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Abstract 
A complete model to analyse and predict future losses in the property 

portfolio of an insurance company due to hurricanes is proposed. A novel 
statistical model, in which weather data is not required, is considered. Climate 
data may not be reliable, or may be difficult to deal with or to obtain, hence we 
reconstruct the storm behaviour through the registered claims and respective 
losses. The model is calibrated using the loss data of the property portfolio of 
the insurance company Fidelidade, from hurricane Leslie, which hit the center 
of continental Portugal in October 2018. 

Several scenarios are simulated and risk maps are built. The simulated 
scenarios can be used to compute risk premiums per risk class in the portfolio. 
These can be used to adjust the policy premiums accounting for a storm risk. 
The risk map of the company also depends on its portfolio, namely its exposure, 
providing a hurricane risk management tool for the insurance company. 

Keywords— Risk; Hurricanes; Property Insurance; Regression Models 

1 Introduction 

Climate change and global warming are currently recognized as serious threats to 

human society. For instance, according to [26], the human body cannot adapt to 
specific temperatures and humidity stress levels. These thresholds may be reached 

in South and Southwest Asia in this century ([21, 14]). In the same direction, 

international organizations have been highlighting that climate change and global 
warming threaten the aim of sustainable economic and social development. On 

December 12, 2015, 196 countries signed the Paris agreement with the objective of 
keeping global warming below 2º C, in comparison with pre-industrial levels or even 

below 1.5º C, if possible.1 

 
1  Information regarding the Paris agreement can be found at https://unfccc.int/process-andmeetings/the-paris-
agreement/the-paris-agreement 
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Despite the political efforts made so far, projections show that heatwaves and 
floods will be more intense and frequent. On the other hand, the total number of 

tropical cyclones will not significantly increase, although an increase in the intensity 
of tropical cyclones is projected ([11, 2, 20]). 

The economic consequences of extreme weather events have become more and 
more relevant. Table 1 shows that the average costs per year with weather and 

climate events in the US have significantly increased in the last decades. In Europe, 
the average costs have mainly increased from the 1980s to the 1990s, but remained 
stable in the following decades. 

 

Time period US (billion $ ) Europe (billion €) 

1980-1989 18.1  6.6 

1990-1999 28.9  12.3 

2000-2009 54.7  13.2 

2010-2019 85.8  12.4 

Table 1: Average cost per year with weather and climate-related disasters in the US 

and Europe. Costs for the US are in billion dollars (2021 values) and costs for Europe 
are in billion euros (2019 values). Sources: National Oceanic and Atmospheric 
Administration and European Environment Agency.2 

Part of the economic losses with climate and extreme weather events are covered 

by insurance companies. During the first half of 2021, natural disasters were so 
destructive that insurance companies had to pay out more than 41 billion dollars 

(predicted amount) in compensations, which is the highest value in the last 10 
years3. In Europe, between 1980 and 2019, the total cost with climate-related and 

extreme weather events is estimated at 499.476 billion euros (2019 values) and, 
from this amount, 179.66 billion euros (2019 values) were covered by the insurance 
sector.4 

In Portugal, insurance companies have paid out about 650 million euros (2019 

values) in compensations between 1980 and 2019. Some of the weather and climate-
related events that provoked higher losses to insurance companies in the last years 

are described in Table 2. We can easily see that wildfires in the center of Portugal, 

which occurred in October 2017, were the most costly event. The second most costly 
event was hurricane Leslie, in which insurance companies paid out about 101 

million euros. Regarding the number of claims, the tropical hurricane Leslie was the 
more devastating event. 

 
2  Information available at https://www.eea.europa.eu/data-and-maps/indicators/direct-lossesfrom-weather-
disasters-4/assessment and https://www.ncdc.noaa.gov/billions/ ([7]). 
3  News available at https://www.theguardian.com/business/2021/jul/21/2021s-extremeweather-leads-to-
insurers-biggest-payout-in-10-years. 
4 Source: European Environment Agency. 
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Date Type of Event Region of 

Portugal 

Indemnity 

(million €) 

Claims 

Jan 2014 Storm Mainland 11.5 5544 

Sept 2014 Floods West region 1.5 489 

Nov 2015 Floods Algarve 15.5 1762 

Aug 2016 Fires Madeira 19.7 328 

Jun 2017 Fires Pedrógão 22.4 493 

Oct 2017 Fires Center 235.4 4177 

Oct 2018 Leslie Center and North 101.0 38000 

Dec 2019 Elsa and Fabian Center and North 42.0 22700 

Table 2: Weather and Climate-related disasters in Portugal. Source: Portuguese 
Association of Insurers.5 

According to Munich Re, tropical storms, such as hurricanes, typhoons, and 
cyclones are among the most costly natural hazards6. For instance, hurricane Katrina 

was the most costly natural disaster of all time for the insurance sector, with losses 
exceeding 60 billion dollars. Hurricane Lorenzo, which hit Azores in October 2019, 

caused total economic losses of 330 million euros 7 . Additionally, an increase of 

hurricanes of tropical origin over Western Europe during early Autumn (Aug-Oct) is 

expected in the future ([12]). Thus, in this work, we will present a methodology to 

assess the risk of insurance companies regarding this type of events in Continental 
Portugal. 

