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Abstract

The Lambert W function has found applications in an extraordinary number

of scientific fields. In this paper we present a short historical review, a brief

description of the function, and a survey of some of its applications.
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1. Introduction

On the celebration of the 300th anniversary of Leonhard Euler’s birth, we offer an

historical look at a well-known mathematical function.

The Lambert W function dates back to Johann Lambert (1728-1777) and Leonhard

Euler (1707-1783). These two mathematicians developed a series solution for the

trinomial equation, but left it unnamed. The series was christened Lambert W function

two centuries later, when it was included in the algebraic system Maple.

The Lambert W function, represented by W (z), is defined as the inverse of the
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function f(z) = zez, satisfying

W (z)eW (z) = z.

According to [17], the mathematical history of W (z) begins in 1758 when Lambert

solved the trinomial equation

x = q + xm,

subsequently transformed by Euler into the form

xα − xβ = (α− β) vxα+β .

After expansion in series, a new function, T (z), known as tree function, was obtained

as

T (z) =
∑
n≥1

nn−1 z
n

n!
. (1)

According to [32], in 1844 Eisenstein noticed that the tree function, was a generating

function that generates rooted labelled trees, and satisfies the functional equation

T (z) = zeT (z). (2)

Thus, the tree function T (z) is related to the W-Lambert function by T (z) = −W (−z).

In [27, 41], the designation of Cayley trees is associated with the function that

satisfies the relation (2). The Cayley function, C(z), is introduced as the function

satisfying the functional equation

C(z) = zeC(z), (3)

which suggests that the tree function T (z) is an example of a Cayley function, named

after the mathematician Arthur Cayley who enumerated rooted labelled trees in the

nineteenth century. Consequently, the two functions, W and T , have found relevant

applications in combinatorics, particulary in enumerating trees.

It is also interesting to mention the reason for choosing the letter W for the Lambert

function. The reason for the choice of the letter W to designate the Lambert function,

when it was included in Maple, see [17], is not entirely clear. However, “... fortuitously,

the letter W has additional significance because of the pioneering work on many aspects
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of W by Wright”. Edward Maitland Wright [42, 43] made quite significant contributions

to Delay Differential Equations (DDEs).

From 1949 [42] to 1959 [43], Wright obtained relevant results in the solution of

zez = a, which is the characteristic equation associated with the DDE x′ = Bx (t− r).

Assuming that x(t) = Ceλt is a solution for some value of λ we obtain after substitution

a transcendental equation zez = a where z = λr and a = rB. As Wright states in [43],

the contribution of Hayes in 1950 [30] was also undeniably important in the study of

that transcendental equation. Today, a more appealing solution involving the operator

W can be expressed by z = W (a).

Furthermore, in 1973, Crowley, Fritsch and Shafer [22] presented an algorithm,

the 443 algorithm, for solving the transcendental equation wew = x. Recently, this

algorithm has been superseded by algorithm 743 [5].

As mentioned in [15], the W function is sometimes known as the omega function

because of several contributions where the Greek letter ω is used. Values of the Lambert

W function can be found at functions.wolfram.com, and an informative poster is

available at www.orcca.on.ca/LambertW.

2. The two real branches of the Lambert W function

The Lambert W function is a multivalued function displaying two real branches.

The figure below represents the two real branches of W (x). If x is real in the interval

− 1
e < x < 0, there are two real values for W (x). The branch satisfying W (x) ≥ −1, is

defined as the principal branch of the W function and is denoted by W (x) or W0(x).

The branch satisfying W (x) ≤ −1 is denoted by W−1(x). An explanation of this

notation can be found in [17].

If x is real, we have the following result on the existence of real values forW (x)eW (x) =

x: if x ≥ 0 then there is an unique real root which is positive except for W (0) = 0;

if − 1
e < x < 0 then there are two negative real roots, W0(x) and W−1(x); if x = − 1

e

then there is only one negative real solution, W0(− 1
e ) = W−1(− 1

e ) = −1 and if x < − 1
e

then there are no real solutions.

The main properties and calculus of W are given in [20, 21], in particular expressions
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Figure 1: The two real branches of W (x): W0(x) (—) and W−1(x) ( - - -).

for its derivative, for integrals containing W , and asymptotic expansions of the complex

branches of W .

We conclude this section noting that

W (x) =
∑
n≥1

(−n)n−1

n!
xn (4)

is a convergent series for |x| < 1
e .

3. Applications of W : a short survey

Knowledge on the Lambert W function, as a mathematical tool, has allowed the

derivation of closed form solutions for models in numerous scientific disciplines, for

which explicit or exact solutions were not known, and alternative iterative methods or

approximate solutions had been used.

Mathematics, physics, biology, geology, engineering, and even risk theory, are some

areas in which the usefulness of the Lambert W function has been proved. In physics,
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we point out the applications of W to optics [21], particle physics [6], general relativity

[13], and geophysics [9]. In engineering, we may mention electronics [12, 37], and

acoustics [11]. Other applications of W can be found in biochemistry [36], geology

[35], risk theory [2], technological systems [25], and in information theory [40].

