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Abstract. We study the long-term behaviour of the set of financial time series (Sn)n≥0

generated by the following elementary and deterministic financial process. At each month

n ∈ {1, 2, . . .} some amount dn of money is deposited in a savings account subjected to

the devaluation by a monthly negative real interest rate r. We denote by S0 the initial

account balance and by Sn the account balance at the month n ∈ {1, 2, . . .}. We assume

that dn is chosen out of a set {v1, v2} of non-negative values according to the following

rule

dn =

v1 if Sn−1 < ρ

v2 if Sn−1 ≥ ρ,
,

where ρ > 0 is a constant. It is widely known that if v1 = v2, then there exists a

constant time series {S∞}n≥0 of the financial process such that limn→∞ Sn = S∞ for all

S0 ≥ 0. In this article, we provide a complete study of the case in which v1 6= v2. We

show that if v1 6= v2, then the long-term behaviour of the financial time series is much

more complex and, in some cases, is aperiodic and unpredictable. More specifically, two

types of dynamics are possible: either the financial time series are asymptotic to finitely

many periodic sequences or the financial time series have an uncountable (Cantor) set

of ω-limit points. Within the dynamical systems perspective, the following dichotomy

occurs: either the financial process is asymptotically periodic and therefore predictable

at the level of individual time series or the financial process is chaotic, thus unpredictable

and it is only possible to find the frequency with which the time series belongs to each

interval of values.

1. Introduction

The aim of this article is to build a bridge between the field of Financial Mathematics

and the research pursued recently on the topological dynamics of piecewise-affine contrac-

tions of the interval (see [3, 6, 8, 9, 13, 16, 17, 18, 19, 20]). It turns out that many models

in Economics and Finance can be described using very simple piecewise-affine recurrence

relations (see the recent works [2, 15, 23]) and some of these relations are defined by

piecewise-affine contractions. Nevertheless, as we will see in the present work, even a very

simple recurrence relation defined by a piecewise-affine contraction can display nontrivial

dynamics (e.g. limit cycles or Cantor attractors) and have sensitive dependence on initial
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conditions, which is the key ingredient of chaos. Of course, in proving the existence of

chaos, the discontinuities of the model will play a fundamental role.

After the discovery of deterministic chaos, there has been a great deal of effort to apply

methods from nonlinear dynamical systems theory to model the source of randomness

that is observed in economic and financial time series (e.g., see [5, 11, 12] and refer-

ences therein). In piecewise smooth dynamical systems, Lyapunov exponents measure

the degree of randomness of the system. While negative Lyapunov exponents indicate the

absence of chaos or the presence of low-complexity chaos, positive Lyapunov exponents is

an indication of high-complexity chaos. There has been an intensive debate in the litera-

ture as to whether economic and financial time series exhibit chaos (see [14]) and several

methods and algorithms have been devised to estimate Lyapunov exponents through the

analysis of financial data (see [21, 22]).

Probably, the simplest and oldest financial process modelled by an affine recurrence

relation is the compound interest. For instance, the interest we pay for loans or the

interest we receive from deposits. Traditionally, the associated interest rate is positive

and the future value increases exponentially. In this article, we consider instead negative

interest rates. Therefore, savers will see part of their savings and deposits diminished.

According to the Fisher equation in Financial Mathematics, a negative real interest rate

occurs when inflation is higher than the nominal interest rate, which is currently the

situation in Europe, facing a record annual inflation rate of 8.1% in May 2022, coming

from 7.4% in April 2022, as reported by Eurostat on 17 of June 2022. Another possibility is

that the nominal interest rate drops below 0%. This means that banks and other financial

institutions have to pay for keeping their excess cash stored in central banks. Nowadays,

negative interest rates are more than an intellectual curiosity. Since the 2008 financial

crisis, most central banks around the world have lowered their interest rates below 0%.

For instance, since 2014, the European Central Bank (ECB) has reduced the deposit

facility rate achieving in 2021 a value of -0.5% (see [10]). Some banks in Europe can no

longer absorb the negative interest rates set by ECB and started to charge households to

keep large amounts of money. Since March 2021, two of Germany’s largest banks, namely

Deutsche Bank and Commerzbank, charge a 0.5% fee for keeping large deposits of new

costumers. Viewed as a central bank monetary policy tool, negative interest rates work by

stimulating spending and punishing savings, hence boosting the growth of the economy.

Implicitly, there is the idea that most people are not anymore willing to keep their money

in the bank and should prefer to spend or invest it. However, a recent experimental study

has shown the contrary, that there is some tolerance to negative interest rates, meaning

that people prefer to save money in the bank, accepting the losses, rather than spending

it or taking further risks (see [4]).