Climate change and weather and climate-related extreme events have been 

pointed out as important challenges to insurance companies ([19, 5]). On the one 
hand, insurers have to develop new insurance products that help to mitigate these 

risks, particularly in developing countries where the effects of climate change are 
expected to be more severe ([19, 8, 1]). 

On the other hand, insurers have to find novel methodologies to measure their 
portfolios’ physical risk, considering the natural uncertainty of projections and the 

 
5 This information can be found in the following websites: 

https://www.apseguradores.pt/Portals/0/doc/publicacoes/Revista%20APS%2001PT%20 − 
%20FINAL.pdf?ver = 2019 − 07 − 05 − 101014 − 453 
https://www.apseguradores.pt/pt/comunica%C3%A7%C3%A3o/not%C3%ADcias/2019/tempestadeleslie-sinistros 

https://www.apseguradores.pt/pt/comunica%C3%A7%C3%A3o/not%C3%ADcias/2020/articleid/142/tempestad
e- 

elsa-e-fabien-%E2%80%93-balan%C3%A7o-final-de-dados-do-setor-segurador-22-7-mil-sinistrosparticipados-com-
um-custo-estimado-de-42-milh%C3%B5es-de-euros 

6 Information available at the website of Munich Re: https://www.munichre.com/en/risks/natural- 

disasters-losses-are-trending-upwards/hurricanes-typhoons-cyclones.html 

7 Information available at:  

https://www.publico.pt/2019/10/14/sociedade/noticia/furacao-lorenzo-provocou-prejuizos-330-milhoes-euros-
1889978 
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difficulty in diversifying the risk due to geographical correlation [4]. In the previous 
reference, the author explains the difficulties of covering catastrophic risks, which 

can only happen if a correct mutualization of risk is performed. In fact, the risk has 
to be spread between policyholders, reinsurance companies, and financial markets. 

The economic and social impact of natural hazards has been extensively studied 
in the last few years (see, for instance, [6, 15, 17, 23, 24, 25], and references therein). 

Some authors have been using damage functions to assess the expected costs of 

these events ([6, 24, 25]). In this approach, one establishes a relationship between 
the magnitude of a natural hazard and the average damage caused on a specific item 

or portfolio of items ([24]). The authors of [25] compare four different damage 
functions to estimate the losses of winter storms. The damage functions are 

calibrated against the daily insurance loss data due to storms affecting the 

residential buildings in Germany from 1997 to 2007. In [6], the same insurance loss 
data and the daily maximum wind gust data from ERA-Interim reanalysis project8 

are considered, but the damage function is calibrated considering just the significant 
losses related to large-scale winter storms for the period 1997 to 2007. 

The authors of [17] present a statistical model that predicts losses based on the 

variables wind speed, age of the buildings, building floor area, and appraised value 
of the building. To validate the model, the authors used the data set of Texas 

Windstorm Insurance Association regarding the claim payout records for 

commercial buildings after hurricane Ike. In [15], the authors present a probabilistic 
model, which predicts aggregated losses in the US due to tropical hurricanes. 

According to the authors, the methodology can also be applied to a subset of losses, 
for instance, the portfolio of a reinsurance company. 

We contribute to the literature by proposing a complete model to analyse and 

predict future losses in the property portfolio of an insurance company due to 
hurricanes in continental Portugal. We propose a novel statistical model in which 

weather data is not required. Instead, we reconstruct the storm behaviour through 

the claims and losses registered. We calibrate the model with the loss data from 
hurricane Leslie of the insurance company Fidelidade. With this analysis, we can 

conclude that single-family houses are especially vulnerable to hurricanes. 
Additionally, the losses would be much larger in case a hurricane hit continental 
Portugal in other regions. 

The paper is organized as follows: in Section 2, we describe the data set. In 

Section 3, we introduce the statistical model used to predict the number of claims, 

and the losses associated with each claim. In Section 4, we use the methodology of 

Section 3 to estimate the costs in case the storm landfall council is different. In 
Section 5, we build a risk map as well as the distribution of the estimated total cost. 
Finally, we conclude in Section 6. 

 
8 More information about the Era Interim dataset can be found at https://www.ecmwf.int/ 

en/forecasts/datasets/reanalysis-datasets/era-interim 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
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2 Data 

When modeling the damage caused by extreme meteorologic events, such as storms, 

into a specific item, such as buildings, it is natural to try to use climate data. However, 
the climate data of extreme weather events is extremely variable in space and time, 

specially when the wind is the main variable concerned as it is the case of a storm. 
This makes the use of climate data very challenging since it is common that the 

available values are averaged or extrapolated, meaning that the extreme values are 

not accessible. Data regarding Leslie hurricane, which occurred on October 13, 2018, 
is an example of the lack of reliability and accessibility of spatial climate data. The 

meteorological observations recorded by the Portuguese Institute for Sea and 

Atmosphere (IPMA) relative to that day are not easily available and can be obtained 
only under previous request. 

