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Abstract

Moments of crisis, as the pandemic situation in 2020/2021 or the financial and economic
crisis of 2007/2008, show that the survival of companies depends very much on the way they
adjust to the market state, being able to adopt different operation modes. The question is
then when to switch from one operating mode to another. Firms that are not yet in the
market have to decide the optimal time to invest, and in which mode (risky or safe) they
will invest, considering the future switching strategy.

In this paper we study both the switching and the investment problems using the Real
Options framework. We characterise the optimal strategies in terms of the triggers, pro-
viding the corresponding value functions. We also study the influence of the costs and the
parameters of the underlying stochastic process in the optimal strategies. Finally, we discuss
how the firm can choose the safe mode in order to optimise its revenues.

Under some conditions, the firm can operate with a negative instantaneous profit. This
region - the hysteresis region - can only be reached under special conditions. We present
two situations where the firm may produce or even invest in this region.
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1 Introduction

In this paper we consider a firm that may operate in two modes, being able to switch between
them as many times as needed, paying some pre-defined costs. Moreover, it has also the option
to permanently leave the market, and this option is possible to exercise in both modes. The
two projects differ in terms of the risk associated with the payoff: one being more profitable
when the market conditions are favourable but leading to larger losses in times of crisis (risky
mode), whereas the other mode leads to smaller profits and losses (safe mode). Therefore the
firm may adjust itself, in terms of production mode, to the conditions of the market.

We start by deriving the optimal operational mode for a firm already active in the market,
defining when the firm should switch from one mode to other, in order to maximise expected
profits.

This problem - which we call the switching problem - becomes more relevant when firms have
to face volatile markets or imminent social, economic or financial crisis. In these situations, firms
have to adapt fast to the changing market conditions, adjusting, in particular, their production
processes. In the 2008 crisis, many firms felt the need to adjust their production processes in
order to face declining markets and to avoid large losses. One of the strategies followed by
companies to decrease the costs associated with the production was the layoff, which in fact
represents a change in the production mode, using our terminology.

During this crisis, many companies adopted this type of strategy, reducing the risk of having
large losses. Firms like Merck, General Electric, Whirpool and others are examples of such
decision. Of course as soon as the demand started increasing, firms needed to change their
strategy, in order to accommodate larger demand and therefore to increase their profits.

Actually, this question has gained more importance, with the current situation of the pan-
demic of COVID-19 caused by the SARS-COV-2, as companies are scrambling to mobilise
responses. Crisis like this one have a dynamic trajectory, which requires a constant reframing
of models and plans. According to Reeves et al. (2020), the Corona crisis has shown that com-
panies need to be very flexible, reallocating labour flexibly to different activities, and acting
proactively. For instance, in China many companies decided to reallocate employees to new and
valuable activities instead of considering the layoff strategy. Also, they deployed sales efforts to
other channels, considering, for instance, online sales. After the peak of the crisis has passed,
these companies need to adjust again to the new situation, preparing for a faster recovery.

In Europe, companies including Zara, Nivea and Dyson, made drastic changes in their pro-
duction to help with the response to the COVID-19 pandemic, producing needed equipment’s.
Additionally, they keep trying to survive to the outbreak. Another example is the engineering
firm Meggitt, which changed to produce thousands of ventilators to treat patients with COVID-
19 who develop severe respiratory problems. Restaurants, pubs and coffees, closed since the
outbreak of the pandemic, moved to services like takeaway and home-delivery (these examples
can be found in Davies and O’Carroll (2020)).

These examples show companies that are already in the market and need to take decisions
regarding their production mode. In this paper, we also consider the optimal investment strategy
for firms that intend to undertake an investment opportunity. The optimal investment decision
will define the timing and the production mode that the firm will choose for its investment.
After investment, the firm will continue to adjust its operation mode optimally, following the
optimal switching strategy.

One of the main results that we will present in this paper is the existence of an inaction
region, the so-called hysteresis region, where the firm may be producing with losses, but waiting
to take an action, which, in our setting, may be either to change its production mode or to
exit permanently the market. We will show that a firm already producing and acting optimally
never reaches this region. In addition, investment in this region is never optimal, under the
standard assumptions of fixed investment cost and no delay (i.e., zero time-to-build). Thus, in
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these conditions, the relevance of the hysteresis region is questionable.
However, we may face situations where the firm can end up producing in such a region, in

particular when we consider (i) investment with time-to-build and (ii) investment in undervalued
firms. We study these two problems, and we provide numerical insights, regarding notably the
sojourn time in the hysteresis region and how likely is that the firm will end up producing with
positive profits.

In fact, many problems show that in the investment decision one may need to take into
account that there is a delay in the investment, in particular in large scale (infrastructure)
construction projects, as transportation infrastructure projects, power generating plant and
aerospace and pharmaceutical investments. We refer to Bar-Ilan and Strange (1996) and refer-
ences therein. Since the market conditions evolve during an investment lag, the profitability of
the investment may also change. In our case, we are particularly interested to study how likely
it is that the revenue reaches the hysteresis region.

Regarding investment in undervalued firms: in crisis periods, the revenue of firms decrease
and many of them end up producing in the hysteresis region. As the recent crisis shows, business
like hotels, restaurants and casinos, had severe losses, and therefore there are opportunities for
private equity to buy these businesses at a valuation they could not have gotten before (examples
are available at Son et al. (2020)). Thus, we consider a second situation where an equity firm has
the opportunity of buying an undervalued company, which is not following an optimal strategy.
We derive the investor’s optimal strategy, finding the optimal time to buy the undervalued firm.
We prove that, in this type of situations, it may be optimal to invest in the hysteresis region.

Both the switching and the investment problem that we address will be studied using a Real
Options approach. Investment theory and real options were pioneered by Dixit and Pindyck with
its seminal work Dixit and Pindyck (1994). There are many other works dealing with investment
under uncertainty, namely Arrow and Fisher (1974), McDonald and Siegel (1986), and Trigeorgis
et al. (1996), for instance. Authors have considered different features of investment, for instance,
Huisman and Kort (2003), Pawlina and Kort (2006), and Brealey et al. (2012) address strategic
options; Bjerksund and Ekern (1990), Majd and Pindyck (1987), and McDonald and Siegel
(1985) discuss the option of investment; Farzin et al. (1998) and Hagspiel et al. (2016) study
technology adoption problems; and Brennan and Schwartz (1985), and Myers and Majd (2001)
tackle the abandonment option. Bar-Ilan and Strange (1996), and Alvarez and Keppo (2002)
considered investment problems with deterministic time-to-build. In their case, they proved that
an increase in the investment lag increases the investment threshold and thus delays investment.
Nunes and Pimentel (2017); Couto et al. (2015) also studied a similar problem, in the context
of high-speed service rails. They also considered non-constant investment costs.

Our contribution to the literature of real options is twofold. On the one hand, we analyse
a switching problem in which the firm has the opportunity to switch between two production
modes with different levels of risk, and, on the other hand, we present and discuss the invest-
ment strategy in a project with two alternative production modes. The literature of switching
problems is vast and we refer to Duckworth and Zervos (2001), Ly Vath and Pham (2007),
Guerra et al. (2018), Zervos et al. (2018), and references therein. In Zervos et al. (2018), the
firm can choose between two operation modes. In mode 1, the firm is producing, whereas in
mode 0 the firm stops the production, paying a running cost. A full characterisation of the
optimal strategy is provided by the authors. For some parameter choices an hysteresis region is
found, where the firm should produce, although a negative profit is obtained. In this region the
firm waits to see what happens, before taking an irreversible decision. In Guerra et al. (2018),
the authors present an economic analysis of the model and discuss the role of such a region in
the investment strategy.

In the above references, the authors assume that while in mode 2 there is no production.
On the contrary, in our paper we consider that in the alternative safe mode the firm may be
producing, obtaining a positive profit. Additionally, we consider also the case that the firm may
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decide how much it has to downgrade its production.
This feature is highly relevant for seasonal or intermittent demand, common in industries

as construction or tourism, or in any activity and period where an economic down-turn occurs
because overall demand declines. One example comes from the airline industries. The terrorist
attacks of September 11, 2001, affected the U.S. airline industry. Even with federal assistance,
the losses in this industry were enormous, due to the slow rate of passenger return. In response
to these losses, the major airlines cut flights and laid off their work forces, in different extend.
In some cases the cuts were too large and proved to be disastrous and led these companies to
bailout, whereas other, that kept a more significant work force, responded better to the crisis
and managed to emerged from this crisis resilient and strong (Gittell et al. (2006)). In this
paper, we show that when the firm decides to switch for a production mode less risky, it can
improve their value by correctly choosing how much it should downgrade the production level.

The investment problem in alternative projects was firstly addressed by Dixit (1993). In his
set up, the firm has to choose between two different projects with different sizes. The project
initially chosen by the decision-maker will be active forever. The price follows a geometric
Brownian motion (GBM) and the cash-flow is a linear function of the price. Additionally, the
project with the larger sunk cost provides larger returns for high values of price. Assuming that
p1 and p2 are the individual investment thresholds for each one of the projects, the main finding
of Dixit’s paper are the following: (i) when the initial price is small enough, the decision-maker
will invest in the project with the largest option value as soon as the price reaches the smallest
threshold; (ii) when the initial price is larger than the later threshold, it is optimal to invest in
the price with large net present value.

This problem was also studied and extended by Décamps et al. (2006). The authors of the
later paper proved that Dixit’s solution is not completely correct. They prove that, for certain
choices of the parameters, when the initial price is in between the two thresholds, it is optimal
to wait, essentially to get more information about the price evolution, and to decide afterwards
in which project to invest. Thus the optimal investment strategy is dichotomous.

Our model shares some of the features of the model of Décamps et al. (2006) and also finds
that for certain range of parameters, there is an inaction region. But contrary to Décamps
et al. (2006), upon investment the firm is allowed to switch back and forth the two production
modes, without any a priori restriction on the number of times that it switches. Moreover, we
allow the firm to take the exit decision in both production modes, which is also a feature that
distinguish our model from the one considered in Décamps et al. (2006).

A full description of decisions that the firm may take in our model is the following:

a) Given that the firm may enter the market at any time, and may choose to enter using one
of two production modes, the firm needs to decide when to invest in the market and in
which production mode. This lead to a one-time decision.

b) Given that the firm is already in production, it has to decide when it is optimal to switch
from a production mode to the other. This leads to a sequence of switching times.

c) The firm may decide to leave the market, and this may happen in both modes. This lead
to a one-time decision.

In a nutshell, the main findings of this paper are as follows:
(a) Depending on the relationship between the parameters of the model, an hysteresis region

in the more risky production mode may exist. But when the drift term is negative and small
and/or the volatility is small, this region does not exist in the optimal switching strategy. These
results are in line with the ones presented by Guerra et al. (2018). Moreover, increasing the
switching costs increases the size of the hysteresis region, up to a certain value, after which the
hysteresis region no longer exists.
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(b) A firm that acts optimally and that is already producing never reaches the hysteresis
region due to a continuous decrease of the revenue. We show that for particular types of invest-
ment such as investment with time-to-build or investment in undervalued firms, production in
the hysteresis region may be optimal. Considering a standard investment option, the firm never
invests in such a region. In Guerra et al. (2018) it is shown that this region may be attained if
there is a sudden shock, that leads to a downward jump.

(c) In case the firm end up in the hysteresis region, the expected sojourn time there decreases
with increasing volatility but the probability of resuming production (and switching to the safe
mode) rather than exiting the market increases. This result is the opposite of the findings of
Guerra et al. (2018), and can be explained by the fact that in our model in the safe mode there
is still positive revenue, whereas in the model of Guerra et al. (2018) in the alternative mode
(suspension) there are only running costs.

(d) Considering that the firm can choose how much it will downgrade its production, i.e.
how safe is the less risky mode, then it will be willing to choose a less safe mode with increasing
the drift but, on the contrary, it will choose a safer mode with increasing the uncertainty. At
the same time, increasing the drift leads to a choice of a smaller value of the fixed running cost
of the safe mode, which is somehow unexpected. This is explained by the fact that the sojourn
time in this mode also increases, and therefore the firm wants to pay less fixed costs per unit
of time. The opposite effect occurs with increasing uncertainty.

(e) Under certain conditions on the costs, it may happen that the investment region is
not connected, meaning that there is an inaction region in which the decision-maker waits to
see in which project to invest. The same situation occurs in Décamps et al. (2006). This
inaction region exists for small values of the drift and of the volatility, but when one increases
the volatility, the inaction region tends to disappear providing that the remaining parameters
are fixed. However, we can see that even when the volatility is high enough there are set of
parameters in which the inaction region appears. This effect is described by Décamps et al.
(2006) when one allows switching from the project with the lower output flow to the one with
the larger output flow.