2. The mathematical model of the financial process

In the sequel, we describe in precise terms the model that will be studied. The financial

process we consider here is deterministic, has discrete time n ∈ {1, 2, . . .} and consists in
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depositing at the end of every month n some amount dn of money in a savings account

with a negative monthly real interest rate r ∈ (−1, 0). For our purposes, and to simplify

matters, we consider the interest rate constant during the whole time, since already in this

simple scenario, as we will see, the dynamics of the process is highly nontrivial. Moreover,

we do not include any random terms to model external effects. In fact, our goal in this

work is to observe some sort of randomness out of very simple and deterministic rules.

We denote by S0 the initial account balance (the principal) and by Sn the account

balance at the month n, which is completely determined by the initial value S0. We

assume that dn is chosen out of a set {v1, v2} of non-negative values according to the

following rule

(1) dn =

v1 if Sn−1 < ρ

v2 if Sn−1 ≥ ρ
,

where ρ > 0 is a constant called threshold. The sequence (Sn)n≥0 is called a financial time

series since it describes the state of the financial process at the time n.

In the framework of dynamical systems, we have that each financial time series (Sn)n≥0

is a solution of the recurrence relation

(2) Sn = f(Sn−1), n = 1, 2, . . . ,

where f : [0,∞)→ [0,∞) is the piecewise-affine contraction defined by

(3) f(x) =

(1 + r)x+ v1 if x < ρ

(1 + r)x+ v2 if x ≥ ρ
.

The case in which v1 = v2 = v is classical and appears in many textbooks (e.g., see [7]).

The general term of the time series (Sn)n≥0 is given explicitly by the closed expression

(4) Sn = (1 + r)nS0 +
(1 + r)n − 1

r
v, n ≥ 0.

In particular, if we choose S0 = −v
r

, then Sn = −v
r

for all n ≥ 0. Moreover, for any other

value of S0,

lim
n→∞

Sn = S∞ := −v
r
.

Hence, all the time series1 (Sn)n≥0 are asymptotic to the constant time series (S∞)n≥0,

that is,

(5) lim
n→∞

|Sn − S∞| = 0, ∀S0 ≥ 0.

To conclude, when v1 = v2, the long-term behaviour of all the financial time series

(Sn)n≥0 is given by the constant financial time series γ = (S∞)n≥0. In other words, all

the financial time series are asymptotic to γ in the sense that (5) is satisfied.

In the case in which v1 6= v2, the financial process does not admit a closed expression

like (4). Moreover, in such a case the interval map (3) has a discontinuity. For this reason,

it is more difficult to analyse its dynamics. In fact, only recently the topological dynamics

1The expression “time series” has the same plural and singular forms. Here we mean a collection of

sequences. Elsewhere, sometimes we use the same expression to mean a unique sequence.
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of such maps were completely understood (see, for instance [3, 6, 8, 16, 17, 18, 19, 20],

for very recent results). In the next section, we provide a complete study of such a case.

3. Statement of the results

Here we consider the financial process described in §2 with deposit values v1 and v2

different from each other. To encompass the variety of possible behaviours, we need

different notions from topological dynamics.

We say that a sequence (an)n≥0 is periodic if an = a0 for some n ≥ 1 and we call

N = min{n ≥ 1 : an = a0} the period of (an). We say that a sequence (bn)n≥0 is

asymptotic to a sequence (an)n≥0 if limn→∞ |bn − an| = 0. Since time series are just

sequences of numbers, the previous notion translates to time series.

Definition 1 (asymptotically periodic financial process). We say that the financial pro-

cess described in §2 is asymptotically periodic if there is a finite collection of periodic

sequences such that each financial time series of the process is asymptotic to a periodic

sequence of the collection.

In this way, if m denotes the number of periodic sequences in Definition 1, then each

time series (Sn)n≥0 of the process, regardless the initial value S0, gets arbitrarily close, as

n tends to ∞, to a set of at most N = N1 + · · · + Nm values, where Ni is the period of

the i-th periodic sequence. The number N can be very large.

Contrasting with the regular and predictable behaviour of asymptotically periodic fi-

nancial processes, the financial process considered here may also have a chaotic behaviour.

Such examples are rare and difficult to construct because there exist results that rules

out such behaviour for Lebesgue almost every parameter. More precisely, piecewise-affine

contractions such as that in (3) are typically asymptotically periodic (see, for instance,

the main results in [8, 17, 18]). In spite of this, in the next section, we provide an existence

result for chaotic examples. Now we will explain what we mean by chaotic behaviour.

There are a variety of definitions of chaos (Devaney chaos, Li-Yorke chaos, Wiggins

chaos, etc.). The most important ingredient of chaos is the notion of sensitive dependence

on initial conditions.

Definition 2 (sensitive dependence on initial conditions). We say that the financial time

series (Sn)n≥0 of the financial process described in §2 have sensitive dependence on initial

conditions at S0 ≥ 0 if for some positive constant η > 0 the following is true: for each

ε > 0, there exist S ′0 ≥ 0 and k ∈ N such that |S ′0 − S0| ≤ ε and |S ′k − Sk| ≥ η, where

(S ′n)n≥0 and (Sn)n≥0 are time series of the financial process with starting points S ′0 and

S0, respectively.