Two sources of climate data, which are publicly and easily available, and widely used 
in the study of losses produced by meteorological events [6, 24, 25], are the ERA-

Interim and ERA-5 reanalysis weather data from the ECMWF (European Center for 

Medium-Range Weather Forecasts). We compared the losses incurred by the 
property portfolio of the company due to hurricane Leslie with the ERA-5 reanalysis 

data for the same day. The daily maximum wind gust and the total daily precipitation 
are the quantities considered. The daily maximum wind gust is equal to the 

maximum value of the hourly 10 meter wind gust and has been computed for a grid 
of 142 locations, available in these databases, in the north and center of continental 

Portugal. The total daily precipitation instead is equal to the sum of the 1-hourly 

total precipitation amount and has been computed for each of those 142 locations. 

It was observed that the mentioned meteorological variables were not compatible 
with the amount of losses registered by the company. Indeed the maximum 

reanalysis value of the 10m wind gust was 88.00km/h, which is too low to provoke 
the level of losses observed, which were more than 100 million euros for the 

insurance sector. Also, [22] reports that a wind gust of 176km/h was recorded in 

Figueira da Foz, which is not in line with the values from the Era-Interim and Era-5 
data sets. Climate data, like other types of data, have also the problem of missing 

values or erroneous observations, even if automatic observatory stations are 
considered. 

For these reasons, in this work we only consider data from the insurance 

company, namely, we consider information on the portfolio, and losses of the 

company due to the meteorologic event. In this work, we consider the property 
insurance portfolio of Fidelidade, which is the insurance company with the biggest 

market share in Portugal. The data set consists of a portfolio of 1303984 policies in 
2018, from which 900917 are from councils with at least one claim due to Leslie. 

Table 3 displays the variables for which we have information on each policy, as well 
as the possible values that each of those variables can take. We define risk class as 

the set of all policies with the same characteristics of the variables provided by the 
insurance company in Table 3. 
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3 The Model for predicting the losses 

In this section, we present our proposed model to estimate the expected loss due to 

a storm in a given region based only on loss data. In particular, we consider property 
damage. This approach is different from most works in literature, where climate 

data is also considered, as it is the case of [6, 24, 25] where the climate data is 
essential to build the damage functions that are then used to estimate losses. The 

construction of models that only use loss data has obvious disadvantages, but it has 

the great advantage that the data is reliable, unlike the climate data, as already 
mentioned in the previous section. We consider loss data from hurricane Leslie, 

which was a storm with a huge impact, see Table 2, to calibrate the model that will 

afterwards be used to predict the costs in different regions of continental Portugal, 

by estimating the costs that a similar event would have in other regions, and, 
ultimately, to build a storm risk map by simulating many different scenarios. In our 
approach, the loss data is seen as an indirect measure of the climate variables. 

To build the model, we first infer from the loss data the trajectory of the storm 

after its landfall. By trajectory of the storm is understood as the imaginary line 
around which the observed claims are distributed. Thus, the trajectory is the line 

that passes through the affected councils, i.e. councils with claims, and it is obtained 
using the least-squares method. The information on the trajectory is afterwards 

included in the regression models of the claims number and costs. The final model 
allows characterizing the areas and the classes of policies, which have a higher risk 

for the company, in terms of expected costs, in the event of hazards similar to 
hurricane Leslie. 
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Type of Property content  

building 

   

Year of construction Level 1 if year of construction ≤ 1982 

Level 2 if 1982 < year of construction ≤ 1992 

Level 3 if 1992 < year of construction ≤ 2002 

Level 4 if year of construction>2002 

Framing of the Housing Residential cluster 

Semi-detached house 

Other 

Type of housing Apartment 

Single-family house 

Other 

Type of floor Level 1: sub cave or ground floor or intermediate floor 

Level 2: last floor 

Not defined 

Capital insured Level 1: capital insured ≤ 80000 

Level 2: 80000 capital insured ≤ 120000 

Level 3: 120000 capital insured ≤ 165000 

Level 4: capital insured > 165000 

Region North 

Center 

Metropolitan Area of Lisbon (MAL) 

Alentejo 

Algarve 

Altitude Level 1: altitude ≤ 90m 

Level 2: 90m altitude ≤ 200m 

Level 2: altitude > 200m 

Forest area Level 1: LQ ≤ 1.45 

 Level 2: LQ > 1.45 

Bush area Level 1: LQ ≤ 0.19 

 Level 2: LQ > 0.19 

Urban area Level 1: LQ ≤ 2.12 

 Level 2: 2.12 < LQ ≤ 3.35 

Level 3: LQ > 3.35 

 
Table 3: Variables in the property damage portfolio considered. The location quotients (LQ) for 

variables “Forest area”, “Bush area” and “Urban area”, have been obtained from the 2018 report of 

the Portuguese Statistics Institute (INE - Instituto Nacional de Estatistica). The other variables are 

provided by the insurance company.9 

 
9 The location quotient is the share of the council with that type of territory divided by the share of Continental Portugal with that type 
of territory. For instance, the location quotient of forest area of a given council is the share of forest area of that council divided by the 
share of forest area in Continental Portugal. The full report can be consulted at: 

Variable Possible values 
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3.1 Modeling the storm path 

In this work, we consider loss data aggregated by council. However, other 
granularities may be used. We start by defining, for each council i, the cost ratio and 

the ratio of affected buildings, as introduced in [13], denoted respectively by CRi and 
RABi: 

 loss in i numb. of claims in i 

CRi = , RABi =  

 tot. amount insured in i tot. numb. of properties insured in i 

These quantities provide a measure of the impact of the storm, which are relative to 
the exposure of the company in each council, allowing for comparisons in different 
regions and epochs, according to the variability of the portfolio of the insurer. 