This paper is organised as follows: in Section 2 we introduce the model and the switching and
investment problems. The switching problem is then solved in Section 3, where the relevant
strategies and thresholds are presented, as well as a comparative study where we assess the
effects of the parameters and costs in the optimal strategy. Then, in Section 4, we assume that
the safe mode can be chosen by the firm and we derive some results concerning the optimal
choices of the of mode 2. Section 5 concerns the investment problem, with the presentation
of the optimal investment strategy and its sensitivity with respect to the diffusion parameters.
In Section 6, we discuss two particular types of investment where firms can end up producing
in the hysteresis region. We also compute how likely is the firm resume production instead of
exiting, and the expected time that the firm stays in the hysteresis region. Section 7 concludes
the paper. In the appendixes, we provide the expressions for the parameters, and thresholds,
proofs and some additional tables and figures.

2 Model

We consider a monopolistic risk neutral firm, that has the opportunity to invest in a project
whose revenue evolves stochastically over time. Then, we denote by Pt the revenue at time t
and we assume that {Pt, t ≥ 0} is a GBM, with drift µ and volatility σ > 0. We let r denote
the risk free rate, and we assume that r > µ.

The firm may operate in two alternative modes: mode 1 and mode 2. Whenever the firm is
in production mode i, and the current value of the revenue is p, its instantaneous profit is πi,
with

πi(p) = αip− βi, i = 1, 2.
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Since the power of a GMB is still a geometric Brownian motion with different drift and diffusion
parameters, the results can be generalised for instantaneous profit function, as πi(p) = αip

γi−βi,
with i = 1, 2.

The coefficients βi can be interpreted as (instantaneous) costs of production in mode i, and
hence βi > 0. Furthermore, we assume that mode 1 is more risky than mode 2, meaning that
we assume the following ordering in the production parameters:

α1 > α2 ≥ 0, β1 > β2.

Moreover, the firm has the option to leave the market from both modes.
Since the firm may produce in one of the two possible modes and can abandon the market,

we introduce the process: {Zt, t ≥ 0}, with Zt ∈ {1, 2, ex}, where Zt = i means that the firm is
operating in mode i, with i = 1, 2, and Zt = ex means that the firm has abandoned the market.
The state ex is absorbing. For instance, a realisation of the process such that Zs = ex and
Zt ∈ {1, 2}, for t > s, is not admissible as state ex is absorbing. A strategy is then a realisation
of the stochastic process {Zt, t ≥ 0}. We let S denote the set of all admissible strategies.

Considering the transition between modes, we denote the time when the jth transition from
state a to state b occurs by T a,bj , with a, b ∈ {1, 2} . Following Zervos et al. (2018), these times
can be defined recursively by:

T a,b1 = inf{t > 0 : Zt− = a, Zt = b}

T a,bj+1 = inf{t > T a,bj : Zt− = a, Zt = b}, a ∈ {1, 2}, b ∈ {1, 2, ex}, j ∈ N.

The exit times are defined by

τ1 = inf{T 1,ex
j <∞}, τ2 = inf{T 2,ex

j <∞}, τ = inf{τ1, τ2}.

Switching from one production mode to another one implies a cost payment and leaving the
market generates a cost or a salvage value. We let Kij denote the transition cost from operating
mode i to operating mode j, and Kx represent the exit cost (when Kx ≥ 0) or the salvage value
(Kx < 0). We assume that rKx−β2 < 0, so that for small values of revenue exit from production
mode 2 may be optimal. Since β1 > β2, exit from production mode 1 may also be optimal.

If the firm is already producing, and given that currently the firm is in state z ∈ {1, 2} and
the initial revenue is p, the expected profit of the firm in case it follows the strategy s ∈ S,
which we denote by Js(z, p), is given by:

Js(z, p) =Ez,p

∫ ∞
0

e−rt
(
π1(Pt)I{Zt=1} + π2(Pt)I{Zt=2}

)
dt− (1)

−K12

∞∑
j=1

e−rT
12
j I{T 12

j <∞} −K21

∞∑
j=1

e−rT
21
j I{T 21

j <∞} −Kxe
−rτI{τ<∞}

 ,
where IA represents the indicator function that is equal to 1 if A holds true and 0 otherwise,
and Ez,p[...] is the expected value conditional to the information that Z0 = z and P0 = p. Then
the optimal switching strategy can be found by solving the optimization problem:

V (z, p) = sup
s∈S

Js(z, p). (2)

Solving the switching problem above allows us to find the sequence of states (and times) of the
process Z that maximises the profit of the firm, given the current level of revenue p and the
operating mode z.

A firm that is not producing yet has to choose both the optimal investment time as well as
the mode in which it will start operation. Afterwards, we assume that the firm is profit oriented,
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acting in accordance with the optimal strategy obtained in (2). At the investment moment, the
firm has to pay an investment cost, which may be different according to the production process
chosen. We let Ki denote the investment cost of the firm when it enters the market in mode i,
with i = 1, 2. To facilitate the presentation, we will consider the following notation:

v1(p) := V (1, p), v2(p) := V (2, p), (3)

and
v∗(p) = max (v1(p)−K1, v2(p)−K2) . (4)

Thus, the investment problem is given by

W (p) = sup
τ≥0

Ep
[
e−rτv∗(Pτ )

]
, (5)

with Ep denoting the conditional expectation at P0 = p. The investment strategy will provide
us the optimal investment moment of the firm and in which production mode the firm should
start operating.

3 The switching problem

In this section, we provide a complete analysis of the switching problem (2), discussing the
optimal strategy, and analysing the effect of the parameters in such strategy.

In order to solve the switching problem defined in (2), we start by providing the corre-
sponding Hamilton-Jacobi-Bellman (HJB) equations. As we have two production modes, we
have two HJB equations, and each HJB equation has three members. Whenever the firm is
producing in mode i, it has the following options: [1] it continues producing in that mode, [2]
it switches to the other production process, or [3] it exits the market. Therefore, the associated
HJB equations are coupled and are of the following form:

[1] [2] [3]

max {(Lv1)(p)− rv1(p) + π1(p), v2(p)− v1(p)−K12,−v1(p)−Kx} = 0, (6)

max {(Lv2)(p)− rv2(p) + π2(p), v1(p)− v2(p)−K21,−v2(p)−Kx} = 0, (7)

where Lvi = µxv′i + σ2

2 x
2v′′i , with v′i and v′′i being, respectively, the first and second derivative

of vi, with i = 1, 2. To simplify the explanation, we number the different decisions (producing
in the same mode, switching to the other mode, and exit), using [1], [2] and [3], respectively.
The HJB equations naturally divide the space into several ‘action’ regions, depending on where
each of the parcels of the above equations is equal to zero. The theoretical framework for this
problem is presented in Zervos (2003).

3.1 Optimal switching strategy

To find the solution to the HJB equations (6) and (7), we start by noticing that the ordinary dif-
ferential equations that hold in region [1] (in both HJB equations) are Cauchy-Euler equations,
and their solutions are as follows:

Eip
d1 + Cip

d2 +
αi

r − µ
p− βi

r
,

where d1 < 0 and d2 > 1 solve the characteristic equation σ2

2 d
2 + (µ− σ2

2 )d− r = 0, and Ei and
Ci are constants such that the smooth-pasting conditions hold. The value function for region
[3] is the value of exiting, and therefore in this region the solution is trivial and equal to −Kx.
Finally, in region [2], the firm should optimally change its production mode from 1 to 2 or vice

7



versa. Thus, the value function for a firm that is actually in regime i, with a revenue that
belongs to region [2], is given by vi = vj −Kij , with i, j = 1, 2 and i 6= j.

Depending on the set of parameters chosen, we may have different optimal strategies. Since
we are considering that rKx − βi < 0, leaving the market will be optimal for some values of
revenue. There are two optimal strategies for a firm that is already producing:

No downgrading strategy: in this case, once the firm enters production mode 1, it will never
be optimal to switch to production mode 2. On the contrary, if the firm starts production in
mode 2, then it will be eventually optimal to switch to mode 1, for large values of revenue. In
both cases, it can be optimal to exit the market for small values of revenue. This strategy is
depicted in Figure 1. In this Figure and for the rest of the paper, we use the following notation:
Pix is the exit threshold when the firm is in production mode i and Pij is the revenue level that
triggers a switch from mode i to mode j.

1○ -uP1x

(exit) (production in 1)

2○ -u
P2x

(exit)

u
P21

(production in 2)

6 6 6

(switch to 1)

Figure 1: No downgrading strategy.

Hysteresis strategy: in contrast to the previous case, it may be optimal to switch from mode
1 to 2, and the other way around. At a first glance, we would expect an optimal strategy as the
one depicted in Figure 2. However as exit is an irreversible decision, one can prove that such

1○ -uP12uP1x

? ? ???

(exit) (switch in 2) (production in 1)

2○ -u
P2x

u
P21

6 6

(exit) (production in 2) (switch to 1)

Figure 2: Downgrading without hysteresis (not optimal strategy).

strategy is not optimal. In fact, if a firm is producing in mode 1 and the revenue decreases,
then it is optimal to switch to mode 2, as in this mode the firm is hedging against larger losses.
In case the returns are really low, the firm is loosing money and therefore the option to exit
becomes attractive. At this point, it may not be optimal to exit the market nor to switch to
mode 2, since the firm pays (or receives) exactly the same in case it leaves the market either
out of production mode 1 or production mode 2 (Kx), and there is a cost for switching from
production mode 1 to production mode 2. Thus, it is better for the firm to wait before deciding
either to switch (in case the revenue increases) or to exit (in case the revenue decreases even
more), which leads to the existence of an hysteresis region. We note that in Guerra et al. (2018),
the authors find also such a region, where in their case the firm may be in operating state or in
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mothballing.
In Figure 3 we depict this strategy, where the the hysteresis region corresponds to revenues

between P1x and Ph. We note that a firm will never enter the hysteresis region due to a

1○ -uP12uP1x uPh
? ? ?

(exit) (production in 1) (production in 1)

2○ -u
P2x

u
P21

6 6

(exit) (production in 2) (switch to 1)

Figure 3: Hysteresis strategy.

continuous movement of the revenue. We will discuss in which situations such a region can be
attained.

The optimality of the strategies depicted in Figures 1 and 3 depends on the relationship
between the involved parameters. Next we present a set of conditions that will be critical for
the optimality of each one of these two strategies.

Set of Conditions 1 One of the following conditions holds true:

i) β2 + rK12 ≥ β1

ii) β2 + rK12 < β1 and π1(δ)− π2(δ) ≥ 0

iii) β2 + rK12 < β1 and π1(δ)− π2(δ) < 0 and K21 ≥ K†21

iv) β2 + rK12 < β1 and π1(δ)− π2(δ) < 0, K21 < K†21, and K12 ≥ K†12

where

δ =
(β1 − rKx)(d2 − 1)

α1d2
,

and K†12 and K†21 are defined in Appendix A.1.3.
In the next proposition, we will see that when the parameters of the model satisfy the Set

of Conditions 1, then the “no downgrading strategy” is optimal and the exit threshold can be
computed explicitly, verifying P1x = δ (the proof can be found in Appendix A). Otherwise,
the “hysteresis strategy” is optimal. Indeed, condition i) states that the instantaneous cost
of switching from production mode 1 to the production mode 2 adding to the running cost of
producing in mode 2 is larger than the running cost of producing in mode 1. Consequently,
we expect that switching from mode 1 to mode 2 is never optimal. The “no downgrading
strategy” may still be optimal even if condition i) is not satisfied. If the running payoff is larger
in production mode 1 than in production mode 2 for the revenue level that triggers the exit
decision from mode 1, switching to mode 2 is never optimal. The same happens if the costs of
switching are large enough (either K21 ≥ K†21 or K12 ≥ K†12). The same kind of bounds for the
switching costs can be found in Zervos et al. (2018) and Guerra et al. (2018).

The results described above are formalised in the next proposition, where we present the
value functions v1 and v2 associated with the previous optimal strategies. The proof of the
optimality of the functions v1 and v2 follows the lines of the proofs provided by Zervos et al.
(2018). All the parameters and thresholds are defined in Appendix A.
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Proposition 1 Consider the switching problem (3). Then the “no downgrading strategy”, de-
picted in Figure 1, is optimal if the Set Conditions 1 holds, and the value functions v1 and v2,
defined in (3), are given by the following equations:

v1(p) =

−Kx, p < P1x

Apd1 + α1
r−µp−

β1
r , p ≥ P1x

, (8)

v2(p) =


−Kx, p < P2x

Cpd1 +Dpd2 + α2
r−µp−

β2
r , P2x ≤ p < P21

Apd1 + α1
r−µp−

β1
r −K21, p ≥ P21

. (9)

Additionally, the exit thresholds are such that

(a) P1x = δ;

(b) P1x ≤ P2x, if π1(δ) ≥ π2(δ) or
(
π1(δ)− π2(δ) < 0 and K21 ≥ K†21

)
(c) P1x > P2x, if

(
π1(δ)− π2(δ) < 0 and K21 < K†21

)
If the Set of Conditions 1 does not hold, then the “hysteresis strategy”, depicted in Figure 3, is
optimal, and the corresponding value functions are as follows:

v1(p) =


−Kx p < P1x

Epd1 + Fpd2 + α1
r−µp−

β1
r P1x ≤ p < Ph

Cpd1 +Dpd2 + α2
r−µp−

β2
r −K12 Ph ≤ p < P12

Apd1 + α1
r−µp−

β1
r P12 ≤ p

, (10)

v2(p) =


−Kx p < P2x

Cpd1 +Dpd2 + α2
r−µp−

β2
r P2x ≤ p < P21

Apd1 + α1
r−µp−

β1
r −K21 P21 ≤ p

. (11)

The parameters and thresholds for both strategies are provided in Appendix A.