The ω-limit set of a sequence (Sn)n≥0 is the set

(6) ω((Sn)n≥0) = {p ∈ R : ∃n1 < n2 < n3 < · · · such that lim
k→∞

Snk
= p}.

The ω-limit sets of the financial process considered here are the collection of limit sets of

each one of its time series (Sn)n≥0. Concerning asymptotically periodic financial processes,
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such a collection consists of finitely many finite sets (consisting of the terms of each

periodic sequence). In general, such ω-limit sets can also be Cantor sets (i.e. compact,

perfect, nowhere dense sets).

In financial processes with sensitive dependence on initial conditions, it is impossible to

predict the value Sn of an individual time series for n large since any small measurement

error of S0 will result in a large effect deviating from the true value Sn. Nevertheless, it

is possible to predict the frequency with which a time series (Sn)n≥0 visits any interval of

values J . More precisely, we define the frequency of visit of (Sn) to the interval J as the

limit (whenever the limit exists):

(7) freq
(
(Sn)n≥0, J

)
= lim

N→∞

1

N
# {0 ≤ n ≤ N − 1 : Sn ∈ J} ,

where # stands for cardinality.

Definition 3 (chaotic financial process). We say that the financial process described in

§2 is chaotic if there exists a Cantor set C ⊂ [0,∞) such that the following statements

are true:

(C1) Each financial time series of the process has the Cantor set C as its ω-limit set;

(C2) The financial time series of the process have sensitive dependence on initial con-

ditions at each S0 ∈ C;

(C3) For each interval J ⊂ [0,∞), there exists a constant cJ ≥ 0 such that

lim
N→∞

1

N
# {0 ≤ n ≤ N − 1 : Sn ∈ J} = cJ

for all financial time series (Sn)n≥0.

Now that we have introduced and explored the notions of dynamical systems required

to understand the long-term behaviour of financial time series, we are ready to state our

results.

Theorem 1. Considering the financial process described in §2, one of the following al-

ternatives occurs:

(i) The financial time series are asymptotic to at most two periodic sequences;

(ii) The financial time series have the same Cantor set as their ω-limit set.

In what follows, we denote by ω = ω0ω1ω2 . . . the Fibonacci word, that is, the sequence

of binary digits

(8) ω = 010010100100101001010010010100100101001010010010100...

defined by ωi = 2 + b(i + 1)ϕc − b(i + 2)ϕc, where ϕ = (1 +
√

5)/2 is the golden ratio

and bxc denotes the integral part of x. Notice that the Fibonacci word is the sequence

A003849 in the OEIS2.

2The on line encyclopedia of integer sequences®.
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Theorem 2. Let ω = ω0ω1ω2 . . . be the Fibonacci word given by (8), 1 < b < ∞ and

δ > 0 be given by

(9) δ = 1− 1

b
+

1

b

(
1− 1

b

)∑
k≥0

ωkb
−k.

Then the financial process described in §2 with the parameters

(10) v1 = 1000, v2 = 500, r =
1

b
− 1, ρ =

500b

b− 1
[b(1− δ) + 1]

is chaotic.

There is nothing special with the Fibonacci word in Theorem 2. In fact, because of [1,

Theorem 3.2.11], any Sturmian binary word would work.

The financial process described in §2 with the parameters provided in Theorem 2 is

chaotic and, in particular, has sensitive dependence on initial conditions at points of a

Cantor set. We can observe that phenomenon in a computer simulation of the process.

The convergence of the infinite series (9) can be very slow if b is close to 1, or equivalently,

if the real interest r is close to 0% in absolute value. To speed up the process and observe

the phenomenon of sensitive dependence with a few iterations, we will choose the real

interest r = −50% whose absolute value is high or, equivalenty, we will set b = 2.

The figure below shows the plot of Sn versus n considering the financial process de-

scribed in §2 with the following parameters

v1 = 1000, v2 = 500, b = 2, r = −50%, ρ = 1709.8034428612914 . . . ,

where ρ was calculated using (9) and (10). The plot exhibits the sensitive dependence on

initial conditions. Computational simulations confirm that freq
(
(Sn)n≥0, J

)
is constant

for J = [1400, 1600] (for example) and does not depend on S0. More precisely, we have

the following data, considering N = 150 in (7):
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S0 freq
(
(Sn)n≥0, [1400, 1600]

)
1450 92/150

1380 92/150

1023 92/150

1900 93/150

800 92/150

4. Proof of Theorem 1

We will need some background from Discrete Dynamical Systems. Let g : I → I be a

self-map of an interval I ⊆ [0,∞). We denote by g0 the identity map on I and by gn the

n-ith iterate of g obtained by the composition of g with itself n times. Given x ∈ I, we

call the sequence Og(x) =
(
gn(x)

)
n≥0 the g-orbit of x. The ω-limit set of x by g is the set

(11) ωg(x) = {p ∈ R : ∃n1 < n2 < n3 < · · · such that lim
k→∞

gnk(x) = p}.