Figure 1, left, displays the cost ratio caused by hurricane Leslie, by council. From 

the figure, we can infer the path of the hurricane from its landfall in Figueira da Foz, 
and its weakening along its path towards northeast, reflected by lower values of the 
cost ratio, as it moves inland. 

To estimate the trajectory followed by the hurricane we consider a least square 

problem to find the line that best adjusts to the geographical points of the main city 
of each affected council, subject to the restriction that the line must pass through the 

landfall point, in this case, Figueira da Foz. We consider latitude and longitude 
measures. Hence, the least square problem with constraint to be solved is given by 

(1): 

 , s.t. α = latk − β lonk (1) 

 

where lat and lon denote latitude and longitude, and k =”Figueira da Foz”. Figure 1, 

right, represents the geographical representation of the affected councils’ main 
cities and the estimated line, i.e. the solution to the constraint least square problem 

(1). 

 

The part of the trajectory line going from Figueira da Foz until the furthest 

council in the northeast of the country that reported claims, which is Bragança, has 
a length of approximately 260km, meaning that the hurricane caused losses to the 

company for at least 260km travelling inland. We do not have information available 
about the damages caused outside the borders of continental Portugal, but, for 

prudence reasons, we decide to assume that the event could produce damages for 
300km before dissipating. 

 

 
https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_destaques&DESTAQUESdest_boui=435668469&DESTAQUESmodo=2 
of 2018 from the INE (Instituto Nacional de Estatistica). 
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Figure 1: Left: Distribution of the observed cost ratios, by council, due to hurricane 
Leslie over continental Portugal. The blue dot refers to Figueira da Foz, the landfall 

point of hurricane Leslie. Right: Coordinates of the main cities of the councils that 
reported at least one claim due to hurricane Leslie and estimated trajectory of the 
hurricane. 

Based on the estimated trajectory, we define two new variables: dist1, 

representing the distance of the insured object to the storm’s landfall point, and 

dist2, representing the perpendicular distance of the insured object to the trajectory 

line. The use of variable dist1 is justified by the decrease of the observed cost ratio 
along the trajectory line, starting from the landfall point, while the use of variable 

dist2 is justified by the fact that the affected councils are closely distributed around 

the trajectory line (see Figure 1). Variables dist1 and dist2 are based on the insurer 
loss data and express an indirect measure of the damage. To understand how these 

variables relate to the observed cost ratio, CR, and ratio of affected buildings, RAB, 
we develop a regression tree model, representing CR and RAB for different values of 

dist1 and dist2 (see for instance [18, 9] for tree-based and regression tree models). 
We use a regression tree based on the ANOVA method [18]. The smallest number of 

observations allowed in a terminal node, used as stopping criteria for the size of the 
tree, is 20. 

Figure 2 shows the two regressions obtained for CR and RAB of the councils 

 

level1 dist1 < 54km dist1 < 54km 

level2 54km ≤ dist1 < 78km 54km ≤ dist1 < 78km 

level3 78km ≤ dist1 < 107km 78km ≤ dist1 < 107km 

level4 dist1 ≥ 107km and dist2 < 44km dist1 ≥ 107km and dist2 < 27km 

level5 dist1 ≥ 107km and dist2 ≥ 44km dist1 ≥ 107km and dist2 ≥ 27km 

 

intensity 1 intensity 2 
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Table 4: Definition of variables intensity1 and intensity2, capturing the effect of 
variables dist1 and dist2 on RAB and CR, respectively. 

affected by hurricane Leslie, considering variables dist1 and dist2. In this case, the 

regression tree algorithm has divided the space into five regions, for both CR and 
RAB, and the values of the response variable in each region are also reported in 
Figure 2, in the blue squares of the terminal nodes. 

 

Figure 2: Partition of the space defined by variables dist1 and dist2 performed by the 

regression tree method applied to the observed RAB (left) and the observed CR 
(right) of the councils with reported claims due to hurricane Leslie. The leaves 

provide information on the predicted RAB (left) and CR (right), as well as the 
proportion of policies, in each node. 

The obtained regression trees provide a mathematical description of the effect of 

variables dist1 and dist2, related to the storm’s trajectory, on CR and RAB. We use 
this regression tree to build two categorical variables, denoted intensity1 and 

intensity2, one for CR and the other for RAB, respectively. These two categorical 
variables have levels defined by the splits in the regression tree, as described in 

Table 3. Thus, variables intensity1 and intensity2 capture the combined effect of dist1 

and dist2 on the different values of RAB and CR, respectively. These are the variables 
that are used in the regression models for predicting claim frequency and claim 
amounts in light of the geographical exposure of the hurricane. 