The results presented in Proposition 1 have to be interpreted as follows: given that the current
revenue for the product is p, and that the firm is producing in mode i ∈ {1, 2}, then its value
is given by vi(p). The expression for vi depends solely on the Set Conditions 1 being satisfied
(and in that case the “no downgrading strategy” is optimal) or not (for which the “hysteresis
strategy” is optimal).

We note that in the “no downgrading strategy”, v1 encompass a standard exit problem,
whereas for the derivation of the value function v2, one takes into account that the firm, while
in production in mode 2, has two options: the option to exit and the option to switch to mode
1. This implies that the value function in the continuation region is composed of three terms:
one corresponding to the exit option, another to the switching option and, finally, the value
of producing in mode 2. In the “hysteresis strategy”, the value functions v1 and v2 are more
evolved, as there are more options (and regions) available for the firm to choose.

In Figures 4 and 5 we provide an illustration of the value functions provided in Proposition
1. Figure 4 illustrates the case where it is never optimal to switch from production mode 1 to
2. The main difference between both panels is the relationship between the two exit thresholds.
In panel (a) P1x ≤ P2x and, consequently, v1 dominates v2. Thus, for any value of K12 > K†12,
switching from 1 to 2 will never be optimal. When the firm is in production mode 2, as long
as the difference between v1 and v2 is smaller than the switching cost K21, the firm will keep
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(a) P1x ≤ P2x (b) P1x > P2x

Figure 4: Value functions when the “no downgrading strategy” is optimal.

on producing in mode 2. Then, at P21, v1(P21)− v2(P21) = K21, and thus the firm switches to
mode 1.

In the panel (b) we have that P1x > P2x and, consequently, the dominance of v1 over v2 does
not occur. But switching from production mode 1 to production mode 2, even when v2 is larger
than v1, does not overpay the switching cost K12, and, for this reason, the “no downgrading
strategy” is optimal. As in panel (a), when the firm is in production mode 2 and the process
hits the value P21, switching to the production mode 1 is optimal because the additional gain
pays the switching cost K21.

Figure 5: The hysteresis is optimal.

In Figure 5 we present an illustration of the value functions v1 and v2 in which the “hysteresis
strategy” is optimal. When the value of producing in mode 2 is larger than the value of producing
in mode 1, the firm may want to switch to production mode 2. This decision may happen at the
levels of revenue Ph and P12 because at that points v2(Ph)− v1(Ph) = v2(P12)− v1(P12) = K12.
For values of p ∈ (Ph, P12), we have that v2(p)− v1(p) > K12, which means that the additional
gain from producing in mode 2 compensates the the switching cost. When the revenue is less
than Ph, switching from production mode 1 to production mode 2 is not optimal, as the profit
from production mode 2 does not compensate the switching cost. So the firm keeps producing
in the hysteresis region, where the revenue will be negative, waiting to decide if it should leave
in case the revenue continues decreasing or if should switch to the operating mode 2, in case
the revenue increases.
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3.2 The effects of the parameters in the switching strategy

In this section, we assess the impact of the parameters in the optimal decisions, analysing
the behaviour of the triggers and the optimality of each one of the two strategies:the ”no
downgrading strategy” and the ”hysteresis strategy”. Due to the mathematical complexity of
the expressions for the triggers presented in the above subsections, this analysis will be presented
numerically only. The parameters for the base case are the ones presented in Table 1.

µ = 0 σ = 0.2 r = 5% Kx = −1 α1 = β1 = 1 α2 = β2 = 0.5 K12 = 0.1 K21 = 0.3

Table 1: Values for the diffusion parameters, interest rate and exit cost used along the numerical
examples.

(a) (b)

Figure 6: Numerical illustration of the verification of HJB equations (6)-(7).

Before we move to the comparative statics, in Figure 6 we show the numerical verification of
the HJB equations (6)-(7) for the baseline parameters. In Figure 6, panel (a) (resp., panel (b))
we have three different lines: the solid, dashed and dash-dotted lines that represent, respectively,
the first, second and third term of the HJB equation (6) (resp., (7)). The HJB equation
is satisfied if all the terms are not positive and for all values of initial revenue there is one
of the terms that is equal to zero. As we have already discussed, these terms are related
with the production, switching and abandonment regions respectively. Thus, such regions can
be identified observing the range of revenues that make each one of the terms of the HJB
equation equals to zero. For instance, the solid line in panel (a) is equal to zero when p ∈
(P1x, Ph) ∪ (P12,+∞), which means that such region is the continuation region for a firm that
is currently producing in production mode 1. Additionally, these plots guarantee that for the
parameters in Table 1, the solution we provide verifies the HJB equations (6) and (7). This
verification give us the guarantee that the thresholds for the baseline case are correct. The same
kind of verification has been performed for all different set of values of the parameters that we
present in the following subsections.

3.2.1 Comparative statics with respect to µ and σ

Next we study the impact of µ and σ on the relevant thresholds, as well as the optimal strategy.
Table 2 presents the behaviour of the thresholds with changing µ, while keeping other

parameters constant, and equal to the values of the base case presented in Table 1. The last
column of the table indicates the optimal strategy, with ND denoting the “no downgrading
strategy” and Hyst denoting the “hysteresis strategy”. We have included in Table 2 all the
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thresholds (note that Ph and P12 are not applicable for the ND case), as well as the bound

on the switching cost K†12. The base case (for which µ = 0) corresponds to the line with grey
shade.

The information regarding K†12 and K†21 allows us to split the situations in which the “no

downgrading strategy” and “hysteresis strategy” are optimal. In fact, whenever K21 ≥ K†21
or K12 ≥ K†12, the “no downgrading strategy” is optimal. In this case, the cost of switching
between modes is too expensive and therefore the exit decision is preferable when compared
with switching to the production mode 2. On the contrary, in case K21 < K†21 and K12 < K†12,
switching from mode 1 to mode 2 is a feasible option, as the associated costs are sufficiently
low. In Table 2, β2 + rK12 < β1 and π1(δ) − π2(δ) < 0, thus we start by checking condition

iii) in the set of conditions 1 (where only K†21 has to be computed). In case condition iii) fails,
then we check condition iv).

µ P1x Ph P12 P2x P21 K†21 K†12 Strategy

-0.250 0.973 1.019 1.712 0.001 ND
-0.150 0.931 0.965 1.565 0.014 ND
-0.030 0.729 0.694 1.397 2.625 0.037 ND
-0.010 0.619 0.706 0.771 0.575 1.389 9.725 0.161 Hyst
0.000 0.536 0.598 0.761 0.498 1.372 21.547 0.318 Hyst
0.010 0.440 0.483 0.750 0.409 1.355 59.330 0.613 Hyst
0.025 0.274 0.296 0.735 0.256 1.330 1.588 Hyst
0.030 0.215 0.232 0.729 0.202 1.322 2.167 Hyst

Table 2: Thresholds for the switching strategy with changing µ.

Table 2 suggests that increasing the drift postpones the exit decision in both production
modes, which means that if the expectations about the revenue of the product increase, then the
firm is more willing to stay in the market. Moreover, when the drift is larger, the firm switches
from production mode 2 (the less risky) to production mode 1 (the more risky) earlier, as the
switching threshold, P21, decreases with µ. We also conclude from the results of Table 2 that
both K†21 and K†12 increases with µ, and therefore the set of Conditions 1 becomes less feasible.
This means that for small (and negative) values of µ the “no downgrading strategy” hysteresis
strategy is optimal, since it becomes non-profitable to change from production mode 1 (risky)
to production mode 2 (less risky). On the contrary, when µ is large enough the firm is less
willing to exit the market, since it expects to attain large levels of revenue in the future. Thus,
both switching from operating mode 1 to mode 2 and waiting in the hysteresis region may be
optimal decisions. Finally, we remark that the amplitude of the hysteresis region decreases with
µ. Since the firm expects larger future revenues, the hysteresis region becomes almost useless.

σ P1x Ph P12 P2x P21 K†21 K†12 Strategy

0.025 0.970 0.982 1.094 0.033 ≈ 0 ND
0.050 0.897 0.891 1.135 0.545 0.005 ND
0.090 0.791 0.762 1.207 2.541 0.084 ND
0.100 0.765 0.834 0.839 0.732 1.225 3.290 0.106 Hyst
0.200 0.536 0.598 0.761 0.498 1.372 21.547 0.318 Hyst
0.250 0.451 0.511 0.730 0.414 1.442 48.797 0.405 Hyst
0.500 0.209 0.257 0.619 0.181 1.791 0.646 Hyst

Table 3: Thresholds for the switching strategy with changing σ.

Regarding the influence of the volatility parameter, the numerical results are presented
in Table 3. We can conclude that the “hysteresis strategy” is optimal when the uncertainty
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is large. This happens because both K†21 and K†12 increase with σ, and, consequently, the
set of Conditions 1 will not hold. Larger uncertainty means that the firm may wish to wait
(with eventually negative returns), in the expectation that the future expected revenues will
increase and cover the losses accumulated during an hysteresis period. We can also observe
that the irreversible decision to exit the market (in both production modes) is postponed when
the uncertainty increases. On the contrary, the firm is more willing to switch regimes. This
shows us that as the market becomes less predictable, the firm tends to accommodate to the
uncertainty by changing its production mode.

Before we finish this section, we note that in all the scenarios presented, a firm producing
in the hysteresis region is producing at a loss since its instantaneous profit is negative. In-
deed, one can easily verify that π1(Ph) = α1Ph − β1 varies between (−0.768,−0.294) (resp.,
(−0.743,−0.166)), for µ ∈ (−0.01, 0.03) (resp., σ ∈ (0.1, 0.5)). It is also interesting to notice
that when either µ or σ increase, the instantaneous loss of the firm producing in the hysteresis
region increases.

3.2.2 Comparative statics with respect to the switching costs K21 and K12

We analyse the influence of the switching costs in the optimal decision. The numerical results
are presented in Table 4 (for K12) and Table 5 (for K21).

K12 P1x Ph P12 P2x P21 Strategy

0.001 0.502 0.506 0.785 0.498 1.338 Hyst
0.050 0.525 0.565 0.773 0.498 1.355 Hyst
0.100 0.536 0.598 0.761 0.498 1.372 Hyst
0.315 0.563 0.716 0.718 0.500 1.430 Hyst
0.318 0.564 0.717 0.718 0.500 1.431 Hyst
0.318 0.564 0.500 1.431 ND
10.000 0.564 0.500 1.431 ND

Table 4: Thresholds for the optimal strategy with changing K12.

K21 P1x Ph P12 P2x P21 Stat

0.300 0.536 0.598 0.761 0.498 1.372 Hyst
1.000 0.545 0.609 0.700 0.507 1.615 Hyst
1.300 0.548 0.613 0.685 0.509 1.701 Hyst
1.400 0.564 0.510 1.742 ND
5.000 0.564 0.531 2.558 ND

Table 5: Thresholds for the optimal strategy with changing K21.

Observing Tables 3 and 4, we can conclude that changing either K12 or K21 leads to the
same type of behaviour in the optimal strategy and thresholds. The exit thresholds in both
production regimes increase when the switching costs increase, meaning that the firm is more
likely to exit the market, as the switching costs are larger. As soon as the “no downgrading
strategy” is optimal, one can observe that (i) K12 does not affect all the thresholds, because
it is never optimal to switch to mode 2, and (ii) K21 does not affect P1x only. The hysteresis
threshold, Ph, and the size of the hysteresis region increase with the switching costs, meaning
that the firm stays more time in such a region as the cost of switching is larger. The threshold
P21 increases and P12 decreases with the switching costs, which means that switching becomes
less attractive when the costs increase.
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4 Optimal choice of the safe mode

In the previous sections, we have assumed that the firm cannot choose how much risk each
production mode will imply, i.e., we are assuming that αi and βi are exogenously given. In
this section, we consider the case that the investor has the option to choose amongst a set of
alternative modes, with lower risk than production mode 1, quantified in the parameters α2 and
β2. Therefore the investor needs not only to decide when to switch modes but also how much
he should decrease his risk when he switches from mode 1 to mode 2.