A point x ∈ I is called periodic if there exists an integer n ≥ 1 such that gn(x) = x. In

this case, the g-orbit of x is called periodic. We say that the g-orbit of x ∈ I is asymptotic

to the g-orbit of y ∈ I if the sequence Og(x) is asymptotic to the sequence Og(y).

In what follows, we consider the financial process described in §2 with parameters

v1, v2 ≥ 0, ρ > 0 and r ∈ (−1, 0). As before, we denote by S0 the initial account

balance and by (Sn)n≥0 a financial time series of the process. By (2) and (3), (Sn)n≥0

is the f -orbit of S0, where the map f is defined by (3). By (6) and (11), we have that

ω
(
(Sn)n≥0

)
= ωf (S0). Moreover, (Sn)n≥0 is a periodic time series if and only if the f -

orbit of S0 is periodic. Yet, (Sn)n≥0 is asymptotic to a periodic sequence if and only if

the f -orbit of S0 is asymptotic to a periodic sequence.

Lemma 4. Let S0 ≥ 0. If ωf (S0) is finite, then both the f -orbit of S0 and the financial

time series (Sn)n≥0 are asymptotic to a periodic sequence.

Proof. This proof is adapted from [19, Proof of Lemma 3.1]. We may assume that

{S0, f(S0), f
2(S0), . . .}

is an infinite set, otherwise the f -orbit of S0 would be periodic, hence a periodic se-

quence. Since ωf (S0) is a finite set, we may write ωf (S0) = {p1, . . . , pm}. Without loss of

generality, we may assume that ωf (S0) ⊂ (0,∞), thus there exists ε > 0 so small that

ε <
1

4
min

1≤i≤j≤m
|pi − pj| and

m⋃
j=1

(pj − ε, pj) ∪ (pj, pj + ε) ⊂ (0,∞)\{ρ},

where ρ ∈ (0,∞) is the discontinuity of f . In particular, if

I = {(p1 − ε, p1), (p1, p1 + ε), . . . , (pm − ε, pm), (pm, pm + ε)} ,

then f(J) is an open interval for every J ∈ I .
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Let I ′ ⊆ I denote the subcollection formed by the intervals that are visited infinitely

many times by the f -orbit of S0, that is,

I ′ =
{
J ∈ I : {S0, f(S0), f

2(S0), . . .} ∩ J is an infinite set
}
.

We claim that for each J1 ∈ I ′, there exists J2 ∈ I ′ such that f(J1) ⊆ J2. Without

loss of generality, suppose that J1 = (p − ε, p), where p ∈ ωf (S0). As J1 ⊂ [0,∞)\{ρ},
we have that f |J1 is a contraction, thus f(J1) is an open interval of length smaller than

ε. On the other hand, since J1 ∈ I ′, there exists an increasing sequence of integers

0 ≤ k1 < k2 < · · · such that
{
fkj(S0)

}
j≥1 ⊂ J1 and limj→∞ f

kj(S0) = p. Because

f |J1 is increasing and continuous, we have that the sequence
{
fkj+1(S0)

}
j≥1 is contained

in the open interval f(J1), has infinitely many distinct terms and converges to some

q ∈ ωf (S0) ∩ ∂f(J1), where ∂f(J1) denotes the endpoints of the open interval f(J1).

Putting it all together, we conclude that f(J1) contains infinitely many points of the f -

orbit of S0, has length smaller than ε, and has an endpoint in ωf (S0). Therefore, there

exists J2 ∈ I ′ such that f(J1) ⊆ J2.

To finish the proof, notice that there exist J ∈ I ′ and k′ ≥ 0 such that fk
′
(S0) ∈ J .

By the claim and also because I ′ is a finite collection, there exist 1 ≤ i1 < i2 and

intervals J1, . . . , Ji1 , Ji1+1, . . . , Ji2 ∈ I ′ such that J1 = J , Ji1 = Ji2 and f(Ji) ⊆ Ji+1 for

all 1 ≤ i ≤ i2−1. Since f |Ji is an increasing contraction for all 1 ≤ i ≤ i2−1, there exists

a unique periodic sequence contained in the closure of
⋃i2−1
i=i1

Ji such that the f -orbit of

S0 is asymptotic to it. �

In order to apply the results in [3, 8], we need to consider piecewise contractions defined

on compact intervals of the form [0,M ]. The next lemma will be useful to move the

problem from [0,∞) to a compact interval [0,M ].

Lemma 5. There exists M > 0 such that f
(
[0,M ]

)
⊂ [0,M ]. Moreover, for each S0 ≥ 0,

there exist S ′0 ∈ [0,M ] and k ≥ 1 such that fk(S0) = S ′0. In particular, ωf (S0) = ωf (S
′
0).

Proof. Given j ∈ {1, 2}, let fj : [0,∞)→ [0,∞) be defined by fj(x) = (1 + r)x+ vj. Let

vmax = maxj vj. Since v1, v2 ≥ 0 and v1 6= v2, we have that vmax > 0. Set M = −2vmax/r.

