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Abstract

We study the joint ruin problem for two insurance companies that divide be-

tween them claims, premia and investments on a risky asset (stock). Modelling

the risk of the insurance companies by renewal jump di�usion processes and the

investment by a geometric Brownian motion, we investigate the asymptotic be-

havior of ruin probabilities. We consider semi-exponential and regularly varying

claim sizes. We also assume that inter-arrival times are phase-type.
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1 Introduction

In this paper we consider two-dimensional risk model which starts from the initial
capital (u1, u2) and in which two companies split the amount they pay out of each
claim in �xed proportions δ1 and δ2 (δ1 + δ2 = 1), and receive premiums at rates c1
and c2, respectively. Moreover, both of them may continuously invest their reserves
into a risky asset with a price that follows a geometric Brownian motion with drift a
and volatilities σ. This gives that surplus process of the portfolios is given by:

Ui(t) = ui + cit+ δi

(
a

∫ t

0

Ui(s)ds+ σ

∫ t

0

Ui(s)dBs

)
− δiS(t), i = 1, 2, (1.1)

where S(t) is the aggregate claims process
∑N(t)

k=1 = Xk. The renewal process N(t)
represents the number of claims occurred up to time t. The claims Xk are and in-
dependent of the claim arrival times Tk. The claim inter-arrival times are denoted
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Wk = Tk − Tk−1, k ≥ 1. The claim amounts follow a distribution with density fX and
c.d.f. FX .

Remark 1.1. From (1.1) we can see that

dUi(t) = c+ δi(aUi(t)dt+ σUi(t)dBt)− δidS(t).

By Itô's formula:

Ui(t) = e4(t)

[
u+ c

∫ t

0

e−4(s)ds− δi
∫ t

0

e−4(s)dS(s)

]
,

where 4(t) = δi((a− σ2

2
)t+ σBt). Thus∫ t

0

e−4(s)dS(s) =

N(t)∑
k=1

Xke
−4(Tk),

and therefore

Ui(t) = e4(t)

u+ c

∫ t

0

e−4(s)ds− δi
N(t)∑
k=1

Xke
−4(Tk)

 .
In terms of ruin problems, as it will be evident later, the ruin probabilities are the

same Ui(t) and
Ui(t)
δi

. For the latter process δ1 = δ2 = 1 which will be assumed from
now on.

We will also assume that the claim inter-arrival times Wk have a phase-type prob-
ability density function fW that satis�es the following ordinary di�erential equation
with constant coe�cients (as in Albrecher et al (2012)):

L
(
d

dt

)
fW (t) =

n∑
j=0

αj
dj

dtj
fW (t) =

n∏
i=1

(
d

dt
+ βi

)
fW (t) = 0,

with homogeneous or nonhomogeneous conditions

fkW (0) = 0 (homogeneous) k = 0, . . . , n− 2,

fn−1W (0) = α0;

or

fkW (0) =Mk (nonhomogeneous) k = 0, . . . , n− 2,

fn−1W (0) = α0.

Let L∗ denote the adjoint of L that describes fW

L∗
(
d

dt

)
fW (t) =

n∑
j=0

(−1)jαj
dj

dtj
fW (t) =

n∏
i=1

(
− d

dt
+ βi

)
fW (t).
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Several ruin problems could be considered:

1. The �rst time τor when (at least) one insurance company is ruined, that is, the exit
time of (U1(t), U2(t)) from the positive quadrant

τor(u1, u2) := inf{t ≥ 0 : U1(t) < 0 or U2(t) < 0}. (1.2)

2. The �rst time τsim when the insurance companies experience simultaneous ruin,
that is, the entrance time of (U1(t), U2(t)) into the negative quadrant

τsim(u1, u2) := inf{t ≥ 0 : U1(t) < 0 and U2(t) < 0}. (1.3)

The associated ultimate/perpetual ruin probabilities will be respectively denoted by
ψor(u1, u2) and ψsim(u1, u2)

ψ(u1, u2) = P (τor(u1, u2) <∞),

ψsim(u1, u2) = P (τsim(u1, u2) <∞).

