close to constant with unique rotation vectorω , then there
exists h∈ Diff ω

0 (Td) such that h∗(X) = ω . The conjugacy h depends analytically on
X.

A proof of the above theorem is obtained by comparing the renormalization orbits
of X andω . They get close to each other exponentially fast, and from that we are
able to construct an analytic conjugacy.
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1.5 Invariant tori in phase space

Let B⊂Rd, d≥ 2, be an open set containing the origin, and letH0 be a real-analytic
Hamiltonian function

H0(x,y) = ω ·y+
1
2
⊤yQy, (x,y) ∈ T

d ×B, (1.59)

with ω ∈ Rd and a real symmetricd×d matrix Q. H0 is said to be non-degenerate
if detQ 6= 0.

Theorem 4 ([13]). Suppose H0 is non-degenerate andω is Diophantine. If H is
a real-analytic Hamiltonian onTd ×B sufficiently close to H0, then the Hamilto-
nian flow of H leaves invariant a Lagrangian d-dim torus whereit is analytically
conjugated to the linear flowφt(x) = x+ tω on Td, t ≥ 0. The conjugacy depends
analytically on H.

Hamiltonian vector fields involve more complicated analysis than torus flows
since there is extra dynamics on the action direction and we need to preserve the
symplectic structure. Our goal is to find an analytic embedding Td → Td ×B that
conjugates the Hamiltonian flow to the linear flow on the torusgiven byω .

We do not work directly with vector fields, instead we renormalize Hamiltonian
functions

H(x,y) = H0(x,y)+F(x,y), (x,y) ∈ T
d ×B

whereF is a sufficiently small analytic perturbation. Using a rescaling of time we
may assume thatω = (α,1). The perturbationF is decomposed in a Taylor-Fourier
series

F(x,y) = ∑
k,ν

Fk,νyν1
1 . . .yνd

d e2π ik·x

where the sum is taken overk ∈ Z
d andνi ∈ N∪{0}. By the analyticity ofF, its

modes decay exponentially as‖k‖→ +∞ for fixedν.
Renormalization is an iterative scheme that at each step produces a new Hamil-

tonian. Suppose that after the(n−1)-th step the Hamiltonian is of the form

Hn−1(x,y) = ωn−1 ·y+
1
2
⊤yQn−1y+Fn−1(x,y) (1.60)

whereQn−1 is a symmetric matrix with non-zero determinant. Moreover,we assume
thatFn−1 only contains Taylor-Fourier modes inI+

n−1, i.e. satisfying

|ωn−1 ·k| ≤ σn−1‖k‖ or ‖ν‖ ≥ τn−1‖k‖

for someσn−1,τn−1 > 0. So, then-th step is defined by the following operations:

1. Apply a linear operator corresponding to an affine symplectic transformation
given by

(x,y) 7→ (Tn
−1x, ⊤Tny+bn)
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for some fixed vectorbn.
2. Rescale the action in order to “zoom in” around the invariant torus.
3. Rescale time (energy) to ensure that the frequency vectoris of the formωn =

(αn,1).
4. Eliminate the (irrelevant) constant mode of the Hamiltonian.
5. Eliminate all the modes outside the resonant coneI+

n (thus avoiding dealing with
small divisors) by a close to the identity symplectomorphism.

The first transformation above has a conjugate action

k 7→ ⊤Tn
−1k.

It follows from the hyperbolicity ofTn that this transformation contractsI+
n−1 if σn−1

andτ−1
n−1 are small enough. This significantly improves the analyticity domain in the

x direction which implies the decrease of the estimates for the corresponding modes.
As a result, all modes withk 6= 0 become smaller.

Besides the (trivial) case(k,ν) = (0,0) which is dealt by operation (4) above, we
control the size of the remainingk = 0 modes in different ways. The case

S:= ∑
i

νi = 1

(corresponding to the linear term in the actiony) is eliminated by a proper choice of
the affine parameterbn depending onQn−1 and the perturbation. That is,bn is used
to eliminate an unstable direction related to frequency vectors. The quadratic term
in the action (S= 2) is included in the new symmetric matrixQn which has again
non-zero determinant and becomes smaller due to the action rescaling. Finally, we
show that the action rescaling is also responsible for the decrease of the higher terms
S≥ 3.

The overall consequence of the iterative scheme just described is that it converges
to a limit set of Hamiltonians of the type

y 7→ v ·y.

That is, the “limit” is a degenerate linear function of the action, and from that we
show the existence of anω-invariant torus for the initial Hamiltonian. To prove
convergence we need to find proper choices ofσn andτn as well as of stopping times
tn, which turns out to be possible for Diophantineω . Roughly, too small values
of σn−1 andτ−1

n−1 make harder to eliminate modes as they are “too” resonant. On
the other hand, large values imply thatTn does not contractI+

n−1. Similarly, large
tn− tn−1 improve the hyperbolicity of the matricesTn but worsen the estimates on
their norms and consequently enlarge the perturbation.
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20. S. Kocić. Reducibility of skew-product systems with multidimensional Brjuno base flows.
preprint, 2007.

21. J. C. Lagarias. Geodesic multidimensional continued fractions. Proc. London Math. Soc.,
69:464–488, 1994.

22. J. Lopes Dias. Renormalization of flows on the multidimensional torus close to aKT fre-
quency vector.Nonlinearity, 15:647–664, 2002.

23. J. Lopes Dias. Renormalization scheme for vector fields on T
2 with a diophantine frequency.

Nonlinearity, 15:665–679, 2002.
24. J. Lopes Dias. Brjuno condition and renormalisation forPoincaré flows.Discrete Contin.
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