3.2 Modelling the affected councils based on the storm trajectory 

First, we devise a model to classify which councils are affected by the storm event, 
that is, the councils with at least one claim, based on the trajectory of the storm. 

The data set we use for this purpose comprises all the 278 councils of continental 

Portugal. Afterwards, in the next sections, we will estimate the claim frequency and 
claim amount on the affected councils. 

To estimate the affected councils, three characteristics are considered for each 
council in our data set: distances dist1 and dist2 as previously explained, and a 

binary variable taking the values 1 or 0, if the council had at least one claim or not, 
respectively. For the sake of computational simplicity, we assume that the 

coordinates of the policies coincide with the coordinates of the respective council’s 
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main city. The distances dist1 and dist2 are thus used to predict a binary outcome, 1 
or 0, if the council is affected or not, respectively. This is carried out employing a 

random forest model for classification based on the Breiman’s random forest 
algorithm (see [3]). 

Since the size of this data set is small, the predictive ability of the model is 
evaluated by means of a 10-fold cross-validation (see for instance [16] for an 

explanation on the k-fold cross-validation technique). The performance of the 
estimate is assessed through the mean and variance of the sensitivity (or positive 
rate) and specificity (or negative rate) of the cross-validation tests: 

 num. true positives num. of true negatives 

sens. = , spec. =  

 num. true pos. + num. false neg. num. true neg. + num. false pos 

The mean and variance of the sensitivity were 0.8593 and 0,0049, respectively, while 
the mean and variance of the specificity were 0.8121 and 0.0139, respectively, 

meaning a good predictive ability. 

3.3 Modeling the claim frequency 

We aim now at modeling the average number o claims for those councils that are 

affected by the storm. To this purpose, we only consider the affected councils, as 
using the whole portfolio would lead to biased estimates. The data set we are using, 

based on hurricane Leslie, is composed of more than 900917 policies on the affected 
councils. Of those, approximately 1% reported claims. In order to have a functional 

relation between the predicted probabilities of claims and the characteristics of the 

policies, a logistic regression (cf. [10]) is used to model the probability of the binary 
event if whether a given policy registers or not, a claim. As explanatory variables, we 

consider several characteristics of the policy, together with the variable intensity1, 
to account for the storm. The linear regression is represented in Equation (2). For a 
complete description of all the variables employed refer to Table 3. 

 𝑙𝑜𝑔(
𝑝

1−𝑝
) = β0 + β1 + type of property + β2 year of construction 

+β3 framing of the housing + β4 type of the housing + β5 altitude 

 +β6 type of floor + β7 forest area + β8 bush area + β9 intensity1 + ε (2) 

All the explanatory variables in our logistic regression (2) are categorical, thus each 

one will be represented by dummy variables (artificial variables taking the values 0 
or 1), each one representing a different level of the explanatory variable (see Table 
3). The estimation results are presented in Table 5. 
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Coefficient Estimate 
Std. 

Error 

z 

value 

p 

value 

Signif. 

code 

(Intercept) -2.03009 0.04181 -48.553 < 2e-16 *** 

T.o.P Content -2.35047 0.04111 -57.180 < 2e-16 *** 

Y.o.C Level 2 0.09722 0.03597 2.703 0.006875 ** 

Y.o.C Level 3 0.13160 0.03513 3.746 0.000180 *** 

Y.o.C Level 4 0.26766 0.03445 7.771 7.82e-15 *** 

Framing semi-det -0.43324 0.03462 -12.514 < 2e-16 *** 

Framing other -0.10034 0.04487 -2.236 0.025326 * 

Type single-fam 0.67367 0.03321 20.285 < 2e-16 *** 

Type other 0.34408 0.05098 6.749 1.49e-11 *** 

Altitude Level 2 -0.34458 0.03101 -11.112 < 2e-16 *** 

Altitude Level 3 -0.61717 0.05267 -11.719 < 2e-16 *** 

intensity1 Level 2 -2.19481 0.04816 -45.577 < 2e-16 *** 

intensity1 Level 3 -3.37780 0.07508 -44.992 < 2e-16 *** 

intensity1 Level 4 -4.33357 0.11695 -37.055 < 2e-16 *** 

intensity1 Level 5 -5.29454 0.06855 -77.241 < 2e-16 *** 

T.o.F Level 2 0.25213 0.07144 3.529 0.000416 *** 

T.o.F ND 0.18343 0.03350 5.475 4.38e-08 *** 

Bush Area Level 2 -0.28077 0.02480 -11.324 < 2e-16 *** 

Forest Area Level 2 -0.55605 0.02629 -21.152 < 2e-16 *** 

Table 5: Summary of the coefficients estimated for regression (2) with the whole 
data set of those policies in the affected councils. 

In the logistic regression (2), p represents the probability that the policy has a 

claim, that is p ∈ (0,1). We need a model to decide what is the cut-off value of p above 
which we consider there is a claim. A randomized procedure, based on sampling 

outcomes 0 or 1 for each record, from a Bernoulli distribution using the probabilities 
estimated through the logistic regression, is adopted. To validate the adjustment of 

the logistic regression, we use a 10-fold cross-validation. The model quality is 
assessed based on its ability to predict, in the test data set, the average number of 

claims on a given risk class, and not for a single policy. The expected value and 
standard deviation of the weighted correlation10 are respectively 0.8581 and 0.0012, 

and the expected value and standard deviation of the root mean squared error 
(RMSE) between the predicted values on the test set and the observed values on the 
test set are respectively 1.12 and 0.0946. 

