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Abstract
�e use of recycled plastics is critical in the transition toward a circular econ-

omy. However, for certain types of plastics, the recycling process is economically

unviable. Government-driven incentives, such as a policy imposing a minimum

amount of recycled plastics to be used in production processes, o�er an exit from

this impasse. In this paper, we study how a �rm’s investment behavior is a�ected

by policy uncertainty governing the introduction of such a regulatory measure.

Speci�cally, we adopt a real option approach to study the two-step investment of

a �rm in its transition toward the use of recycled plastics. A clear trade-o� can be

distinguished. On the one hand, investing early causes unnecessary pro�t losses
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before the policy implementation. On the other hand, a lack of investment leads

to market exclusion a�er the policy implementation. For our case study on the

use of recycled polyethylene, we �nd that �rms plan their �rst investment step,

so that the timing of the second investment step approximates their projection

on the policy implementation time. Moreover, we �nd that the �rm’s value is

maximized when the capacity of the �rst investment is smaller than the capacity

of the second investment.
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1 Introduction
�e transition toward a circular economy (CE) is being endorsed by an increas-

ing number of countries and regions around the world. �e main global players

are: China, with its progressive CE legislation, e.g. prohibiting imports of cer-

tain plastic waste streams [Brooks et al., 2018, Qi et al., 2016], Japan, with well-

developed waste management practices [Sasao, 2014], and the European Union

(EU). For this study, our primary focus will lie on circularity of plastics in the EU,

mainly set out by the European Commission’s (EC) Plastics Strategy [EC, 2018].

Investigating the circularity of plastics is essential in the transition process to-

ward a CE. �e ubiquity of plastics in the economy is the result of a continuing

trend since the middle of the 20th century. Indeed, the use of plastics has ex-

perienced a constant growth a�er World War II, mostly because of the unique

and desirable properties of the material [OECD, 2018]. Paradoxically, commonly

used disposal techniques, such as incineration, tend to have high negative en-

vironmental impacts and cannot be regarded as being circular [Rigamonti et al.,

2014].

Recently, the EU has taken action to start closing the material cycle of plas-

tics, and to minimize the harmful impacts of the material in general. �e EU’s

three main action plans or strategies are: (i) the EU’s Single Use Plastics Di-

rective which was overwhelmingly accepted by the Members of the European

Parliament
1

at the end of 2018 [EP, 2019]. �is directive prohibits certain plastic

products to be used only once. (ii) �e REACH regulation which deals with the

use of certain harmful chemicals, e.g. phthalates in the production of plastics.

It is generally accepted that harmful chemicals hamper the transition toward

circularity, e.g. health and safety di�culties arise during the recycling process

[EC, 2020b]. (iii) �e European Strategy for Plastics in a Circular Economy [EC,

2018], which sets out targets and partly regulates the market. Although the exist-

ing policies are useful, some markets, e.g. the polyethylene (PE) market, remain

poorly regulated. Certain interest groups, e.g. the European Federation of Waste

Management and Environmental Services (FEAD), are lobbying and public opin-

ion is pushing to further regulate the market. An example we study in this paper

is the corporate lobby on an ‘EU Action on Recycled Content Mandates for Plas-

tics’ [FEAD, 2018].

Policies for a CE can either be incentive-based, e.g. subsidising circular tech-

1
571 votes to 53 in favor and 34 abstentions
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nology investments, or regulatory, e.g. forcing investments. In this study, we

focus on a regulatory policy forcing the market to transition. An example is the

REACH framework which obliges the market to transition; if one’s production

process uses prohibited chemicals, production will have to be suspended until

the new guideline requirements are complied with. O�en, the implementation of

policies is driven by the reaction of policymakers to the public opinion [Wlezien

and Soroka, 2012]. �erefore, implementation dates are uncertain and as a con-

sequence they cause market distortion. In this research, we assess the impact

on investments of uncertain implementation times of such regulatory policies.

�is type of uncertainty, simply referred to as policy uncertainty in the remain-

der of the paper, is the only source of uncertainty in our se�ing that impacts

investment decisions. Uncertainty regarding policy content is, especially in the

case of plastics, limited by, i.a. technical feasibility. Both policymakers and �rms

are aware of these constraints, and as a consequence, policies are set within the

narrow boundaries of feasibility
2
.

In order to analyze the in�uence of an uncertain policy implementation time

on investment decisions, we develop a real option model. �e monopolistic �rm

we consider in the analysis partially observes and learns from the public opinion.

�is opinion is assumed to be the driver for policymakers to change existing poli-

cies, i.e. to mandate a minimum use of recycled plastics in production processes.

We base ourselves on publications of the EC to parametrize the public opinion.

�e optimal investment time for the �rm is calculated, such that expected pro�ts

are maximized. �e model is designed for applications in the plastics industry,

and is applied to the PE market in the EU. Results indicate that �rms plan the

�rst investment step, so that the timing of the second investment step approxi-

mates their projection on the policy implementation time. Only when the �rst

investment causes pro�t losses before the policy implementation that are greater

than the losses due to the partial market exclusion a�erwards, will �rms plan the

�rst investment step at the policy implementation time. Although these results

are found for a polymer case study, we stress that implications of this model

transcend this industry.