If the current value of the process P is p and the company is operating in mode 1, we want
to find the values of α2 and β2 that maximise its value in the current production mode, for the
current value of P . Moreover, we assume that the switching costs, K12 and K21, depend on the
values of α2 and β2. Then, for notation purposes, we write K12(α2, β2) and K21(α2, β2). As
these costs functions are fundamental for the analysis, we will assume an economically feasible
cost structure, which will be defined further for the illustration purposes. The problem can be
formalised as

v∗1(p) = max
0<α2<α1
0<β2<β1

v1(p;α2, β2).

Since the optimisation in both α2 and β2 cannot be done analytically, we proceed with a
numerical illustration, optimising v1(p;α, β) separately in β2 and α2. In this illustration, we
consider the following scenarios: (1) β2 is fixed and equal to 0.5; and (2) α2 is fixed and equal
to 0.816. The remaining parameters are presented in Table 1. We also present a comparative
static that shows how the optimal parameters, α∗2 and β∗2 , vary for different choices of drift µ
and volatility σ.

4.1 Optimal choice of α2

Assume that the switching costs are as follows:

K12(α2, 0.5) =
γ1

(1− α2)2
and K21(α2, 0.5) = γ2(1− eα2−1). (12)

This particular choice of cost functions takes into account the following reasoning:

(i) Since the instantaneous costs β1 and β2 are fixed, increasing α2 means that the production
mode 2 becomes more profitable, because the instantaneous revenue becomes larger for
all values of p. Thus, the switching cost K12 should increase with α2;

(ii) When a firm switches from production mode 2 to mode 1, the instantaneous cost increase
from β2 to β1. Additionally, increasing α2 makes the slope of π2 closer to the slope of π1.
Therefore, one can expect that K21 decreases with α2.

Moreover, we choose γ1 and γ2 in such a way that for the parameter values given in Table 1,
K12(0.5, 0.5) = 0.1 and K21(0.5, 0.5) = 0.3, which are the same costs as the ones considered in
Section 3.2.

The costs K12 and K21, functions of α2, are plotted in Figure 7a. With this choice, it
follows that the switching costs are comparable for low values of α2. For large values of α2,
it is very expensive to switch from mode 1 to mode 2, but cheap to switch from mode 2 to
mode 1. Panel (b) shows that there is one and only one value of α2 that maximises v1 when
p = 0.65 ∈ (Ph, P12), i.e., v1(0.65;α∗2, 0.5) = M . In our example α∗2 ≈ 0.816.

In Figure 8, panels (a) and (b) show how the optimal α2 varies with the drift µ and with
the volatility σ. When µ increases the firm expects that the revenue process becomes more
favourable, and hence the optimal choice leads to larger values of α2. In opposition, in panel
(b), we can observe that when the volatility increases, the firm acts more carefully and, thus,
it chooses a smaller value of α2.
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(a)
(b)

.

Figure 7: Panel (a): plot of K12 and K21 as functions of α2. Panel (b): Plot of v1 as a function
of α2. M is such that v1(p;α

∗
2, β2) = M .

4.2 Optimal choice of β2

In this section, we analyse numerically the optimal value of β2 when α2 = 0.816. We assume
that the switching costs are as follows:

K12(0.816, β2) = γ1

(
1− β2
β2

)2

and K21(0.816, β2) = γ2(β2 + 0.3)2. (13)

As in the previous case, these switching costs are proposed in view of the following considera-
tions:

(i) With α2 fixed, when we decrease β2 we are keeping the instantaneous profit but reducing
the instantaneous cost, which increases the revenue for any initial value p. Thus K12

should be a decreasing function of β2;

(ii) The switching cost K21 increases with β2. This happens because when β2 decreases, the
difference between instantaneous fixed costs in the operating modes 1 and 2 becomes
larger. Thus the required initial fixed cost is smaller when β2 decreases.

We choose γ1 and γ2 such that for α2 = 0.816 and β2 = 0.5, the costs of switching from mode
1 to mode 2 are the same as using (12), when we fix the parameters α2 and β2 as above.

In panel (a) of Figure 9 we illustrate the behaviour of the functions K12 and K21 with
increasing β2. We can verify that with this choice of parameters, switching from the operating
mode 2 to mode 1 is considerably cheap, whereas switching from mode 1 to mode 2 entails a
large cost when the instantaneous cost β2 is small. Panel (b) shows that there exists a unique
β2 that maximises the value function v1(0.65; 0.816, β2). M represents the maximum of the
function.

From panel (a) of Figure 10, we conclude that increasing the drift leads to a smaller optimal
value for β2, which apriori was not expected. In order to gain some insight about this behaviour,
we computed also the exit and switching thresholds, as well as the expected time until the process
either exits the market from mode 2 or switch back to mode 1 (Table 6). From this table, we
conclude that increasing the drift leads to an increase in the size of the region (P2x, P21), which
in its turn implies that the firm will stay longer producing in mode 2, which implies also that,
overall, it will pay more. Hence, the firm wishes to decrease its cost per unit time, which justifies
the behaviour of the optimal β2.
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(a) (b)

Figure 8: v1(0.65;α2, 0.5) is plotted as functions of α2, for different values of the drift µ (resp.,
σ) for a given value of σ (resp., µ)), in panel (a) (resp., in panel (b)).

(a) (b)

Figure 9: Panel (a): plot of K12 and K21 as a function of β2. Panel (b): Plot of v1 as a function
of β2. M is such that v1(p;α2, β

∗
2) = M .

µ β∗2 P2x P21 E[min{τP2x , τP21}]
-0.01 0.447 0.365 4.627 16.64
0.00 0.421 0.308 4.810 26.93
0.01 0.395 0.247 4.977 43.12
0.02 0.382 0.190 4.980 62.74

Table 6: Expected sojourn time of the revenue process in (P2x, P21) for different values of µ,
when P0 = 0.65. The optimal β2 is also provided (β∗2).

In panel (b) of Figure 10, one can observe that the optimal β2 increases with increasing σ.
Combining this information with the one presented in Table 7, we conclude that increasing σ
decreases the expected time in production mode 2, and therefore the firm is willing to pay more
per unit of time in this mode.
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(a) (b)

Figure 10: v1(0.65; 0.816, β2) as a function of β2, for different values of µ (panel (a)) and σ
(panel (b)).

σ β∗2 P2x P21 E[min{τP2x , τP21}]
0.17 0.416 0.334 4.638 32.65
0.20 0.421 0.308 4.810 26.93
0.23 0.426 0.284 4.974 22.91

Table 7: Expected sojourn time of the revenue process in (P2x, P21) for different values of σ,
when P0 = 0.65. The optimal β2 is also provided (β∗2).

5 The investment problem

In this section, we assume that the firm is not in the market, and needs to decide when to
invest and in which production mode. The investment problem is formalised in Equation (5).
Standard arguments in real options (see for instance Dixit and Pindyck (1994)) allow us to
conclude that the value function W (p), defined as in (5), can be computed solving the HJB
equation

max {(Ls)(p)− rs(p),−s(p)− v∗(p)} = 0,

where the operator L is defined in the previous sections. We assume that the firm, after
investment will act optimally, in accordance with the optimal switching strategy.

In this section, we will characterise the optimal investment strategy as well as its behaviours
regarding the parameters of the model.

5.1 Optimal investment strategy

We assume that after investment the firm will act optimally and according with the solution of
the model (2). Thus, the terminal cost, i.e. the value upon investment, denoted by v∗, is the
upper envelop of v1 and v2 since the firm can choose any one of the two production modes.

We note that this problem is related with problem (32) of Décamps et al. (2006). But in
our set-up we allow multiple switchings between mode 1 and mode 2, and vice-versa, whereas
in Décamps et al. (2006) it is only allowed to switch once from mode 2 to mode 1 (in the
terminology of Décamps et al. (2006), this corresponds to switch from mode 1 to mode 2).

In the rest of the paper we assume that the following set of conditions hold:
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Set of Conditions 2

(i) K1 > −Kx and K2 > −Kx

(ii) K1 < K2 +K21 and K2 < K1 +K12

From an economic point of view these two conditions are quite reasonable to impose. Condition
(i) prevents instant gain, firm enters the market and immediately exits with profit Condition
(ii) means that it is more costly to enter in the market with the production mode 1 (resp. 2)
and to switch immediately to the production mode 2 (resp. 1) than to enter directly in mode
2 (resp. 1).

The structure of the function v∗ is important in order to guess the shape of the waiting and
investment regions. In the following proposition we define the function v∗ in light of the value
functions v1 and v2.

Proposition 2 The terminal value v∗ is given by:

• If K1 ≥ K2, then

v∗(p) =

{
v2(p)−K2, p < z

v1(p)−K1, p ≥ z
,

where

– z ∈ (P1x, P21), if the no-downgrading strategy is optimal.

– z ∈ (P12, P21), if the hysteresis strategy is optimal.

• If K1 < K2 and P1x > P2x, then

v∗(p) =


v1(p)−K1, p < z1

v2(p)−K2, z1 ≤ p < z2

v1(p)−K1, p ≥ z2
,

where

– z1 ∈ (P2x, P1x) and z2 ∈ (P1x, P21), if the no-downgrading strategy is optimal.

– z1 ∈ (P2x, Ph) and z2 ∈ (P12, P21) z ∈ (P12, P21), if the hysteresis strategy is optimal.

• Otherwise
v∗(p) = v1(p)−K1,

where v1 and v2 are given by (8) and (9), in the no-downgrading case, and by (10) and (11),
in the hysteresis case.

The values z, z1 and z2 cannot be found analytically, but, as one can see in Appendix B.1,
they exist and are unique on the respective domain.

Proposition 2 shows that the terminal cost of the investment problem is highly dependent on
both the investment cost and the structure of the optimal switching strategy. One can conclude
that for large values of the revenue p, the perpetual value of investment in mode 1 is larger
than in mode 2, regardless of the investment cost in each mode. For small values of the revenue
p, the perpetual value of investment is not straightforward, since we can find situations where
v2(p)−K2 dominates v1(p)−K1, and vice-versa. Based on the shape of v∗, one can guess that
investment in the production mode 2 may be optimal for small values of the revenue p. Thus
one expects the following strategies:
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Connected investment region: The firm waits for larger revenues and then invests in the
more profitable mode, which is mode 1. In this case, the value function for the investment
problem (5), hereby denoted by s1, is as follows:

s1(p) =

{
B2p

d2 , p < γ3

v1(p)−K1, p > γ3
. (14)

In Figure 11, we illustrate the behaviour of s1 as a function of the revenue p, including the
relevant thresholds for the switching problem. For p > z1, the value of the firm producing in

Figure 11: Plot of the value function s1

mode 1 is larger than its value in mode 2, and therefore the investment will occur in this mode.
The investment threshold, γ3, is the value of p for which the value of investment in mode 1 is
equal to the value of waiting. Thus, for values larger than this threshold, the value of investment
is larger than the option to differ. We note that, in the case depicted in Figure 11, there is no
complete dominance of v1(p)−K1 over v2(p)−K2. However, if v1(p)−K1 dominates v2(p)−K2,
which happens when K1 < K2 and P1x ≤ P2x, the optimal strategy is a threshold one, and
the value function is still given by s1 as in (14). A threshold investment decision in alternative
projects were already presented by Dixit (1993).

Non-connected investment region: The firm invests for moderate values of the revenue (p ∈
(γ1, γ2)), and in that case it invests in the production mode 2. But when the revenue is around
z1, a point of intersection between the two curves, then it may be optimal to wait for larger
values of revenue (p ∈ (γ3,∞)) and then invest in the production mode 1. Therefore, in this
case, the value function for the investment problem (5) denoted by s2 and is given by:

s2(p) =


B1p

d2 , p < γ1

v2 −K2, γ1 < p < γ2

A2p
d1 +B2p

d2 , γ2 < p < γ3

v1 −K1, p ≥ γ3

. (15)

In Figure 12 we plot s2. One can observe that, for value of p < z1 the value of operating in mode
2 is larger than in mode 1. Thus, as z1 > γ1, γ1 triggers the investment in production mode 2.
Finally for values of p larger than γ3, the value of investment in the production mode 1 is larger
than the value of investment in mode 2. Thus, γ3 triggers investment in production mode 1.
One may notice that investment in production mode 1 occurs for values of p ∈ (P12, P21), which
means that investment in the hysteresis region is never optimal, as we state in Proposition 3.
Finally, we note that in this case the optimal strategy is not a threshold type. A disconnected
investment region is also find in the paper of Décamps et al. (2006). Mathematically, the
inaction region found between the two investment regions is explained by the fact that v∗ has
an upward kink. Investing in that regions is never optimal because, there is always a solution
to the equation rs(p)− (Ls)(p) = 0 that is larger than v∗ and pastes conveniently v∗. The same
phenomenon is described by Décamps et al. (2006).
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Figure 12: Plot of the value function s2

In Figures 11 and 12 we consider that v1(p)−K1 crosses v2(p)−K2 only once. However, as
one can see in Proposition 2, we may have situations where v1(p)−K1 crosses twice v2(p)−K2.
Even in this case the optimal strategy is given by s1 or s2, depending on the set parameters.