From the estimated results, we conclude that the odds of having a claim are 96% 

higher for single-family houses than for apartments. Also, the odds of having a claim 

 
10 By weighted correlation we mean the correlation between the predicted and observed values weighted 

by the proportion of policies in each risk class. 
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are almost 90% lower for the policies that are located in the area defined by the 
second level of the variable intensity, with respect to those located at level one. This 

means that the properties located at a distance inferior to 53.5km from the landfall 
point of the hurricane have 90% higher odds of having a claim, compared to those at 
a distance comprised between 53.5km and 78km. 

 

3.4 Modeling the claim severity 

Next, we aim at modelling the average cost of a claim, when it occurs. From our data 

set, regarding hurricane Leslie, the number of policies that reported a claim and thus 
represented a cost for the company was approximately 8500, representing 

approximately 1% of the whole policies of the affected councils. Remember that, for 
modeling purposes, only the councils classified as having at least a claim due to the 

storm are considered. If we consider the cost distribution relative to the whole 
portfolio over the affected councils, the distribution is highly right skewed, with 

most of its mass concentrated in 0. If instead, we consider the cost distribution 

relative to those policies, which reported a claim, the distribution is also highly right 

skewed, but there is no probability mass concentrated in 0. In the latter case, we 
were able to log-transform the cost distribution and observed that the log-cost 

distribution was well-approximated by a normal distribution. This allows us to use 

a multiple linear regression (MLR) model [10] to predict the average log-cost. We 
consider the MLR model of Equation (3). Again, the explanatory variables are 

characteristics of the insured property, together with a variable accounting for the 
storm, in this case intensity2. 

log(Cost | Cost > 0) = β0 + β1 Type of Property + β2 Capital Insured 

 +β3 Type of housing + β4 Urban area + β5 intensity2 + ε (3) 

Coefficients Estimate 
Std. 

Error 

z 

value 

p 

value 

signif. 

code 

(Intercept) 5.94432 0.03175 187.214 < 2e-16 *** 

T.o.P Content -0.43345 0.04606 -9.411 < 2e-16 *** 

Cap. Ins Level 2 0.12030 0.03327 3.616 0.000301 *** 

Cap. Ins Level 3 0.30771 0.03441 8.942 < 2e-16 *** 

Cap. Ins Level 4 0.53860 0.03487 15.447 < 2e-16 *** 

Type single-fam 0.67329 0.02694 24.993 < 2e-16 *** 

Type other 0.48910 0.03829 12.774 < 2e-16 *** 

intensity2 Level 2 -0.25639 0.04639 -5.527 3.35e-08 *** 

intensity2 Level 3 -0.17290 0.07146 -2.419 0.015564 * 

intensity2 Level 4 -0.59452 0.13755 -4.322 1.56e-05 *** 

intensity2 Level 5 -0.40922 0.06332 -6.463 1.08e-10 *** 

Urban Area Level 2 -0.20916 0.03763 -5.559 2.79e-08 *** 

Urban Area Level 3 -0.35671 0.02711 -13.159 < 2e-16 *** 
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Table 6: Summary of the coefficients estimated for regression (3) with the whole 
data set of policies with claims in the affected councils. 

The estimated values of model (3) are presented in Table 6. The prediction ability 
of the model is assessed on a 10-fold cross-validation. The quality measures are the 

following: the expected value and standard deviation of the weighted correlation are 
0.9841 and 0.0173, respectively, and the expected value and standard deviation of 

the RMSE are 10370.34 and 6597.22. From the estimated results, it is interesting to 
see that the average claim cost, when there is a claim, for a single-family home is 

96% higher than that of an apartment. Also, the average claim cost is 23% lower for 
policies located in the area defined by the second level of the variable intensity2, 

compared to those located at the first level of intensity2. This means that the 
properties located at a distance inferior to 53.5km from the landfall point of the 

hurricane have, approximately and on average, 23% higher claim costs compared to 

those located at a distance comprised between 53.5km and 78km. From Table 6 we 
can also see how the average claim cost tends to decrease as the concentration of 

urban areas in the council increases. This is expected as properties tend to be less 
exposed in urbanized areas. 

Finally, we use regressions (2) and (3) to predict the claim counts and their costs. 

To evaluate the quality of the prediction, we split the portfolio of the company in the 
councils affected by hurricane Leslie in training and test sets, in a proportion of 60% 

and 40%, respectively. We test the model ten times in independent training and test 

sets. The expected value and standard deviation of the weighted correlation are 
0.8143 and 0.0277, respectively, and the expected value and standard deviation of 
the RMSE are 2749.322 and 675.714, respectively. 