For some j ∈ {1, 2}, we have that

0 ≤ x ≤M =⇒ 0 ≤ f(x) = fj(x) ≤ (1 + r)x+ vmax ≤ (1 + r)M − r

2
M < M.

Hence, f
(
[0,M ]

)
⊂ [0,M ]. Moreover,

x ∈ [0,∞) =⇒ 0 ≤ f(x) ≤ (1 + r)x+ vmax.

Hence, proceeding by induction on k ∈ N, yields

fk(x) ≤ (1 + r)kx+
[
(1 + r)k−1 + (1 + r)k−2 + · · ·+ (1 + r) + 1

]
vmax.

In particular, if k0 = k0(x) is an integer so large that (1 + r)k0x < M/2, then

fk(x) ≤ (1 + r)kx+
vmax

−r
≤M, ∀x ≥ 0, ∀k ≥ k0.
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In this way, given S0 ≥ 0 and k0 = k0(S0) as above, then fk(S0) ∈ [0,M ] for all k ≥ k0.

Therefore, if S ′0 = fk0(S0), then fk(S ′0) ∈ [0,M ] for all k ≥ 0. In particular, we have that

ωf (S0) = ωf (S
′
0). �

4.1. Proof of Theorem 1. Let M be as in Lemma 5, fM : [0,M ]→ [0,M ] be the map

defined by fM(x) = f(x) and L : [0, 1]→ [0,M ] be the affine map defined by L(t) = Mt.

By replacing fM by L−1fML, we may assume that M = 1 so that fM is a piecewise-

contraction of the unit interval [0, 1] with a single discontinuity point c ∈ (0, 1). By [9,

Theorem A], for every x ∈ [0, 1], we have

ωfM (x) = ωfM (fM(c−)) ∪ ωfM (fM(c+)),

where fM(c±) = limx→c± fM(x), and the following dichotomy holds:

(1) ωfM (fM(c−)) and ωfM (fM(c+)) are finite sets;

(2) ωfM (fM(c−)) = ωfM (fM(c+)) = C, where C is a Cantor set.

By Lemma 5, the same conclusion holds considering all x ∈ [0,∞) and the piecewise-

contraction f . By Lemma 4, this can be translated as follows: either (i) the financial

time series of the process are asymptotic to at most two periodic sequences or (ii) the

financial time series have the Cantor set C as their ω-limit set, which concludes the proof

of Theorem 1.

5. Proof of Theorem 2

In what follows, we say that a self-map g of U ⊆ R and a self-map g̃ of Ũ ⊆ R are

topologically semiconjugate if there exists a continuous, nondecreasing and surjective map

h : U → Ũ , denominated topological semiconjugacy, such that h ◦ g = g̃ ◦ h. If h is also

a homeomorphism, then we say that g and g̃ are topologically conjugate and we call the

map h a topological conjugacy.

Lemma 6. Let α = (3−
√

5)/2, 1 ≤ b <∞, ω be the Fibonacci word defined by (8) and

δ > 0 be defined by (9). Then the piecewise contraction g : [0, 1] → [0, 1] and the map

T : [0, 1]→ [0, 1] defined by

g(x) =


1

b
x+ δ if x ∈

[
0, b(1− δ)

)
1

b
x+ δ − 1 if x ∈

[
b(1− δ), 1

] , T (x) =

x+ α if x ∈
[
0, 1− α

)
x+ α− 1 if x ∈

[
1− α, 1

] .
satisfy the following statements:

(i) g and T are topologically semiconjugate via a topological semiconjugacy h;

(ii) there exists a Cantor set C ⊂ [0, 1] such that ωg(x) = C for all x ∈ [0, 1];

(iii) if J ⊂ [0, 1] is an interval of positive length intersecting C, then h(C) is also an

interval with positive length.

Proof. (i) The proof we present below is an adaptation from the proofs of [19, Theorem

2.2 and Corollary 2.5]. The approach we use consists of two steps: first we construct a
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piecewise contraction g : [0, 1]→ [0, 1] of the form

g(x) =


1

b
x+ b1 if x ∈

[
0, x1

)
1

b
x+ b2 if x ∈

[
x1, 1

]
topologically semiconjugate to T ; and then we show that b1 = δ, b2 = δ − 1 and x1 =

b(1− δ).
The sequence 0, α, 2α, 3α − 1, . . . whose k-th term is pk = T k(0), k ≥ 0, is made up of

pairwise distinct terms because, since α is irrational, every T -orbit is dense in [0, 1]. In

particular, we have that {pk}k≥1 is an infinite dense subset of (0, 1). Given k ≥ 1, let

Lk = {` ≥ 1 : p` < pk}, εk =

(
1− 1

b

)
b−(k−1), Gk =

[∑
`∈Lk

ε`, εk +
∑
`∈Lk

ε`

]
.