In the field of mathematics, the applications of the Lambert W function are also

very rich. Corless, Gonnet, Hare and Jeffrey [15] highlight the study of real values of

W (x) and its manipulation in Maple.

Shagi-Di Shih [39] uses the inverse of the function xex to represent periodic orbits

of two nonlinear relaxation oscillations systems. The main contribution of that paper

consists in studying the singular behaviour of each function W (−k, x) at the branch

point x = −e−1, where W (−k, x) are denoted as LambertW(k,x) in Maple.

Corless et al. [16] have discussed the relationship that exists between the inverse

of yαey and the Stirling numbers of the first and second kind, respectively,
[
n
m

]
and{

n
m

}
. On this issue see [33], where a definition of the Stirling numbers based on

the analysis of the transformation from a polynomial expressed in powers of k to a

polynomial expressed in terms of binomial coefficients is presented. Stirling numbers

are the coefficients involved in this transformation. In particular, Stirling numbers of

the first kind are used to convert from binomial coefficients to powers,

n!
(
x

n

)
=
∑
k

(−1)n−k
[
n

k

]
xk,

while Stirling numbers of the second kind are used to convert from powers to binomial

coefficients,

xn =
∑
k

{
n

k

}(
x

k

)
k!.

Following Knuth’s notation [34], the Stirling numbers of the first kind,
[
n
k

]
, should

be called Stirling cycle numbers, while Stirling numbers of the second kind,
{
n
k

}
, should

be called Stirling subset numbers.

The unwinding number definition proposed by Corless, Hare and Jeffrey in [18],

enables the establishment of a precise distinction between the different branches of

the Lambert function. This contribution is fundamental in obtaining an asymptotic

expansion for all branches of W (z) and for all z [20], and has also led to a better

solution for transcendental equations [19].
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It is a curious coincidence that, two centuries ago, Euler and Lambert were studying

the solution of particular algebraic equations, while, in 1998, the Lambert W function

was again used in solving some transcendental equations, see [19].

More recently, the Lambert W function has been applied to Infinite Exponentials

[28], and Graph Theory [26].

However, as noted earlier, it is in the field of time-delay dynamics that the modern

Lambert W function has found a special area of application. Two of the most recent

contributions to this field are [1, 38].

4. Delay differential equations and the Lambert W−function

Delay differential equations were introduced by Condorcet and Laplace in the eigh-

teenth century. Delay systems are sometimes called hereditary systems, retard equa-

tions, or differential-difference equations. Literature surveys can be found in [23] and

[4], and the classics [7, 24, 29].

During the eighteenth century, Condorcet and Laplace were studying delay differen-

tial equations while Euler and Lambert were considering certain other equations. Why

did their results cross only two centuries later? One good reason is that the vehicle

that joins the two fields is the characteristic equation associated with x′ = Bx(t− r).

If we assume a solution of type eλt, then we have

λ−Be−λr = 0⇔ λreλr = rB ⇔ λr = W (rB) .

The solution of the DDE can then be expressed as

x(t) = Ce
W (rB)

r t,

satisfying x′ = Bx(t− r).

If we introduce an initial function to obtain a unique solution, then the problem is

less simple, as can be seen in [3]. The authors point out the advantage of using the

Lambert function to derive a closed form solution to the linear DDE system.

Recently, the authors of [14] examined the solutions of the matrix equation S exp(S) =

A, which is the analogous to the previous equation λreλr = rB. The first simple

equation that the authors studied, y′(t) = Ay(t − 1), is very useful in mathematical
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biology models because the delay logistic equation has this particular DDE form, after

linearization at the equilibrium point [10]. Though efficient numerical computational

routines are available, e.g. in DynPac or dde23, the authors were concerned with finding

analytical solution methods by exploring the relationships between the matrix function

Wk(A) and the solutions of S exp(S) = A.

Heffernan and Corless [31] have instead examined some computer algebra approaches

for solving DDEs. The main methods discussed are the Method of Steps, the Laplace

Transform method, and, more recently, the Least Squares method. It is interesting to

note that this last method has been used in [3], where the authors use the Lambert

W function concept to generalize the state transition matrix concept from Ordinary

Differential Equations (ODEs) to DDEs.

A more specific work which relates the Lambert W function with the discussion

of the roots of the characteristic equation is presented by Boivin and Zhong [8]. In

Bellman and Cooke [7] we can find the use of expansions of the form

u(t) =
∑
r

pr(t)esrt

for the solution u(t) of

a0u
′(t) + b0u(t) + b1u(t− w) = 0 t > w, a0 6= 0

u(t) = g(t), 0 ≤ t ≤ w,

where the sum is taken over all the characteristic roots sr. The subject of the asymp-

totic location of the zeros of the characteristic function

h(s) = a0s+ b0 + b1e
−ws,

has since been extensively studied. In [8] the authors study the characteristic roots

of equation y′(t) = ay(t − 1) by using the Lambert W function, to obtain an asymp-

totic distribution of the roots that provide a stability result on the completeness of

exponential systems.
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