In the next proposition, we show that the hysteresis region is never reached through invest-
ment. The attainability of this region is discussed in the next section.

Proposition 3 Investment in the hysteresis region is never optimal.

An immediate consequence of this proposition is the fact that a firm operating in mode 1 never
exits from this mode. In fact, it is always optimal to switch to a less risky operating mode, the
operating mode 2. Once in mode 2, the firm produces in a safety mode while waits to decide
either to exit the market (in case the revenue decreases) or to switch to the operating mode 1
(in case the revenue increases).

Finally, in the next proposition we present the conditions for s1 or s2 to be the solution
of the investment problem (5), which depend mainly on the relationship between costs and
revenues.

Proposition 4 Let W be the value function associated with the investment problem (5). Then
the following happens:

• If K1 ≥ K2 or (K1 < K2 and P1x > P2x) then

(a) W (p) = s2(p), if K2 < K+
2 and K1 > K−1 .

The optimal strategy is as follows: if p ∈ (γ3,∞), then it is optimal to invest in
production mode 1, where γ3 ∈ (P12, P21); if p ∈ (γ1, γ2), then it is optimal to invest
in production mode 2, where γ1 ∈ (P2x, P21) and γ2 ∈ (γ1, γ3). Otherwise, the firm
wait.

(b) W (p) = s1(p), if K2 ≥ K+
2 or K1 ≤ K−1 .

The optimal strategy is as follows: if p ∈ (γ3,∞), then it is optimal to invest in
production mode 1, where γ3 ∈ (max(P1x, P12),∞);

• If K1 < K2 and P1x ≤ P2x, then W (p) = s1(p).

The optimal strategy is as follows: if p ∈ (γ3,∞), then it is optimal to invest in production
mode 1, where γ3 ∈ (P1x,∞);

The constants A2 and B2, the thresholds γ1, γ2 and γ, and the bounds K−1 and K+
2 are defined

in Appendix A.2

5.2 The effects of the parameters in the investment strategy

In this section, we illustrate with numerical examples the results derived in the previous section.
It is important to notice that when we change µ and σ, we also change the solution of the
underlying switching problem (2). We will only choose costs that satisfy the Set of Conditions
2, reducing ourselves to the types of solutions, s1 and s2, as described in Proposition 4.
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5.2.1 Comparative statics with respect to µ

In this section, we consider the parameters in Table 1, and use the investment costs K1 = 1.3
and K2 = 1.05. To facilitate the analysis we will use a range of values for µ also considered in
Table 2. The results are shown in Table 8. The line filled in grey corresponds to the base case.
We note that the strategy s2 is optimal when K1 > K−1 and K2 < K+

2 .
Analysing the values in Table 8, one can see that when µ = −0.25, the optimal switching

strategy is the “hysteresis strategy” because 1.3 = K1 > K−1 = 1.235 and 1.05 = K2 < K+
2 =

1.218. For the remaining values of µ, K2 > K+
2 and thus the optimal strategy is described by

s1. We can conclude that when we increase the drift the firm prefers to wait and invest directly
in the production mode 1 instead of investing in mode 2. This is because, as µ increases, the
firm expects to attain sooner large values of revenue, and, consequently, it is more profitable to
produce in mode 1. Furthermore, the switching strategy is then optimal for larger values of the
drift, whereas for small (and negative) values, the firm stays in mode 1 until it eventually exit
the market.

µ K−1 K+
2 γ1 γ2 γ3 γ3 −max(P1x, P12) Strategy Inv

-0.250 1.235 1.218 1.381 1.510 1.584 0.610 ND s2
-0.150 1.303 1.190 1.450 0.519 ND s1
-0.100 1.338 1.141 1.418 0.532 ND s1
-0.030 0.734 1.464 0.735 ND s1
0.000 -0.063 1.533 0.772 Hyst s1
0.010 1.545 0.795 Hyst s1
0.025 1.534 0.800 Hyst s1
0.030 1.521 0.791 Hyst s1

Table 8: Thresholds for the optimal investment strategies with changing µ. The investment
costs are K1 = 1.3 and K2 = 1.05

The most unexpected result shown in Table 8 is the non-monotonic behaviour of the invest-
ment threshold γ3 in the production mode 1. We note that it starts to decrease with µ, meaning
that the firm invests earlier, then increases, and decreases again. This non-monotonic behaviour
is also present in the distance between the investment threshold and the exit/switching thresh-
olds (P1x and P12). One possible interpretation is the following: for small values of the drift (in
our case, µ ∈ {−0.25,−0.15,−0.10}) the investment threshold decreases with the drift, which
means that as µ increases, the firm invests earlier, which agrees with standard results from real
options. Note also that the distance between the investment threshold and the exit threshold
P1x is decreasing with the drift. If this distance would continue decreasing, then investment
would take place very close to a region where exit is optimal. Thus a sudden decrease in the
revenue would lead to an exit decision, which would not be optimal because there are fixed costs
involved. Therefore, we see that the investment threshold changes its behaviour, and starts to
increase (for µ ∈ {−0.03, 0, 0.01}). Consequently the size of the region (P1x, γ3) also increases.
Finally, we see another change in the behaviour, for µ ∈ {0.025, 0.030}.

Since this behaviour is unexpected, in Appendix C.1 we provide a numerical verification
of the HJB equations for the levels of µ where the inversion of the behaviour happens. This
ensures that the numerical solution to the optimal stopping problems is correct.

In Table 8 we do not present the values of K−1 for µ > −0.030. This follows from the fact
that the condition K1 > K−1 is verified only in case the condition K2 < K+

2 (which fails for
values µ > −0.03). We stop computing K+

2 as soon as it reaches negative values, since in this
case K2 < K+

2 is necessarily false.
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5.2.2 Comparative statics with respect to σ

In this section, we analyse the effect of the volatility in the investment strategy. In order to
facilitate the numerical analysis in this case, we slightly change the base case parameters. Now
we consider that α2 = 0.6,K12 = 0.25,K21 = 0.5, and the remaining parameters are as in Table
1. The investment costs are set as: K1 = 1.9 and K2 = 1.5.

From Table 9 we can conclude that the strategy s2 is more likely to be optimal for small
values of volatility. In this case the firm is willing to invest in the production mode 2 for low
values of the revenue (p ∈ (γ1, γ2)). If the volatility increases, then the firm is sceptic to invest,
and thus waits longer for large values of revenue. In this case, only investment in production
mode 1 is optimal. This is highlighted by the fact that the size of the region (γ1, γ2) is decreasing
with σ. Additionally, γ3 increases with σ, which confirms the usual effect of increasing volatility
postpones the investment decision.

In Dixit (1993) and Décamps et al. (2006), it is noticed that high levels of volatility leads
to a threshold optimal strategy, meaning that it is never optimal to invest in production mode
2. This holds when the authors consider a model without a switching possibility. As one can
see in this illustration, a high level of volatility does not lead necessarily to an optimal strategy
s1. If one considers a slightly larger cost K1, for instance K1 = 2, the optimal strategy would
be s2, for all levels of volatility considered in Table 9. This would happen because K1 would be
larger than K−1 .

Since the values for the switching thresholds for this sensitivity analysis are not in Section
3.2, we present them in Appendix C.2.

σ K−1 K+
2 γ1 γ2 z2 γ3 Strategy Inv

0.10 1.540 4.596 1.195 1.438 1.458 1.476 Hyst s2
0.15 1.732 4.030 1.323 1.495 1.527 1.556 Hyst s2
0.20 1.839 3.540 1.461 1.549 1.594 1.634 Hyst s2
0.24 1.892 3.197 1.578 1.593 1.649 1.696 Hyst s2
0.25 1.902 3.118 1.662 1.715 Hyst s1
0.30 1.942 2.761 1.730 1.856 Hyst s1

Table 9: Thresholds for the optimal investment strategies with changing σ.

5.2.3 Comparative statics with respect to the exit cost Kx

The role of the exit option in the investment decision has been studied in real options models
with different features (see for instance Duckworth and Zervos (2000), Kwon (2010), Hagspiel
et al. (2016)). In this section, we also analyse the impact of the exit option in the investment
strategy. In fact, the exit option becomes less valuable when the exit cost increases. IfKx ≥ β2/r
then leaving the market is not optimal. For this purpose, we analyse the behaviour of the
investment thresholds by increasing the value of the exit cost Kx.

We consider the parameters as in Section 5.2.2, fixing σ = 0.2. The investment and switching
thresholds are summarised in Table 10. We note that the quantities P12, z2 and P21 do not
change with Kx. Their values are: P12 = 0.889, z2 = 1.594 and P21 = 1.857. We can conclude
that investing in the production mode 2 is not optimal when the abandonment cost is large.
Thus, the strategy s2 is optimal only for small values of Kx.

We find that increasing the exit cost delays investment. On the one hand, when investment in
the production mode 2 (with less risk) is optimal then γ1 increases, but the remaining thresholds
γ2 and γ3 do not change. This means that the size of the investment region in the production
mode 2 decreases. The timing to invest in production mode 1 remains unchanged. On the other
hand, when investment in the production mode 2 is never optimal, then γ3 increases Kx. This
means that investment in the production mode 1 is postponed.
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Kx P1x Ph P2x K−1 K+
2 γ1 γ2 γ3 Strat Inv

-1.0 0.518 0.600 0.455 1.839 3.540 1.461 1.549 1.634 Hyst s2
0.0 0.481 0.550 0.417 1.891 3.253 1.535 1.549 1.634 Hyst s2
0.2 0.473 0.541 0.409 1.899 3.199 1.548 1.549 1.634 Hyst s2
0.4 0.466 0.531 0.401 1.907 3.146 1.641 Hyst s1
1.0 0.442 0.501 0.378 1.926 2.995 1.663 Hyst s1

Table 10: Thresholds for the optimal investment and switching strategies with changing exit
cost Kx.

6 Producing in the hysteresis region

The key feature of the hysteresis region, when it exists, is that while in that region, the firm
produces at a loss (relative to safe mode), until it is optimal either to switch or to exit the
market. In Section 5 we discussed the optimal strategy for a firm that intends to invest in
the market and start producing at the investment moment. For this case, in Proposition 3, we
proved that investment in the hysteresis region is never optimal. Moreover, from Figure 3, it is
clear that the hysteresis region is never attained due to a continuous decrease of the revenue.
Hence, one may wonder in which situations this region is relevant. In this section, we present
two situations where the firm may attain such region.

6.1 Time-to-build

Assume that the firm invests in the market, but it only starts producing n units of time after
the investment. Thus, if investment takes place at time τ , it will only be effective at time τ +n,
when production will start. Following the literature, the time-to-build is designated by n, with
n > 0. In this case, the investment problem can be written as follows:

Wn(p) = sup
τ≥0

Ep

[
max

(
e−r(τ+n)v1(Pτ+n)− e−rτK1, e

−r(τ+n)v2(Pτ+n)− e−rτK2

)]
(16)

where we use the notation Wn to emphasise the dependence of the decision on the time-to-build,
which we assume to be known.

Using the strong Markov property and the law of iterated expectations, one can rewrite (16)
as

Wn(p) = sup
τ≥0

Ep
[
e−rτv∗n(Pτ )

]
(17)

where
v∗n(p) = Ep

[
max

(
e−rnv1(Pn)−K1, e

−rnv2(Pn)−K2

)]
. (18)

The function v∗n represents the perpetual value of the firm after investment, assuming that after
investment the firm acts optimally according with the switching strategy. This perpetual value
is itself an expected value, as the revenue at the moment that the firm starts operation is a
random variable (Pτ+n is not known at time τ).

As we have seen in Section 3, the value functions v1 and v2 have different branches, rep-
resenting the value of the firm operating in mode 1 and 2 for different values of the revenue.
Therefore, in the computation of the expected value (18), one needs to take into account the
probability that after n periods of time, the revenue will be in one of the branches that define
the value functions v1 and v2. This means, in particular, that the investment strategy defined
in (17) is unable to identify in which production mode the firm should optimally invest. Also
as a result of the expectation operator, the function v∗ is smooth enough so that the invest-
ment strategy is a threshold strategy. For notation purposes, we let ζn denote the investment
threshold when the time-to-build is equal to n.
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In Figure 13, one can see that the function v∗n is getting smoother as n increases. Addi-
tionally, one can see that for small values of revenue v∗n > v∗, but for large values of revenue
v∗n < v∗. This is explained by the fact that when Pτ is small there is a strictly positive proba-
bility that the revenue increases during the n periods of time, which would increase the value of
max (e−rnv1(Pn)−K1, e

−rnv2(Pn)−K2). A similar argument can be used when Pτ is large. Fi-
nally, we can observe that the investment threshold decreases when the time-to-build increases.
This result is contrary to the standard results in real options, because when we increase the
time-to-build, we increase the uncertainty, and, consequently, one could expect a larger invest-
ment threshold (see, for instance, Proposition 3 in Nunes and Pimentel (2017)). This does not
happen because in our case the firm can invest in one of two operating modes. In the mode
without time-to-build, it is optimal to invest in the production mode 1 for large values of rev-
enue and in mode 2 for smaller values of revenue. Thus, as the perpetual value of investment in
this case takes into account the probability of having either larger or smaller revenues in τ + n,
the threshold decreases with n.