Letting τi(ui) = inf{t ≥ 0 : Ui(t) < 0}, i = 1, 2, we also consider

ψand(u1, u2) = P (τ1(u1) <∞ and τ2(u2)) <∞). (1.4)

Denoting ψi(ui) = P (τi(ui) <∞), the ruin probability of Ui when Ui(0) = ui, it clearly
holds that

ψsim(u1, u2) ≤ ψand(u1, u2) = ψ1(u1) + ψ2(u2)− ψ(u1, u2).

Therefore it is clear that the crucial is ψ(u1, u2) on which we will focus from now
on. In this paper we start from construction partial di�erential equation for ψ. Uisng
Laplace transform method and properly formulated heavy-side principle we will derive
the asymptotics pf ψ(u, uv) as u→∞ for �xed proportion of initial capitals v > 1. We
will consider semexponential regime of claim distributions and regularly-varying one.

The paper is organized as follows. In Section 2 we will construct di�erential equation
for ψ. Later, in Section ??, we derive equation for the laplace transform for φ(u) which
allows to get above mentioned asymptotics (see Section ??). We conclude our paper
with the Section ?? concerning examples and numerical analysis.

2 Integro-di�erential equations

In this section we will obtain integro-di�erential equations satis�ed by the ruin proba-
bilities ψ.
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2.1 Unperturbed Case

We start from the case when σ = 0, that is, we assume in this subsection that the two
insurance companies do not invest on the risky asset. The surplus processes become
then:

Ui(t) = ui + cit− S(t), i = 1, 2. (2.1)

Considering the time and the amount of the �rst claim, we can obtain a renewal
equation that is satis�ed by ψ:

ψ(u1, u2) =

∫ ∞
0

fW (t)

[∫ ∞
0

fX(x)ψ(u1 + c1t− x, u2 + c2t− x)dx
]
dt, (2.2)

which becomes

ψ(u1, u2) =

∫ ∞
0

fW (t)

[∫ min{u1+c1t,u2+c2t}

0

fX(x)ψ(u1 + c1t− x, u2 + c2t− x)dx

+

∫ ∞
min{u1+c1t,u2+c2t}

fX(x)dx

]
dt.

Assume from now on, without loss of generality, that the initial capital of the �rst
company is smaller than the initial surplus of the second, but in contrast the �rst
company charges higher premiums than the second. This is,

u1 < u2 and c1 > c2.

If no claim arrives the two surpluses meet at the time

T =
u2 − u1
c1 − c2

;

see Figure 2.1. Note that

min{u1 + c1t, u2 + c2t} =
{
u1 + c1t if t ≤ T,
u2 + c2t if t > T.

This leads us to write the renewal equation for ψ in the following way:

ψ(u1, u2) =

∫ T

0

fW (t)

[∫ u1+c1t

0

fX(x)ψ(u1 + c1t− x, u2 + c2t− x)dx

+

∫ ∞
u1+c1t

fX(x)dx

]
dt+∫ ∞

T

fW (t)

[∫ u2+c2t

0

fX(x)ψ(u1 + c1t− x, u2 + c2t− x)dx

+

∫ ∞
u2+c2t

fX(x)dx

]
dt = I1 + I2.
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Figure 1: Crossing of boundary

We can perform the change of variables s = u1 + c1t in the �rst integral I1 and the
change s = u2 + c2t in the second I2. This gives

ψ(u1, u2) =
1

c1

∫ u1+c1T

u1

fW

(
s− u1
c1

)[∫ s

0

fX(x)ψ

(
s− x, c2

c1
s− x+ u2 −

c2
c1
u1

)
dx

+

∫ ∞
s

fX(x)dx

]
ds+∫ ∞

u2+c2T

fW

(
s− u2
c2

)[∫ s

0

fX(x)ψ

(
c1
c2
s− x+ u1 −

c1
c2
u2, s− x

)
dx

+

∫ ∞
s

fX(x)dx

]
ds = I1 + I2,

where u1 + c1T = u2 + c2T =
u2c1 − u1c2
c1 − c2

.