Notice that pk > 0 and Lk 6= ∅. Hence, Gk ⊂ (0, 1) is a well-defined interval of length

|Gk| = εk =

(
1− 1

b

)
b−(k−1).

We claim that {pk}k≥1 and {Gk}k≥1 share the same ordering meaning that

(12) pk < pj ⇐⇒ supGk < inf Gj.

In fact, pk < pj if and only if {k} ∪ Lk ⊂ Lj, which is equivalent to

supGk = εk +
∑
`∈Lk

ε` <
∑
`∈Lj

ε` = inf Gj.

In particular, we have that the intervals G1, G2, . . . are pairwise disjoint and their union is

dense because
∑∞

k=1 |Gk| = 1. Applying (12) we conclude that if J ⊂ [0, 1] is an interval

and

{mk}k≥1 = {` ≥ 1 : p` ∈ J}, then ∪k≥1Gmk
is an interval.

Let ĥ: ∪k≥1 Gk → [0, 1] be the function that on Gk takes the constant value pk. By

(12), we have that ĥ is nondecreasing and has dense domain and dense range. Thus,

ĥ admits a unique nondecreasing continuous surjective extension h: [0, 1] → [0, 1] to the

whole interval [0, 1]. It is elementary to see that h−1
(
{pk}

)
= Gk.

Let ĝ : ∪k≥1Gk → ∪k≥2Gk be such that ĝ|Gk
:Gk → Gk+1 is an affine bijection with

slope
1

b
for every k ≥ 1. Denote by I1, I2 the partition of [0, 1] defined by Ii = h−1(Ji),

where J1 = [0, 1− α) and J2 = [1− α, 1]. Notice that I1 = [0, x1) and I2 = [x1, 1], where

x1 = h−1(1− α).

We claim that for each 1 ≤ i ≤ 2 , there exist a dense subset Îi of Ii and bi ∈ R such

that

(13) ĝ(x) =
1

b
x+ bi for all x ∈ Îi.

In order to show that (13) is true, fix 1 ≤ i ≤ 2 and let {mk}k≥1 = {` ≥ 1 : p` ∈ Ji},
then Ĵi = ∪k≥1{pmk

} is a dense subset of Ji and Îi = ∪k≥1Gmk
is a dense subset of Ii.
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Moreover, by definition, ĝ|Gmk
:Gmk

→ Gmk+1 is an affine bijection with slope
1

b
for each

k ≥ 1, which shows that there exists cmk
∈ R such that

(14) ĝ(x) =
1

b
x+ cmk

for all x ∈ Gmk
.

Let us prove that ĝ is strictly increasing on ∪k≥1Gmk
. We have that ĝ is strictly increasing

on each interval Gmk
. Let yk < zj be such that yk ∈ Gmk

and zj ∈ Gmj
, where k 6= j and

supGmk
< inf Gmj

. By (12), we have that pmk
< pmj

and {pmk
, pmj
} ⊂ Ji. Then, since

T |Ji is increasing, we have that T (pmk
) < T (pmj

), that is, pmk+1 < pmj+1. By (12) once

more, we get supGmk+1 < inf Gmj+1. By definition, g(yk) ∈ Gmk+1 and g(zj) ∈ Gmj+1,

thus g(yk) < g(zj). This proves that ĝ is increasing on ∪k≥1Gmk
. It remains to prove that

cmk
in (14) is the same for all k ≥ 1. Let j 6= k. Let x = supGmj

< inf Gmk
= y. Notice

that because ĝ is increasing on ∪k≥1Gmk
we have that

1

b
(y − x) + (cmk

− cmj
) = ĝ(y)− ĝ(x) =

∑
Gm`

⊂[x,y]

∣∣ĝ(Gm`

)∣∣
=

1

b

∑
Gm`

⊂[x,y]

|Gm`
| = 1

b
(y − x)

yielding cmk
= cmj

. Thus, (13) is true.

It follows from (13) that ĝ|∪k≥1Gmk
admits a unique monotone continuous extension to

the interval Ii = h−1(Ji). This extension is also an affine map with slope equal to 1
b
.

Since i is arbitrary, we obtain an injective piecewise 1
b
-affine extension g of ĝ to the whole

interval [0, 1] = ∪2i=1Ii.

We claim that h ◦ g = T ◦ h. In fact, for every y ∈ Gk, we have that

(15) h
(
g(y)

)
= ĥ

(
ĝ(y)

)
= pk+1 = T (pk) = T

(
ĥ(y)

)
= T

(
h(y)

)
.

Hence, (15) holds for a dense set of y ∈ [0, 1]. By continuity, (15) holds for every y ∈ [0, 1].