(a) Plot of v∗, v∗1 and v∗5 for the baseline case. (b)

Figure 13: Panel (a): Plot of v∗, v∗0.5 and v∗5 for the baseline case. Panel (b): Zoom of the figure
for small values of revenue.

We present a numerical study concerning the investment threshold and the probability of
entering the hysteresis region at the moment that production begins, as a function of the time-
to-build, and the drift and volatility of the revenue process. We consider the values of the
parameters in Table 1 and consequently the Set of Conditions 1 does not hold, meaning that
the hysteresis region exists. For this section, the numerical examples were computed using the
Monte-Carlo simulations for Equation (18). Thus, although the thresholds can slightly change
from simulation to simulation, they allows us to confidently describe their qualitative behaviour
in the sensitivity analysis.

Based on Table 11, we can conclude that the investment threshold increases with µ. In this
case, the investment threshold increases because the firm wants to ensure that invests in mode
1. This result is opposite to the one found by Nunes and Pimentel (2017), where the threshold
decreases with µ. This is because in the latter paper the authors consider a single project. We
can also observe that the probability that the firm starts producing in the hysteresis region
increases with the time-to-build and decreases with µ.

A similar analysis can be done varying the volatility. We can see that the investment
threshold is monotonically increasing with the volatility for all values of n, which means that the
firm postpones the investment when the market uncertainty increases. Some authors like Majd
and Pindyck (1987), Milne and Whalley (2000), Bar-Ilan et al. (2002), and Nunes and Pimentel
(2017) found that the monotony of the investment threshold with changing the volatility depends
on the size of the time-to-build n. Such a behaviour was not found in our simulations.

Furthermore, we can easily see that changing the volatility does not result in a significant
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µ = −0.01 µ = 0 µ = 0.01

n ζn Prob ζn Prob ζn Prob

0.5 1.501 8.557× 10−8 1.519 3.421× 10−11 1.535 3.502× 10−16

1 1.493 0.150× 10−3 1.508 2.803× 10−6 1.510 8.912× 10−8

3 1.349 0.030 1.418 0.006 1.423 0.002

Table 11: Approximate values for thresholds ζn, for n = 0.5, 1, 3 for different values of µ. The
remaining parameters are as in Table 1.

change in the probability that the firm starts producing in the hysteresis region. Thus, we
cannot conclude about the monotony of the probability regarding the volatility.

σ = 0.1 σ = 0.2 σ = 0.25

n ζn Prob ζn Prob ζn Prob

0.5 1.298 2.479×10−10 1.519 3.421× 10−11 1.625 5.336× 10−11

1 1.290 7.989× 10−6 1.508 2.803× 10−6 1.614 3.487× 10−6

3 1.247 0.010 1.418 0.006 1.486 0.007

Table 12: Approximate values for thresholds ζn, for n = 0.5, 1, 3 for different values of σ. The
remaining parameters are as in Table 1.

Finally, these results show that the probability of investing in the hysteresis region is very
small, special for small values of n. Nevertheless, this shows that this event may happen and
hence the hysteresis region should be taken into account in the analysis of the investment
strategy.

6.2 Pullback in valuation

In this section, we consider a private equity firm that has the opportunity of buying the company
that is already operating on the market. Contrary to what have been assumed in Section 5, we
consider that the investment cost is not constant: it increases with the revenue.

For illustration purposes, we assume that the investor intends to buy a firm operating in
production mode 1. Thus, we let K1(p) be the purchase cost:

K1(p) = v1(p)− f(p),

where f can be either positive (meaning that the investment cost is in fact smaller than the
value of the firm, i.e., it is sold at a discount price) or negative (in which case the investment
cost is larger than the value of the firm). Hence, when f(p) > 0 we may interpret f as a
discount, whereas in case f(p) < 0 we are facing a price increase.

To simplify the analysis, we assume f as follows:

f(p) =


0, p < P1x

ε1, P1x ≤ p ≤ Ph
ε2, Ph < p ≤ P12

ε3, p > P12

where ε1 > 0, ε3 < 0 and ε2 ∈ R. This particular choice of investment costs is a result of the
following reasoning:

(i) For values of the revenue in the region that leads to the hysteresis, there is a discount
equal to ε1 in the investment cost, and, therefore, it creates an incentive for investment, even
in conditions that are not profitable a priori.
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(ii) In the region where it is optimal to switch to the production mode 2, one can have
ε2 > 0, meaning that there is a discount. Then, one must have ε1 > ε2, so that the discount is
larger in the hysteresis regions.

(iii) In case ε2 < 0, the price is larger than the fair value of the firm. Then, ε2 > ε3, so that
larger revenues lead to a larger increase in the investment cost.

The investment problem can be written as follows:

W̃ (p) = sup
τ>0

E
[
e−rτ (v1(Pτ )−K1(Pτ ))

]
= sup

τ>0
E
[
e−rτf(Pτ )

]
(19)

The investor’s optimal strategy is depicted in Figure 14. In this figure, we have two cases,
depending on the relationship between ε1 and ε2 as well as the size of the region (Ph, P12).
When ε1P

d1
12 ≥ ε2P

d1
h (panel (a)), the value of waiting for levels of revenue in the hysteresis

region (P1x, Ph) is larger than the value of investment when the initial revenue is P12. Thus,
the investor should wait for small values of revenue. The contrary happens in panel (b). Next,
we present a proposition where the value function is provided.

(a) (b)

Figure 14: Panel (a): optimal strategy when ε1P
d1
12 ≥ ε2P

d1
h . Panel (b): optimal strategy for

ε1P
d1
12 < ε2P

d1
h .

Proposition 5 Consider the investment problem defined in (19). Then the value function W̃
is given by

W̃ (p) =


B̃pd2 , p ≤ γ̃1
f1(p), γ̃1 < p < γ̃2

Ãpd1 , p ≥ γ̃2
.

The parameters Ã, B̃, γ̃1 and γ̃2 depend on the parameters and their expressions are provided
in Appendix A.3.

6.3 Sojourn in the hysteresis region

The two situations considered before show that it is possible that the firm produces for values
of the revenue that are within the hysteresis region. Then it is relevant to assess (i) how likely it
is that the firm will resume production at a positive profit, and (ii) the (expected) sojourn time
in this region. In order to study these two points, we consider the parameters as the ones set
in Table 1, and assume that the current value of the revenue process, p, is one of the following
values:

p1 = P1x + 0.15h, p2 = P1x + 0.5h, p3 = P1x + 0.85h, h =
Ph − P1x

2
. (20)
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Thus, p1 is a point close to the exit threshold, p2 is half way in the hysteresis region, and p3 is
close to the threshold Ph, where the firm leaves the hysteresis region and start producing with
a larger revenue in production mode 2.

In order to study (i), we note that since the revenue follows a geometric Brownian motion,
such probability has the following expression

Pri = Pr {τP1x > τPh |P0 = pi} =



(
pi
P1x

)1− 2µ

σ2 −1(
Ph
P1x

)1− 2µ

σ2 −1
, σ2

2 − µ > 0

1−
(
pi
P1x

)1− 2µ

σ2

1−
(
Ph
P1x

)1− 2µ

σ2

, σ2

2 − µ < 0

, (21)

for i = 1, 2, 3, where τP1x is the exit time (from production mode 1) and τPh is the time at which
the process leaves the hysteresis region, and switches to production mode 2.

To analyse point (ii), we use the following expression for the the expected time that the firm
stays in the hysteresis region:

Esti = E[min{τP1x , τPh}] =


1

σ2

2
−µ

[
log pi

P1x
− log P1x

Ph
Pri

]
, σ2

2 − µ > 0

∞, σ2

2 − µ < 0
. (22)

The expressions for these quantities can be found, for instance, in Section of 15.3.6 Karlin and
Taylor (1981).

In Table 13, we study (i) and (ii) as functions of the diffusion parameter µ. We can see that
all the probabilities of leaving the hysteresis region by resuming production in mode 2 increase
with µ. On the contrary, the expected sojourn time in the hysteresis region decreases because
the size of the hysteresis region is also decreasing. Furthermore, for fixed µ, Pr1 < Pr2 < Pr3
and Est1 > Est2 > Est3. Since we are considering values of the process closer to the threshold
Ph, it becomes more likely to leave the hysteresis region by hitting this bound than by exiting
the market. Additionally, the expected sojourn time in hysteresis decreases when the revenue
p gets closer to Ph. These results are not surprising, because as we increase the drift, it is more
likely that the revenue increases, and, therefore, the firm will leave the hysteresis region earlier
and will start producing in mode 2.

µ Pr1 Pr2 Pr3 Est1 Est2 Est3

-0.010 0.146 0.492 0.846 0.056 0.107 0.053
0.000 0.150 0.500 0.850 0.039 0.075 0.037
0.010 0.153 0.506 0.853 0.029 0.055 0.028

Table 13: Impact of the sojourn in hysteresis as a function of µ when σ = 0.20.

In Table 14, we analyse (i) and (ii) as functions of the volatility. We also add information
regarding the thresholds P1x, Ph, which allows us to understand better the results. As we
saw in Section 3.2.1, the two thresholds and the size of the hysteresis region decrease with the
volatility. The probabilities that the firm leaves the hysteresis region by starting production
in mode 2 slightly decrease with the volatility. Additionally, the expected time in this region
decreases. This suggests that the firm takes a decision of leaving the hysteresis region sooner
with increasing volatility. Looking at the probabilities, it is likely that the firm leaves this region
by abandoning the market, which is an interesting result, specially in view of the decreasing
thresholds.
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σ P1x Ph Pr1 Pr2 Pr3 Est1 Est2 Est3

0.200 0.440 0.483 0.153 0.506 0.853 0.029 0.055 0.028
0.300 0.310 0.352 0.152 0.504 0.852 0.024 0.045 0.022
0.500 0.167 0.204 0.151 0.502 0.851 0.021 0.039 0.010

Table 14: Impact of the sojourn in hysteresis as a function of σ when µ = 0.01.

7 Conclusions

In this paper, we study the effect of having alternative production modes in the strategy of a
company, not only in terms of the actual operating mode but also in terms of the investment
strategy. We analyse this question by solving a switching problem and an investment problem.
In the switching problem, we find the optimal sequence of operating modes as a function of the
revenue, for a firm that is already producing. Here, exiting the market is part of the optimal
strategy. In the investment problem, we provide the optimal time to invest as well as in which
project the firm should invest.

Regarding the switching problem, we prove that, depending on the parameters, there are
only two optimal strategies: the “no downgrading strategy” and “the hysteresis strategy”. In
the “no downgrading strategy” the firm will only switch from the safe mode to the risky mode or
exit the market while in the “the hysteresis strategy” the firm will be able to switch between the
two modes. In this case, there is a region where the firm may stay in the market producing in
the riskier mode, with a possible negative return, waiting to see if the conditions of the market
improve (and in that case it changes to the less risky mode) or deteriorate (and in that case it
leaves the market). We also study the impact of the costs and the parameters of the underlying
process. Increasing the drift and/or the volatility makes the hysteresis case more interesting for
the firm, whereas increasing the switching costs has the opposite effect.

Motivated by the current economic situation where companies need to decide on lay-off
regimes, for example, we consider the optimal choice of the safe production mode. To formalize
the problem, we propose a structure to the switching costs as functions of the parameters α2

and β2. We consider some numerical situations and we conclude that, in fact, the choice of
the alternative mode impacts the profitability of the firm. The optimal values of α2 and β2 are
monotone with µ and σ.

Then we study the investment problem, where we define not only the optimal investment
threshold but also the optimal production mode in which the firm has to start producing.
Similarly to Décamps et al. (2006), we show that the investment region may be disconnected,
(γ1, γ2) ∪ (γ3,∞), for certain set of parameters. This happens because the value of waiting
when the initial revenue belongs to (γ2, γ3) is larger than the perpetual value of investment.
We show that when we increase the drift, the firm prefers to wait and invest directly in the
production mode 1 instead of investing in mode 2. But the most interesting finding is that the
investment threshold is not monotonic as a function of the drift. When the volatility increases,
the optimal strategy changes and it start being optimal to invest in the safer mode 2 for small
values of revenue. The opposite happens with increasing exit costs, since the firm prefers to
wait to invest in production mode 1.

Finally, we conclude that in the setup that we are proposing, the hysteresis region does not
have a special interest, as it is never reached. But we describe two other models where the firm
may find itself producing in this region. In the first situation, we assume that there is a delay
in the investment decision and in the second case, we consider an investor that intends to buy
a undervalued firm. In the model with time-to-build, we find that the investment threshold
increases with both µ and σ.
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A Parameters and thresholds

In this appendix, we present the smooth pasting conditions for the optimisation problems (2)
and (5), which allows to derive the constant terms and the thresholds.