4 Case scenarios in Portugal 

In this chapter, we simulate the impact of a storm like Leslie if it landfalls in a 

different part of continental Portugal. For the purpose of analysing different 

scenarios, we have to simulate the trajectory of the storm and to chose the landfall 
point. Afterwards, for each simulated trajectory, we follow the methodologies 

described in Chapter 3. For simulating the trajectory, we need two elements that can 

be fixed or simulated: the storm’s length and entrance angle. Since we assume that 

Leslie caused damages inland along 300 km, the length of the trajectory after its 
landfall is fixed at 300 km. 

Again, for the sake of computational simplicity, we assume that both the exact 

point where the hurricane landfalls and the coordinates of the policies coincide with 

the coordinates of the respective council’s main city. This implies that each policy 
belonging to a certain council has the same values of dist1 and dist2. Once the 

trajectory is drawn, the variables dist1 and dist2, and, subsequently, intensity1 and 
intensity2, are obtained for each policy. 

In Figure 3, we present three maps of continental Portugal which highlight the 

cost ratio in the different councils assuming that a hurricane like Leslie reaches 
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Portugal in Cascais, Porto, and Faro with an entrance angle of 45, -30, and 60 
degrees, respectively. The trajectory of the hurricane is also represented in the 
maps. 

In Table 7, for each scenario, we present the number of claims, the cost, and the 
mean cost per claim (MCC), relative to hurricane Leslie. The MCC is computed as 

Total cost 

 MCC = . 

Total number of claims 

According to our simulations, if a hurricane like Leslie reaches Portugal in Cascais or 
in Porto, then the insurance company can expect a total number of claims that are 

approximately 3.22 and 2.61 times higher than the number of claims in Figueira da 

Foz due to Leslie. On the other hand, if the landfall point is Faro, then the insurance 
company will expect approximately half of the claims verified in Figueira da Foz. 

These results are expected since Cascais and Porto belong to the Lisbon 
Metropolitan Area and Porto Metropolitan Area, respectively, which are the regions 
with the biggest exposure for the company. 

 

 

 

Figure 3: Cost ratio map of continental Portugal obtained for the following 
scenarios. Left panel - landfall point: Cascais, entrance angle - 45 degrees; Middle 
panel: landfall point: Porto, entrance angle - 330 degrees; landfall point: Faro, 
entrance angle - 60 degrees. 

 

Landfall Point Number of Claims Cost MCC 

Cascais 3.22 2.08 0.65 

Porto 2.61 1.99 0.76 

Faro 0.51 0.45 0.87 

Table 7: Cost, number of claims and MCC, relative to Figueira da Foz (benchmark), 
for the simulated scenarios of Cascais, Porto and Faro. 
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The estimated total costs in Cascais and Porto are similar and are approximately 
twice the total cost in Figueira da Foz. Analysing the total number of claims in Cascais 

and Figueira da Foz, we can expect higher costs than the ones estimated. To 
understand these results, we have to observe (i) the number of insured properties 

inside an area of 53.5 km around the landfall point, and (ii) the type of property 
insured in that region. The value of 53.5 km corresponds to the first level of the 

variables intensity1 and intensity2, and for which the coefficients in regressions (2) 

and (3) are the largest among all the other levels of these variables. Additionally, the 
variable type of housing is the one with the largest estimated coefficients. As seen 

before, according to the results in Tables 5 and 6, a single-family house has 96% 
higher odds of incurring a claim than an apartment, and the average cost for a single-

family house is 96% higher than for an apartment. 

Table 8 shows that the number of properties and the capital insured in an area 
of 53.5 km around the Cascais (resp., Porto) is 3.9 (resp., 3.1) times larger than in 

Figueira da Foz, which could indicate that both the number of claims and total costs 

should increase, similarly. However, Table 9 shows that both Cascais and Porto have 
a significantly smaller number of single-family houses when compared with the 

 

Landfall Point 

Portfolio size relative to the benchmark 

Number of properties 

insured 

Capital insured 

Cascais 3.9 3.8 

Porto 3.1 2.9 

Faro 0.55 0.54 

Table 8: Ratios between the size of the portfolio (number of properties insured or 

total amount of capital insured) in a radius of 54 km around the landfall point i and 
the number of properties insured in the same area around Figueira da Foz. 

 

Landfall Point 

 Type of Housing  

apartment single-family 

house 

other 

Figueira da Foz 33.95 % 51.98 % 14.07 % 

Cascais 69.99 % 14.94 % 15.06 % 

Porto 43.96 % 40.46 % 15.58 % 

Faro 56.33 % 31.52 % 12.15 % 

Table 9: Concentration of the variable Type of Housing for those policies located in 
an area inferior to 53,5 km around the landfall point. 

benchmark case in an area of 53.5 km around the landfall point. Since this type of 

house generates larger losses than the remaining types of housing, the losses 
increase but not as much as the number of claims. Additionally, a similar justification 
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can be found for the fact that the estimated total cost in Porto is identical to the one 
in Cascais. 