De�ne the operator A = c1
∂

∂u1
+ c2

∂

∂u2
. We apply the operator A to the integrals

I1 and I2:
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A{I1} = A
{

1

c1

∫ u1+c1T

u1

fW

(
s− u1
c1

)[∫ s

0

fX(x)ψ

(
s− x, c2

c1
s− x+ u2 −

c2
c1
u1

)
dx

+

∫ ∞
s

fX(x)dx

]
dt

}
= −fW (0)

[∫ u1

0

fX(x)ψ(u1 − x, u2 − x)dx+
∫ ∞
u1

fX(x)dx

]
+

1

c1
fW (T )

[∫ u1+c1T

0

fX(x)ψ(u1 + c1T − x, u2 + c2T − x)dx

+

∫ ∞
u1+c1T

fX(x)dx

]
(A(u1 + c1T )︸ ︷︷ ︸

=0

)

+
1

c1

∫ u1+c1T

u1

A
{
fW

(
s− u1
c1

)}[∫ s

0

fX(x)ψ

(
s− x, c2

c1
s− x+ u2 −

c2
c1
u1

)
dx

+

∫ ∞
s

fX(x)dx

]
dt

+
1

c1

∫ u1+c1T

u1

fW

(
s− u1
c1

)∫ s

0

fX(x)A
{
ψ

(
s− x, c2

c1
s− x+ u2 −

c2
c1
u1

)}
︸ ︷︷ ︸

=0

dx

 dt
= −fW (0)

[∫ u1

0

fX(x)ψ(u1 − x, u2 − x)dx+
∫ ∞
u1

fX(x)dx

]
+

1

c1

∫ u1+c1T

u1

A
{
fW

(
s− u1
c1

)}[∫ s

0

fX(x)ψ

(
s− x, c2

c1
s− x+ u2 +

c2
c1
u1

)
dx

+

∫ ∞
s

fX(x)dx

]
dt.

Similarly,

A{I2} =
1

c2

∫ ∞
u2+c2T

A
{
fW

(
s− u2
c2

)}[∫ s

0

fX(x)ψ

(
c1
c2
s− x+ u1 +

c1
c2
u2, s− x

)
dx

+

∫ ∞
s

fX(x)dx

]
dt.

Thus
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A{ψ(u1, u2)} = −fW (0)

[∫ u1

0

fX(x)ψ(u1 − x, u2 − x)dx+
∫ ∞
u1

fX(x)dx

]
+

1

c1

∫ u1+c1T

u1

A
{
fW

(
s− u1
c1

)}[∫ s

0

fX(x)ψ

(
s− x, c2

c1
s− x+ u2 +

c2
c1
u1

)
dx

+

∫ ∞
s

fX(x)dx

]
dt

+
1

c2

∫ ∞
u2+c2T

A
{
fW

(
s− u2
c2

)}[∫ s

0

fX(x)ψ

(
c1
c2
s− x+ u1 +

c1
c2
u2, s− x

)
dx

+

∫ ∞
s

fX(x)dx

]
dt.

Denoting Aj = A ◦ . . . ◦ A we have,

Aj
{
fW

(
s− u1
c1

)}
= (−1)jf (j)

W

(
s− u1
c1

)
, Aj

{
fW

(
s− u1
c1

)}∣∣∣∣
s=u1

= (−1)jf (j)
W (0)

Aj
{
fW

(
s− u2
c2

)}
= (−1)jf (j)

W

(
s− u2
c2

)
, Aj

{
fW

(
s− u2
c2

)}∣∣∣∣
s=u2

= (−1)jf (j)
W (0).