A.1 Switching problem (2)

As discussed in Section 3, according to the relationship between the parameters, there are two
optimal strategies. A technical analysis of a similar switching problem can be seen in Zervos
et al. (2018).

A.1.1 “No downgrading” strategy

For the “no downgrading” strategy, the smooth-fit conditions applied to the thresholds P1x, P2x

and P21 are

0 = AP d11x +
α1

r − µ
P1x −

β1
r

+Kx (23)

0 = d1AP
d1
1x +

α1

r − µ
P1x (24)

0 = CP d12x +DP d22x +
α2

r − µ
P2x −

β2
r

+Kx (25)

0 = Cd1P
d1
2x +Dd2P

d2
2x +

α2

r − µ
P2x (26)

0 = (C −A)P d121 +DP d221 +
α2 − α1

r − µ
P21 −

β2 − β1
r

+K21 (27)

0 = (C −A)d1P
d1
21 +Dd2P

d2
21 +

α2 − α1

r − µ
P21 (28)

Solving equations (23)-(24) allow us to get

A = − α1

d1(r − µ)
P 1−d1
1x (29)

P1x =
d2 − 1

α1d2
(β1 − rKx) = δ. (30)

Computing Equation (26), minus d1 and multiplied by Equation (25), leads to:

D =− d1P
−d2
2x

(d2 − d1)r

[
−d2α2

d2 − 1
P2x + (β2 − rKx)

]
. (31)

Performing (26) minus d2 multiplied by (25)

C = − d2P
−d1
2x

(d2 − d1)r

[
d1α2

d1 − 1
P2x + (−β2 + rKx)

]
. (32)

Calculating [(28)− d1(27)]

D = − d1P
−d2
21

(d2 − d1)r

[
d2(α1 − α2)

d2 − 1
P21 + (β2 − β1 − rK21)

]
. (33)

Similarly, Equation (28) and Equation (27) multiplied d1 can be simplified allowing us to get

C −A = − d2P
−d1
21

(d2 − d1)r

[
−d1(α1 − α2)

d1 − 1
P21 − (β2 − β1 − rK21)

]
. (34)
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Taking into account that the parameter D is given by the expressions (31),(33) and C by
the expressions (29),(32), (34), we can find expressions for boundary points P21 and P2x. In
fact, P21 > P2x satisfy the system of equations

G1(P21, P2x) := P−d121

[
(α2 − α1)(1− d2)

r − µ
P21 + d2

(
β2 − β1

r
−K21

)]
−A(d1 − d2)− P−d12x

[
α2(1− d2)
r − µ

P2x + d2

(
β2
r
−Kx

)]
= 0 (35)

G2(P21, P2x) := P−d22x

[
α2(1− d1)
r − µ

P2,ex + d1

(
β2
r
−Kx

)]
− P−d221

[
(α2 − α1)(1− d1)

r − µ
P21 + d1

(
β2 − β1

r
−K21

)]
= 0. (36)

A.1.2 “Hysteresis” strategy

Applying the smooth-fit conditions to the thresholds P2x, P1x, Ph, P12 and P21 we get the fol-
lowing system of equations:

0 = EP d11x + FP d21x +
α1

r − µ
P1x −

β1
r

+Kx (37)

0 = d1EP
d1
1x + d2FP

d2
1x +

α1

r − µ
P1x (38)

0 = (E − C)P d1h + (F −D)P d2h +
α1 − α2

r − µ
Ph −

β1 − β2
r

+K12 (39)

0 = d1(E − C)P d1h + d2(F −D)P d2h +
α1 − α2

r − µ
Ph (40)

0 = (C −A)P d112 +DP d212 +
α2 − α1

r − µ
P12 −

β2 − β1
r

−K12 (41)

0 = d1(C −A)P d112 + d2DP
d2
12 +

α2 − α1

r − µ
P12 (42)

0 = CP d12x +DP d22x +
α2

r − µ
P2x −

β2
r

+Kx (43)

0 = d1CP
d1
2x + d2DP

d2
2x +

α2

r − µ
P2x (44)

0 = (C −A)P d121 +DP d221 +
α2 − α1

r − µ
P21 −

β2 − β1
r

+K21 (45)

0 = d1(C −A)P d121 + d2DP
d2
21 +

α2 − α1

r − µ
P21 (46)

Taking into account the relationships:

r = −σ
2

2
d1d2, µ =

σ2

2
(1− d1 − d2) and r − µ = −σ

2

2
(1− d1)(1− d2)

we can obtain

r(d2 − 1)

d2(r − µ)
= − d1

1− d1
=

d1
d1 − 1

r(d1 − 1)

d1(r − µ)
= − d2

1− d2
=

d2
d2 − 1

.

Computing d1(41)− (42) we get

D = − d1P
−d2
12

(d1 − d2)r

[
d2(α2 − α1)

d2 − 1
P12 + (β1 − β2 − rK12)

]
. (47)
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Simplifying the equations (42) and d2 multiplied by (41), we obtain

C −A = − d2P
−d1
12

(d2 − d1)r

[
d1(α2 − α1)

d1 − 1
P12 + (β1 − β2 − rK12)

]
. (48)

Analysing Equations (45), (46), we get

D = − d1P
−d2
21

(d1 − d2)r

[
d2(α2 − α1)

d2 − 1
P21 + (β1 − β2 + rK21)

]
(49)

C −A = − d2P
−d1
21

(d2 − d1)r

[
d1(α2 − α1)

d1 − 1
P21 + (β1 − β2 + rK21)

]
. (50)

Since we have two expressions for D and to C − A, we are able to define the equations that
allow us to compute the thresholds P21 and P12

P−d121

[
d1(α2 − α1)

d1 − 1
P21 + (β1 − β2 + rK21)

]
− P−d112

[
d1(α2 − α1)

d1 − 1
P12 + (β1 − β2 − rK12)

]
= 0

P−d221

[
d2(α2 − α1)

d2 − 1
P21 + (β1 − β2 + rK21)

]
− P−d212

[
d2(α2 − α1)

d2 − 1
P12 + (β1 − β2 − rK12)

]
= 0.

Taking into account Equations (37), (38) as well as (37) and (38), we obtain

F = − d1P
−d2
1x

(d1 − d2)r

[
d2α1

d2 − 1
P1x + (−β1 + rKx)

]
(51)

F −D = −
d1P

−d2
h

(d1 − d2)r

[
d2(α1 − α2)

d2 − 1
Ph + (−β1 + β2 + rK12)

]
(52)

Combining Equations (51)-(52) with (47)

0 = P−d21x

[
d2α1

d2 − 1
P1x + (−β1 + rKx)

]
−−P−d2h

[
d2(α1 − α2)

d2 − 1
Ph + (−β1 + β2 + rK12)

]
−

− P−d212

[
d2(α2 − α1)

d2 − 1
P12 + (β1 − β2 − rK12)

]
(53)

A different expression for D can be obtained solving the equations (43) and (44):

D = − d1P
−d2
2x

(d1 − d2)r

[
d2α2

d2 − 1
P2x + (−β2 + rKx)

]
. (54)

Combining (54) using (47) multiplied by −1, we get

P−d22x

[
d2α2

d2 − 1
P2x + (−β2 + rKx)

]
− P−d212

[
d2(α2 − α1)

d2 − 1
P12 + (β1 − β2 − rK12)

]
= 0. (55)

Solving Equations (37), (38), and (43), (44), we obtain

E = − d2P
−d1
1x

(d2 − d1)r

[
d1α1

d1 − 1
P1x + (−β1 + rKx)

]
(56)

C = − d2P
−d1
2x

(d2 − d1)r

[
d1α2

d1 − 1
P2x + (−β2 + rKx)

]
(57)

From (39) and (40), we can compute

E − C = −
d2P

−d1
h

(d2 − d1)r

[
d1(α1 − α2)

d1 − 1
Ph + (−β1 + β2 + rK12)

]
. (58)
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Therefore,

P−d11x

[
d1α1

d1 − 1
P1x + (−β1 + rKx)

]
− P−d12x

[
d1α2

d1 − 1
P2x + (−β2 + rKx)

]
− P−d1h

[
d1(α1 − α2)

d1 − 1
Ph + (−β1 + β2 + rK12)

]
= 0 (59)

Equations (53)-(55)-(59) allow us to recover thresholds P1x, P2x and Ph.

A.1.3 Constants K†12 and K†21

Looking at the definition of the functions G1 and G2 defined in (35) and (36), we know that
these functions depend on K21. To highlight such a dependence, we write G1(P21, P2x) ≡
G1(P21, P2x;K21) and G2(P21, P2x) ≡ G2(P21, P2x;K21). Then, we proceed as Zervos et al.

(2018), to find the bounds K†12 and K†21.

The K†21 is such that there is a unique solution (x, y, k) = (x, y,K†21), with y > x, to the
system of equations

G1(x, y, k) = 0, G2(x, y, k) = 0, G1(δ, y, k) = 0,

where δ is defined in (30). The bound for K12 is

K†12 = −K21 +
x̂d2

r

[
P−d21

(
(α1 − α2)d2
d2 − 1

P21 − (β1 − β2 + rK21)

)
−

x̂−d
(

(α1 − α2)d2
d2 − 1

x̂− (β1 − β2 + rK21)

)]
, (60)

where x̂ ∈ [P2x, P21] is a solution to:

(α2 − α1)x

[
d1

d1 − 1
− d2
d2 − 1

]
+ xd1P−d121

[
(α1 − α2)d1
d1 − 1

P21 − (β1 − β2 + rK21)

]
−

xd2P−d221

[
(α1 − α2)d2
d2 − 1

P21 − (β1 − β2 + rK21)

]
= 0. (61)

Note that K†21 is independent of K12 and K21, but K†12 depends on K21.

A.2 Investment Problem 5

In this section, we will present the smooth-pasting conditions to find the parameters and thresh-
olds associated to the Investment Problem defined in equation 5.

A.2.1 K+
2 ≥ K2 and K1 ≥ K−1

We start by noticing that the function s2 can be written as

v∗(p) =



B1p
d2 p ∈ [0, γ1)

Cpd1 +Dpd2 + α2
r−µp−

β2
r −K2 p ∈ [γ1, γ2]

A1p
d1 +B2p

d2 p ∈ (γ2, γ3)

Apd1 + α1
r−µp−

β1
r −K1 p ∈ [γ3,+∞).

(62)
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Using the smooth-fit conditions, the parameters B1, A1 and A2, and the thresholds γ1, γ2 and
γ3 satisfy the following equations:

0 = (B1 −D)γd21 − Cγ
d1
1 −

α2

r − µ
γ1 +

β2
r

+K2

0 = (B1 −D)d2γ
d2
1 − Cd1γ

d1
1 −

α2

r − µ
γ1

0 = (C −A1)γ
d1
2 + (D −B2)γ

d2
2 +

α2

r − µ
γ2 −

β2
r
−K2

0 = (C −A1)d1γ
d1
2 + (D −B2)d2γ

d2
2 +

α2

r − µ
γ2

0 = (A−A1)γ
d1
3 −B2γ

d2
3 +

α1

r − µ
γ3 −

β1
r
−K1

0 = (A−A1)d1γ
d1
3 −B2d2γ

d2
3 +

α1

r − µ
γ3

Solving these equations we can get the following expressions:

B1 = D +
d1γ
−d2
1

(d1 − d2)r

[
d2α2

(d2 − 1)
γ1 − (β2 + rK2)

]
B2 = D +

d1γ
−d2
2

(d1 − d2)r

[
d2α2

(d2 − 1)
γ2 − (β2 + rK2)

]
=

d1γ
−d2
3

(d1 − d2)r

[
d2α1

(d2 − 1)
γ3 − (β1 + rK1)

]
A1 = C − d2γ

−d1
2

(d1 − d2)r

[
d1α2

(d1 − 1)
γ2 − (β2 + rK2)

]
= A− d2γ

−d1
3

(d1 − d2)r

[
d1α1

(d1 − 1)
γ3 − (β1 + rK1)

]
.

The threshold γ1 is a solution to the following equation:

φ(γ1,K2) := C(d1 − d2)γd11 + (1− d2)
α2

r − µ
γ1 + d2

(
β2
r

+K2

)
= 0

and the thresholds γ2 and γ3 are a solution to the system of equations

D(d1 − d2)r + d1γ
−d2
2

[
d2α2

(d2 − 1)
γ2 − (β2 + rK2)

]
− d1γ−d23

[
d2α1

(d2 − 1)
γ3 − (β1 + rK1)

]
=0

(C −A)(d1 − d2)r − d2γ−d12

[
d1α2

(d1 − 1)
γ2 − (β2 + rK2)

]
+ d2γ

−d1
3

[
d1α1

(d1 − 1)
γ3 − (β1 + rK1)

]
=0.