This shows that g is topologically semiconjugate to T . Now let us compute the parameters

b1, b2 and x1 in terms of δ. Since I1 = [0, x1), we have that

x1 = |I1| =
∑
pk∈J1

|Gk| =
∑

Tk−1(α)∈J1

εk =
∑

Tk(α)∈J1

εk+1 =

(
1− 1

b

)∑
k≥0

(2− θk)b−k = b(1− δ),

where θ = θ0θ1 . . . is the natural T -coding of α with respect to the partition J1 = [0, 1−α),

J2 = [1 − α, 1] of [0, 1], that is, θk = i if and only if T k(α) ∈ Ji. Since α = 2 − ϕ, where

ϕ = (1 +
√

5)/2 is the golden ratio, we have that

θ − 1 = (θ0 − 1)(θ1 − 1) . . .

is the Fibonacci word ω = ω0ω1ω2 . . . defined by (8). Putting it all together yields

δ = 1− 1

b

(
1− 1

b

)∑
k≥0

(1− ωk)b−k = 1− 1

b
+

1

b

(
1− 1

b

)∑
k≥0

ωkb
−k,

showing that δ is given by (9).

Since g is topologically semiconjugate to T and h(x) = 0 iff x = 0, we have that

h
(
g(x1)

)
= T (h(x1)) = T (1− α) = 0, thus g(x1) = 0.
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Therefore,

0 = g(x1) = g
(
b(1− δ)

)
= 1− δ + b2, i.e. b2 = δ − 1.

Likewise, since g is topologically semiconjugate to T and h(x) = 1 iff x = 1, we have that

lim
ε→0+

h
(
g(x1 − ε)

)
= lim

ε→0+
T (1− α− ε) = 1, thus lim

ε→0+
g(x1 − ε) = 1.

Therefore,

1 = lim
ε→0+

g(x1 − ε) = lim
ε→0+

g(b(1− δ)− ε) = 1− δ + b1, i.e. b1 = δ.

We have proved that (i) is true.

(ii) It follows from (i) that the maps g and T are topologically semiconjugate via the

topological semiconjucagy h and that T is minimal, i.e., all T -orbits are dense in [0, 1]. As

a result, we have that g is not asymptotically periodic. Since g is a piecewise contraction

with one discontinuity, by proceeding as in the proof of Theorem 1 we obtain that there

exists a Cantor set C ⊂ [0, 1] such that ωg(x) = C for all x ∈ [0, 1].

(iii) It follows from the construction of h made in the proof of (i). �

Lemma 7. Let α = (3 −
√

5)/2, 1 ≤ b < ∞, ω be the Fibonacci word defined by (8),

δ > 0 be defined by (9) and ρ > 0 be defined by (10). Concerning the piecewise contraction

f : R→ R and the map T : [0, 1]→ [0, 1] defined by

f(x) =


1

b
x+ 1000 if x < ρ

1

b
x+ 500 if x ≥ ρ

, T (x) =

x+ α if x ∈
[
0, 1− α

)
x+ α− 1 if x ∈

[
1− α, 1

] ,
and the interval

K =

[
500b

b− 1
(2− δ), 500b

b− 1

(
3− δ − 1

b

)]
,

the following statements are true:

(I) f |K and T are topologically semiconjugate via a topological semiconjugacy h;

(II) there exists a Cantor set C ⊂ K such that ωf (x) = C for all x ∈ R;

(III) if J ⊆ K is an interval of positive length intersecting C, then h(C) is also an

interval with positive length.

Proof. (I) Let L : R → R be the affine bijection defined by L(x) =
x

500
+
b(δ − 2)

b− 1
. It is

elementary to verify that the map g : R→ R defined by g = L ◦ f ◦ L−1 satisfies

g(x) =


1

b
x+ δ if x < b(1− δ)

1

b
x+ δ − 1 if x ≥ b(1− δ)

.

and f is topologically conjugate to g. Moreover, since L(K) = [0, 1], we have that

f |K = g|[0,1] = g,
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where g : [0, 1] → [0, 1] is as in Lemma 6. Therefore, by Lemma 6 (i), the following

diagram commutes

R R

R R

L

f g

L

,

K [0,1] [0,1]

K [0,1] [0,1]

L

f |K

h1

g=g|[0,1] T

L h1

where h1 is the semiconjugacy denoted by h in Lemma 6. Hence, f |K is topologically

semiconjugate to T via the topological semiconjugacy h = h1 ◦ L, which proves (I).

(II) Let C1 ⊂ [0, 1] be the Cantor set denoted by C in Lemma 6. Let C ⊂ K be

the Cantor set defined by C = L−1(C1). Since f is topologically conjugate to g via L,

it suffices to show that ωg(x) = C1 for all x ∈ R. It follows from Lemma 6 (ii) that

ωg(x) = C1 for all x ∈ [0, 1] since g|[0,1] = g. It remains to extend such a claim for all

x 6∈ [0, 1]. It suffices to show that for each x 6∈ [0, 1], there exists k ≥ 1 such gk(x) ∈ [0, 1].