Using the adjoint to A operator L∗ (in L2 Hilbert space) we can observe that:

L∗(A)
{
fW

(
s− u1
c1

)}
= L∗

(
c1

∂

∂u1

){
fW

(
s− u1
c1

)}
= 0,

L∗(A)
{
fW

(
s− u2
c2

)}
= L∗

(
c2

∂

∂u2

){
fW

(
s− u2
c2

)}
= 0.

Let

W (u1, u2) =

∫ u1

0

fX(x)ψ(u1 − x, u2 − x)dx+
∫ ∞
u1

fX(x)dx

=

∫ u1

0

fX(x)ψ(u1 − x, u2 − x)dx+ FX(u1) =

∫ ∞
0

fX(x)ψ(u1 − x, u2 − x)dx.

Then

Aj{W (u1, u2)} =

∫ ∞
0

fX(x)Aj{ψ(u1 − x, u2 − x)}dx

=

∫ u1

0

fX(x)Aj{ψ(u1 − x, u2 − x)}dx, j ≥ 1.
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The above allow us to write

Aj{ψ(u1, u2)} =

j−1∑
k=0

(−1)j−kf j−1−kW (0)Ak{W (u1, u2)}

+
1

c1

∫ u1+c1T

u1

Aj
{
fW

(
s− u1
c1

)}[∫ s

0

fX(x)ψ

(
s− x, c2

c1
s− x+ u2 +

c2
c1
u1

)
dx

+

∫ ∞
s

fX(x)dx

]
dt

+
1

c2

∫ ∞
u2+c2T

Aj
{
fW

(
s− u2
c2

)}[∫ s

0

fX(x)ψ

(
c1
c2
s− x+ u1 +

c1
c2
u2, s− x

)
dx

+

∫ ∞
s

fX(x)dx

]
dt.

Applying the operator L∗(A) to ψ(u1, u2) we obtain

L∗(A){ψ(u1, u2)} =

n∑
j=0

αj(−1)jA{ψ(u1, u2)}

=
n∑
j=0

αj(−1)j
[
j−1∑
k=0

(−1)j−kf j−1−kW (0)Ak{W (u1, u2)}

]

+
1

c1

∫ u1+c1T

u1

L∗(A)
{
fW

(
s− u1
c1

)}
︸ ︷︷ ︸

0

[∫ s

0
fX(x)ψ

(
s− x, c2

c1
s− x+ u2 +

c2
c1
u1

)
dx

+

∫ ∞
s

fX(x)dx

]
dt

+
1

c2

∫ ∞
u2+c2T

L∗(A)
{
fW

(
s− u2
c2

)}
︸ ︷︷ ︸

=0

[∫ s

0
fX(x)ψ

(
c1
c2
s− x+ u1 +

c1
c2
u2, s− x

)
dx

+

∫ ∞
s

fX(x)dx

]
dt

=

n−1∑
k=0

 n∑
j=k+1

α̃j(−1)j−kf j−1−kW (0)

Ak{W (u1, u2)}

=
n−1∑
k=0

 n∑
j=k+1

α̃j(−1)j−kf j−1−kW (0)

∫ ∞
0

fX(x)Ak{ψ(u1 − x, u2 − x)}dx

=
n−1∑
k=0

 n∑
j=k+1

α̃j(−1)j−kf j−1−kW (0)

∫ u1

0
fX(x)Ak{ψ(u1 − x, u2 − x)}dx

+

 n∑
j=1

α̃j(−1)jf j−1W (0)

FX(u1)
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with α̃j = αj(−1)j. In summary, we can see that ψ(u1, u2) satis�es the following
integro-di�erential equation

L∗ (A) {ψ(u1, u2)} = Q (A)
{∫ ∞

0

ψ(u1 − x, u2 − x)fX(x)dx
}
, (2.3)

where Q(x) =
n−1∑
k=0

Qkx
k for

Qk =
n∑

j=k+1

α̃j(−1)j−kf j−k−1W (0).