A.2.2 K+
2 < K2 or K1 < K−1

Since z2 < γ3 < P2,1, using the smooth-pasting conditions, we get the following expressions

B2γ
d2 = Aγd1 +

α1

r − µ
γ − β1

r
−K1

d2B2γ
d2 = d1Aγ

d1 +
α1

r − µ
γ

We conclude, that

B1 = − d1γ
−d2

(d2 − d1)r

[
d2α1

(d2 − 1)
γ − (β1 + rK1)

]
(63)

and γ3 satisfies the equation

(d2 − d1)Apd1 + (d2 − 1)
α1

r − µ
p− d2

(
β1
r

+K1

)
= 0. (64)
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A.2.3 The bounds K+
1 , K−1 , K+

2 and K−2

Let us assume that the value function is given by s2. Then, for values of revenue p ∈ (γ1, γ2) the
firm invests in the less risky project (project 2). It is straightforward that the investment is not
optimal if v∗2(p)−K2 < 0. Thus, γ1 > p̂, where v∗2(p̂)−K2 = 0. Furthermore, since K2 > −Kx,
it is not optimal to invest in project 2 for values of p ≤ P2x. On the other hand, since γ1
triggers the investment in project 2, γ1 < z2, where is defined in Proposition 2. Additionally,
since K2 +K21 > K1, it will be never optimal to invest in project 2 for values of revenue larger
than P21. Thus γ1 < P21.

Let K−2 and K+
2 be respectively the upper and lower bounds for K2. Thus, K+

2 is obtained
as solution to the equation

K+
2 = max{K2 : φ(γ1,K2) = 0, γ1 ∈ [P2x, P21]}, (65)

and K−2 is obtained as solution to the equation

K−2 = min{K2 : φ(γ1,K2) = 0, γ1 ∈ [P2x, P21]}, (66)

where φ is defined in Section A.2.1. These two equations have to be solved in K2 because all
the remaining parameters are fixed. The parameter K−2 can be explicitly computed because
the pair (γ1,K2) = (P2x,−Kx) solves the equation φ(γ1,K2) = 0. Since we are imposing that
K2 > −Kx, then K−2 = −Kx.

Fix now K2 ∈ (K−2 ,K
+
2 ), then γ1 can be obtained following Section A.2.1. Considering the

structure of s2, one has that 0 < γ1 < γ2 < γ3. Thus, following the same line of reasoning,
one can obtain K−1 and K+

1 fixing γ2 = γ1 and γ2 = γ3 and solving the system of equations
obtained at the end of Section A.2.1, in K1.

Considering γ2 = γ3 = γ, we get

D(d1 − d2)r + d1γ
−d2

[
d2α2

(d2 − 1)
γ − (β2 + rK2)

]
− d1γ−d2

[
d2α1

(d2 − 1)
γ − (β1 + rK1)

]
=0

(C −A)(d1 − d2)r − d2γ−d1
[

d1α2

(d1 − 1)
γ − (β2 + rK2)

]
+ d2γ

−d1
[

d1α1

(d1 − 1)
γ − (β1 + rK1)

]
=0.

One can easily see that (γ,K1) = (P21,K2 + K21) solves the system of equations. As we are
imposing the condition K1 < K2 +K21, this implies that K+

1 = K2 +K21.
Fix now γ2 = γ1. Then, the lower bound can be found solving the system

D(d1 − d2)r + d1γ
−d2
1

[
d2α2

(d2 − 1)
γ1 − (β2 + rK2)

]
− d1γ−d23

[
d2α1

(d2 − 1)
γ3 − (β1 + rK1)

]
=0

(C −A)(d1 − d2)r − d2γ−d11

[
d1α2

(d1 − 1)
γ1 − (β2 + rK2)

]
+ d2γ

−d1
3

[
d1α1

(d1 − 1)
γ3 − (β1 + rK1)

]
=0,

in γ3 and K1.

A.3 Investment problem 19

The investor’s value is given by the solution of the Bellman equation rũ(p) − Lũ(p) = 0. A
solution to this equation is u(p) = Ãpd1 + B̃pd2 . Taking into account that limp→0 u(p) =
limp→∞ u(p) = 0, then we get the value function

W̃ (p) =


B̃pd2 , p ≤ γ̃1
f1(p), γ̃1 < p < γ̃2

Ãpd1 , p ≥ γ̃2
.
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Contrary to what happens in usual real options models, the value function is not C1, it is only
C0. This is not a problem if W is still a viscosity solution to the previous ordinary differential
equation (for more details see Øksendal and Reikvam (1998)). Providing that the parameters
and thresholds are as follows, the value function W̃ is a viscosity solution to the ordinary
differential equation.

(i) if ε1P
d1
12 ≥ ε2P

d1
h , then

γ̃1 = P1x, γ̃2 = Ph, B̃ = ε1P
−d2
1x , and Ã = ε1P

−d1
h ;

(ii) ε1P
d1
12 < ε2P

d1
12 , then

γ̃1 = P1x, γ̃2 = Ph, B̃ = ε1P
−d2
1x , and Ã = ε1P

−d1
12 ;

More details on how to prove that W̃ is a viscosity solution can be found in Section 4.4 of
Oliveira and Perkowski (2020) where the authors prove that the value function, which is not
C1, is a viscosity solution to the respective HJB equation.

B Proofs

B.1 Proof of Proposition 2

We start by deriving u∗ = max(v1(p)−K1, v2(p)−K2), with v1 and v2 defined in Proposition
1.

Let us assume, without loss of generality, that K1 = 0 and K2 = 0. Then, it is straightfor-
ward that

v1(p) = v2(p)⇔ p ∈ (0, P2x) ∪ (P12, P21).

For x ∈ (P2x, P1x), it is also trivial that v2(p) > v1(p). Taking into account that

v2(P1x) > v1(P1x) = −Kx and v2(Ph) > v1(Ph) = v2(Ph)−K12,

and the monotony of v2 and v1 we can conclude that v2(p) > v1(p) for p ∈ (P1x, Ph). Finally,
for p ∈ (Ph, P12), v2(p) > v1(p) = v2(p)−K12.

In fact, due to the continuity of v1 and v2, we can conclude that there is a unique point
z2 ∈ (P12, P21) such that v1(z2) = v2(z2). Additionally, from the convexity of v2 in (P12, P21)
we get that v2(p) > v1(p) for p < z2 and v2(p) < v1(p) for p > z2.

Given the continuity of v1 −K1 in K1, we know that z2(K1) is increasing and

limK1→K2+K21 = P21.

Additionally, when we consider 0 < K1 < K12 then v1(p) − K1 < v2(p) for p ∈ (0, z2) and
v1(p)−K1 > v2(p) when p > z2. One can easily check that the analysis made is still true when
we start by considering K1 = K2 > 0.

To finalise this part of the proof, one need to check what happens when we decrease K1

taking into account that K2 < K1 +K12.
Let us consider the limit case K2 = K1 + K12. In this case, v2(p) − K2 < v1(p) − K1 for

p ∈ (0, P2x). Additionally, v2(p) − K2 < v1(p) − K1 for p ∈ (P2x, z1) with z1 ∈ (P2x, Ph),
v2(p) − K2 > v1(p) − K1 for p ∈ (z1, Ph), v2(p) − K2 = v1(p) − K1 for p ∈ (Ph, P12) and
v2(p)−K2 < v1(p)−K1 when p > P12. Therefore, in light of the continuity of v2 −K2 in k2, ,
we get the result when we consider K1 < K2 < K1 +K12.
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B.2 Proof of Proposition 3

Let us assume the following scenario: the set of initial parameters is such that the optimal
switching strategy is the “hysteresis strategy” and the value function is in Proposition 1 and
there is z1 > P1x such that the investment threshold γ is such that γ ∈ (P1x, Ph). From standard
real options analysis (see for instance Dixit and Pindyck (1994)) we know that the smooth paste
condition are given by B0γ

d2 = Eγd1 + Fγd2 + α1
r−µγ −

β1
r −K1

d2B0γ
d2−1 = Ed1γ

d1−1 + Fd2γ
d2−1 + α1

r−µ

. (67)

One may notice that, by definition of the threshold P1x, the pair (γ,B0) = (P1x, 0) is a solution to
the system (67) for K1 = −Kx. Given the analysis made for the switching problem, it is known
that there is a unique solution (P2x, P1x, Ph, P12, P21) such that P2x < P1x < Ph < P12 < P21.
Therefore, fixing E and F as defined (37) and (38), the arguments above allow us to conclude
that 0 = Eγd1 + Fγd2 + α1

r−µγ −
β1
r +Kx

0 = Ed1γ
d1−1 + Fd2γ

d2−1 + α1
r−µ

.

has a unique solution, P1x, for 0 < γ < Ph.
To get our conclusions, we analyse a perturbed version of system (67), considering K1 =

−Kx + ε. Multiplying the first equation of system (67) by d2 and the second one by γ, the
system can be reduced to a single equation

m(γ) := (d2 − d1)Eγd1 + (d2 − 1)
α1

r − µ
γ − β1

r
d2 +Kxd2 − εd2

This equations has two solutions. To prove this statement, we may notice that

lim
γ→0+

m(γ) = lim
γ→+∞

m(γ) = +∞ and m′′(γ) = (d2 − d1)d1(d1 − 1)Eγd1−2 > 0.

Additionally, choosing ε = 0, we know from Proposition 1 that there is at least one solution to
that equation, which is P1x. Additionally, if there is a second one is greater than Ph. This can
be proved noticing that

m(Ph) = (d2 − d1)EP d1h + (d2 − 1)
α1

r − µ
Ph −

β1
r
d2 +Kxd2 − εd2

= (d2 − d1)EP d1h + (d2 − 1)
α2

r − µ
Ph +

(
Kx −

β2
r
−K12

)
d2 − εd2

the second equality following in light of the smooth paste conditions presented in Appendix
A.1.2. Given the expression for E presented in Appendix A.1.2, we get the following

m(Ph) =−
(
Ph
P2x

)d1 [
(d2 − 1)

α2

r − µ
Ph +

(
Kx −

β2
r

)
d2

]
+ (d2 − 1)

α2

r − µ
Ph

+

(
Kx −

β2
r
−K12

)
d2 − εd2

=

(
1−

(
Ph
P2x

)d1)
︸ ︷︷ ︸

>0

[
(d2 − 1)

α2

r − µ
Ph +

(
Kx −

β2
r

)
d2

]
︸ ︷︷ ︸

<0

− (ε+K12) d2 < 0

The sign of the second term follows from the fact that E > 0 because it is the value of an
option.

Due to the continuity of m(γ; ε) ≡ m(γ) on ε, for any ε > 0 there are two solutions, one
that is smaller than P1x and a second one that is greater than Ph. Both hypothesis contradict
the possibility of investment in the hysteresis region.

37



C Additional figures and tables

C.1 Numerical Verification of the HJB equations in Section 5.2.1

In Table 9, we illustrate the behaviour of the optimal investment strategy with changing µ. We
find that γ3 is not monotonic with µ. To verify that the behaviour is not a consequence of a
numerical error, we present the numerical verification of the HJB equations for the following
values of µ: µ = −0.030 and µ = 0.025 (these are the values of µ where the monotony of
γ3 changes). For each value of µ we present three plots since we have to compute the value
functions v1, v2 and W . As the HJB equations are written as the maximum between three terms
for the switching problem and two terms for the investment problem, all these terms must be
non-positive and at least one of them must be equal to zero. Figure 15 shows the verification
plots for µ = −0.03 and Figure 16 shows the verification plots for µ = 0.025.

(a) (b) (c)

Figure 15: µ = −0.030, HJB verification for v1 (panel (a)), for v2 (panel (b)) and for the
investment problem (panel (c)).

(a) (b) (c)

Figure 16: Case: µ = 0.025, HJB verification for v1 (panel (a)), for v2 (panel (b)) and for the
investment problem (panel (c)).

C.2 Switching parameters of Section 5.2.2

In Table 15, we present the switching thresholds regarding the set of parameters used in section
5.2.2. For the reader convenience, we provide here the parameters considered: µ = 0, r = 0.05,
α1 = 1, β1 = 1, α2 = 0.6, β2 = 0.5, Kx = −1, K12 = 0.25, K21 = 0.5.
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σ P1x Ph P12 P2x P21 Strategy

0.1000 0.7198 0.7782 1.0017 0.6536 1.6142 Hyst
0.1500 0.6107 0.6841 0.9400 0.5451 1.7371 Hyst
0.2000 0.5183 0.5999 0.8894 0.4550 1.8566 Hyst
0.2400 0.4556 0.5407 0.8546 0.3947 1.9514 Hyst
0.2500 0.4413 0.5270 0.8465 0.3811 1.9752 Hyst
0.3000 0.3775 0.4649 0.8091 0.3208 2.0942 Hyst

Table 15: Switching thresholds for the illustration in Section 5.2.2.
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