Let x > 1 > b(1 − δ). Then, gk(x) ≥ 0 for all integers k ≥ 0 since g takes non-negative

numbers into non-negative numbers. Hence, it suffices to show that there exists k ≥ 0

such that gk(x) ≤ 1. Whenever y > 1 > b(1− δ), g(y)− y ≤ δ− 1, thus g moves y to the

left by at least 1 − δ. Hence, gk(x) ≤ x − k(1 − δ) for all k ≥ 1 such that gk−1(x) > 1.

In this way, for some k large, we have that gk(x) ≤ 1. Now assume that x < 0, then

gk(x) ≤ 1 for all integers k ≥ 0. Hence, it suffices to show that there exists k ≥ 0 such

that gk(x) ≥ 0. Whenever y < 0 < b(1− δ), g(y)− y ≥ δ, thus g moves y to the right by

at least δ. Hence, gk(x) ≥ x + kδ for all k ≥ 1 such that gk−1(x) < 0. In this way, for

some k large, we have that gk(x) ≥ 0. Putting it all together, we have that ωg(x) = C1 for

all x ∈ R. Equivalently, because of the topological conjugacy L, we have that ωf (x) = C

for all x ∈ R, which concludes the proof of (II).

(III) Let J ⊆ K be an interval of positive length intersecting C. Then L(J) ⊆ [0, 1]

is an interval of positive length intersecting C1. By Lemma 6 (iii), h(J) = h1
(
L(J)

)
has

positive length.

�

Proof of Theorem 2. Let v1 = 1000, v2 = 500, r =
1

b
− 1 and ρ defined by (10). Then,

the map f defined in (3) is given by

(16) f(x) =

1
b
x+ 1000 if x < ρ

1
b
x+ 500 if x ≥ ρ

.

By Lemma 7 (II), the Cantor set C has the property that ωf (x) = C for all x ∈ R. In this

way, if (Sn)n≥0 is a time series of the process with the parameters given in the statement

of Theorem 2, then Sn = f(Sn−1) for all n ≥ 1. As a result, ω
(
(Sn)n≥0

)
= ωf (S0) = C

for all S0 ≥ 0. We have proved that Condition (C1) in Definition 3 is met.

Now let us verify Condition (C2) in Definition 3. Let S0 ∈ C. Given ε > 0, let

J = (S0 − ε, S0 + ε). We will verify that Definiton 2 holds true with η = 500b

(
1− 1

b

)
(which equals the length of the gap K\f(K), where K is as in Lemma 7). It suffices
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to show that the discontinuity ρ ∈ fk(J) for some k ≥ 0. In fact, if k is the least

non-negative integer such that ρ ∈ fk(J), then fk(J) is an interval with positive length.

Moreover, there exists S ′0, S
′′
0 ∈ J such that fk(S ′0) < ρ and fk(S ′′0 ) > ρ. It is elementary

to verify that
∣∣fk+1(S ′0)− fk+1(S ′′0 )

∣∣ ≥ η. It remains to show that ρ ∈ fk(J) for some

k ≥ 0. By way of contradiction, assume that ρ 6∈ fk(J) for all k ≥ 0. Then, fk(J)

is an open interval for all k ≥ 0. Moreover, by the arguments used in the proof of

Lemma 7, there exists k0 ≥ 0 such that fk(J) ⊆ K for all k ≥ k0. Moreover, since

S0 ∈ C ∩ J and since ρ 6= fk(S0) for all k ≥ k0, by using a continuity argument, we may

show that fk(S0) ∈ C for all k ≥ 0. By Lemma 7 (III), h
(
fk0(J)

)
is an interval with

positive length. Since T is equivalent to the irrational rotation by α, we have that T−1 is

equivalent to the irrational rotation by−α. Hence, T−1 is also a minimal interval exchange

transformation. This means that there exists m ≥ 0 such that T−m(1− α) ∈ h
(
fk0(J)

)
.

Equivalently, 1−α ∈ Tm
(
h
(
fk0(J)

))
. This implies that fk0+m(J) hits the discontinuity,

which contradicts the induction hypothesis.

To conclude the proof, we will now prove that the frequency with which each financial

time series (Sn)n≥0 visits a given interval J ⊂ [0,∞) is constant and does not depend

on S0. First notice that if J ⊂ [0,∞)\K, then freq
(
(Sn)n≥0, J

)
= 0 for all S0 ∈ [0,∞).

Thus, to simplify matters, we may assume that J ⊆ K. Let S0 ≥ 0. Then, by Lemma 7

(I), for all S0 ≥ 0,

lim
N→∞

1

N
# {0 ≤ n ≤ N − 1 : Sn ∈ J} = lim

N→∞

1

N
#
{

0 ≤ n ≤ N − 1 : T n
(
h(S0)

)
∈ h(J)

}
= length

(
h(J)

)
.

Notice that we have used the fact that since T is equivalent to an irrational rotation, T is

uniquely ergodic, thus the Lebesgue measure µ is its unique invariant probability measure.

As a result, the Birkhoff averages converge everywhere to
∫
χJdµ = length

(
h(J)

)
. �
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