2.2 Perturbed Case

We assume in this subsection that the two insurance companies invest on the risky
asset, that is, σ > 0. The surplus are given in (1.1).

De�ne the in�nitesimal generator of three-dimensional Markov risk process )(U1(t), U2(t), Z(t)):

A :=
∂

∂t
+

2∑
i=1

(
(ci + aui)

∂

∂ui
+
σ2

2
u2i

∂2

∂u2i

)
,

where Z(t) is a age inter-arrival time measuring how how much time has passsed from
the last claim arrival.

We will assume from now that the claim sizes have continuous density. Then fol-
lowing straightforward arguments we can show that the probability of ruin ψ(u1, u2)
is in the domain D(A) and as the exit probability it is harmonic. This means that it
satis�es the following integro-di�erential equation:

Aψ(u1, u2) = 0.

After applying adjoin operator we will end up at the generalization of (2.3):

L∗ (A) {ψ(u1, u2)} = Q (A)
{∫ ∞

0

ψ(u1 − x, u2 − x)fX(x)dx
}

(2.4)

for

A :=
2∑
i=1

(
(ci + aui)

∂

∂ui
+
σ2

2
u2i

∂2

∂u2i

)
.

Above equation could be rewritten in the following way:
n∏
i=1

(−A+ βi)ψ(u1, u2) = Q (A)
∫ ∞
0

ψ(u1 − x, u2 − x)fX(x)dx,

=
n−1∑
k=0

Qk

∫ u1

0

∂

∂u1
ψ(u1 − x, u2 − x)fX(x)dx+

Q0

∫ ∞
u1

fX(x)dx. (2.5)
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We have also the following boundary condition:

lim
u1→∞

ψ(u1, u2) = 0.

For homogeneous conditions we obtain

Qk =
n∑

j=k+1

αj(−1)j−kf j−k−1W (0) = 0, k = 1, . . . , n− 1

and Q0 = (−1)nfn−1W (0) = (−1)nα0 =
∏n

i=1(−βi).

Therefore equation (2.5) becomes

n∏
i=1

(−A+ βi)ψ(u1, u2) =
n∏
i=1

(−βi)
(∫ u1

0

ψ(u1 − x, u2 − x)fX(x)dx+
∫ ∞
u1

fX(x)dx

)
which can be rewritten in the following way:

n∑
k=0

(−1)kαkAkψ(u1, u2) −
n∏
i=1

(−βi)
∫ u1

0

ψ(u1 − x, u2 − x)fX(x)dx

=
n∏
i=1

(−βi)FX (u1) dx (2.6)

with FX(x) = 1− FX(x).

3 Laplace transform

To get asymptotics of the ruin probability ψ(u1, u2) it is very natural assume that both
insurance companies have comparable initial capital since they are connected with each
other via proportional reinsurance (they divide premia and claims in �xed proportion).
Therefore it is reasonable to assume that

u2 = u1v (3.1)

for �xed constant v > 1. Taking u1 = u the ruin probability ψ(u1, u2) is a function

φ(u) := ψ(u, vu). (3.2)

We will choose at the beginning the speci�c proportion:

v =
c1
c2
> 1/

and will assume that σ = 0. Then

c1φ
′(u) = Aψ(u, vu).
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We denote by ĝ(s) =
∫∞
0
e−sxg(x)dx the Laplace transform of general function g.

Applying this Laplace transform to the integro-di�erential equation (2.6) and then we
obtain:

n∑
k=0

(−1)kαkÂkφ(s)−
n∏
i=1

(−βi)H(s) =
n∏
i=1

(−βi)F̂X(s).

where H(s) would be the partial Laplace transform of∫ u

0

ψ(u− x, vu− x)fX(x)dx

and Âkφ(s) = ÂÂk−1φ(s) with

Âĝ(s) = c1sĝ(s).
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