5 Risk map 

Insurance companies with their portfolio in Portugal have experienced the impact 
of tropical storms in the previous years. These events might increase the premiums 

paid by the affected policyholders. However, the random nature of meteorological 
extreme events encourages insurers to look for solutions that mutualize the 

expected loss among other locations that could be affected in the future. In this 

chapter, we estimate the expected cost under different scenarios, by repeating 
simulations, as the ones obtained in Chapter 4, a large number of times. These 

scenarios are constructed by assigning different probability distributions to the (i) 
landfall council, (ii) the entrance angle, and (iii) the trajectory length. The following 
two scenarios are considered: 

Scenario A: In this scenario, we assume that the councils in the coast of Portugal 
that are southern to Setubal are less likely to be hit by a hurricane, with a total 

probability of 2/6, than Setubal and the northern councils, with a total probability of 

4/6. We assign equal probability to the councils in each of the two regions. The 
trajectory is assumed to have a fixed length of 300 km. For the West coast councils, 

the entrance angle is simulated according to a triangle distribution with support 
between -90 and 90 degrees with a mode of 45 degrees. For the South coast councils, 

the entrance angle is simulated according to a triangle distribution with support 
between 0 and 90 degrees with mode 45 degrees. 

Scenario B: We now assume that the coastal councils can be hit by a hurricane 

according to a uniform distribution, which is with the same probability. The length 

of the trajectory is assumed to follow a continuous uniform distribution between 
200 km and 400 km. The entrance angle also follows a continuous uniform 

distribution in the interval -90 degrees to 90 degrees, in West councils, and in the 
interval 0 degrees to 90 degrees in South councils. 

In Figure 4 and Table 10, we present the distribution of the CR and the relative 

total cost, respectively, in continental Portugal for scenarios A and B. Despite the 
similarities between the two risk maps, we can easily see from Table 10 that the 

distribution of the total cost might be significantly different in different scenarios. 

Table 11 highlights those differences. We can observe that in scenario B the relative 
minimum total cost is significantly smaller than relative the minimum total cost in 

scenario A. This is due to the fact that in scenario A there is a higher likelihood that 
northern councils are hit by a storm. The north of Portugal is more densely 

populated, hence there is a higher exposure and, consequently, a higher probability 
of having small claim amounts. It is worth noticing that the total costs due to 

hurricane Leslie could be easily exceeded in both scenarios A (with probability 56%) 
and B (with probability 75%). In Table 12 we present the highest risk premiums in 
scenarios A and B. 
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Figure 4: Distribution of the CR by council in continental Portugal due to a hurricane 
like Leslie in scenarios A (left) and B (right). 

Relative Total Cost Scenario A Scenario B 

TC < 0.5 30 % 12.4% 

0.5 ≤ TC < 1 14.1 % 12.3 % 

1 ≤ TC < 1.5 21.8 % 18.9 % 

1.5 ≤ TC < 2.0 20.4 % 41.1 % 

TC ≥ 2 13.7 % 15.3% 

Table 10: Distribution of the Total Cost, relative to the total cost due to Leslie, for 

1000 different simulated scenarios over continental Portugal. 

 

 Scenario A Scenario B 

Min total cost 1.14 0.08 

Max total cost 2.32 2.62 

Table 11: Minimum and maximum values predicted for the total cost, relative to the 
total cost due to Leslie. 

The risk premium is computed as the total cost per risk class divided by the 

number of policies in that class. The risk premium can be used by the insurer to 

adjust the policy premium to account for the storm risk. It is interesting to observe 

that the highest risk premium classes are the same in both scenarios. We can see that 
the highest risk premiums occur in Algarve for single-family houses. This is because, 

although Algarve is less urbanized than Lisbon or Porto regions, it is a region highly 
populated in the Summer due to tourism, and thus the portfolio of the insurance 

company in Algarve is composed of many luxury holiday single-family houses. This 
also explains the differences in the maximum total cost in scenarios A and B, since in 
scenario B there is a higher probability of a storm hitting Algarve. 
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Year of 

Construction 

Framing of the 

Housing 

Risk Premium 

A B 

]2002,2018] residential cluster 58,93 81.08 

]2002,2018] other 55,15 75.92 

]1992,2002] residential cluster 53,75 73.20 

]1982,1992] residential cluster 53,11 72.62 

]1992,2002] other 51,01 70.42 

Table 12: Risk classes with the highest estimated risk premium. These risk classes 

are composed of buildings that are single-family houses, located in Algarve and with 
a capital insured greater than 165000€. 

6 Conclusions 

In this work, we simulate the impact of a storm like Leslie in the portfolio of the 

insurance company Fidelidade. Since climate data may not be reliable or may be 

difficult to deal with or obtain, we use only data on the policies of the property 

portfolio. The claims are seen as indirect observations of the intensity of the 

hurricane. The model is calibrated on data from hurricane Leslie, which hit Figueira 
da Foz, in continental Portugal, in October 2018. For other storm types, the model 
might need adjustments. 

Several scenarios were simulated and risk maps were built from there. From our 
analysis, we can see that there is a high probability that a future event with the same 

intensity as Leslie will cause larger losses than Leslie. The simulated scenarios also 

allow computing the risk premium per risk class in the portfolio, which can be 
included in the policy premium calculation to account for this type of climate events. 

We have observed, from the simulations, that less populated regions may lead to 
higher losses than more urbanized areas. This depends on the exposure of the 

company, namely the type of property insured. Hence, this model provides a 
hurricane risk management tool for the insurance company. 
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