�e remainder of the paper is organized as follows: Section 2 provides an

overview of existing relevant literature. Sections 3 and 4, respectively, introduce

the investment model under the presence of policy uncertainty and its solution,

2
Se�ing policies within these boundaries does not imply a standstill for innovation. Policies

are expected to evolve over time, stimulating innovation.
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i.e. the optimal investment times. Section 5 presents and discusses the results

found for the PE case study, and Section 6 determines the optimal capacity of

the investment steps. Section 7 concludes on the research �ndings. All proofs of

propositions introduced throughout this study can be found in Appendix A.

2 Literature
A CE entails uncertainty [Linder and Williander, 2017]. �erefore, investment

decisions in a CE se�ing should be studied with a real option approach. �is

approach correctly accounts for uncertainty and is �exible with regard to the

investment timing and capacity [Dixit and Pindyck, 1994]. To the best of our

knowledge, this is the �rst study adopting this method to investigate the in-

vestment decision in the use of recycled plastics under the presence of policy

uncertainty. Policy uncertainty has been studied before in di�erent real option

se�ings. Within this strand of literature, three generations can be identi�ed. �e

�rst generation mainly focuses on tax policy uncertainty. One of the �rst aca-

demic studies can be found in Chapter 9 of Dixit and Pindyck [1994]. �ey ana-

lyze the in�uence of a possible tax credit retraction on a �xed-sized investment.

A similar study on this ma�er was performed by Hasse� and Metcalf [1999]. In

their work, they argue that the use of a geometric Brownian motion (GBM) to

model policy uncertainty is inferior to the use of a Poisson jump process. �e

results of their work show that the in�uence of policy uncertainty on private in-

vestments is highly dependent on how it is modeled. �e advantage of a Poisson

jump process, they argue, is the sharpness of the jumps, corresponding with the

sudden implementation of policies.

A second generation of literature studies climate change policy uncertainty.

�is generation mainly focusses on the uncertain carbon price. Yang et al. [2008]

analyze the investment in a power plant; the carbon price follows a GBM and

in�uences the pro�tability of investments. Fuss et al. [2008] investigate an in-

vestment option in carbon-saving technology under an uncertain carbon price.

�ey consider a bifurcating carbon price, representing policy changes, and �nd

that increased uncertainty delays investments. Compernolle et al. [2017] analyze

the investment in carbon capture technology under an uncertain carbon price,

which is modeled with a GBM.

A third, and recent generation of literature distinguishes itself from the �rst

generation by analyzing investments in renewable energy sources. �is topic be-
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came increasingly important in the 21st century. �ese studies typically regard

policy uncertainty in the form of a random provision, revision or retraction of a

subsidy or support scheme. Boomsma and Linnerud [2015] and Boomsma et al.

[2012] use a Markov switching process to model the uncertain discrete changes

between the support schemes that governments adopt for renewable energy. An

example: in case a subsidy is granted, the level of a subsidy is modeled with a

GBM, while its retraction is modeled using a Poisson jump process. �ey �nd

that policy uncertainty regarding the intensity delays investments. Uncertainty

regarding the possible retraction can in�uence the investment timing either way.

If the market believes that the decision of retraction will be applied retroactively,

investments are delayed, and vice versa. Eryilmaz and Homans [2016] �nd that

higher uncertainty regarding the granting of investment credits in the future,

speeds up investments today. �ey consider a 30 percent probability that the

investment credit will be retracted, without considering re-installment in the fu-

ture. A similar result is found by Chronopoulos et al. [2016]. Policy uncertainty,

in the form of a random provision or retraction of a subsidy, modeled with a Pois-

son jump process, speeds up investment. However, the installed capacity under

the presence of uncertainty will be lower. �e investment value is found to be

larger when considering stepwise investment instead of lumpy investment, the

di�erence in value is found to be inversely proportional to the intensity of the

subsidy [Samadi, 2018].

Despite the available and observable information, the aforementioned publi-

cations assume private investors’ projections on policy changes to be constant.

Literature combining a real option approach with active learning is rather lim-

ited. Dalby et al. [2018] present a good overview of the existing literature com-

bining both. To the best of our knowledge, policy uncertainty and active learning

have only been considered twice before. Dalby et al. [2018] consider an invest-

ment option under policy uncertainty and allow for active learning via Bayesian

updating. �ey study how investment behavior is a�ected by updating a sub-

jective belief on the timing of a subsidy revision. It is found that investors are

less likely to invest when the arrival rate of a policy change increases. An al-

ternative approach was introduced by Pawlina and Kort [2005]. �ey assume

the policymaker is in�uenced by an exogenously driven dynamic, based on the

�rm’s market value, and that �rms know this dynamic too. In their paper, the

market value in�uences the policymaker to retract an investment subsidy. �e

threshold of the market value at which the subsidy is retracted, is unknown to

the �rm. �ey can, however, make projections on the retraction based on their
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active learning.

�e existing real option literature on policy uncertainty, both including and

excluding active learning, regards uncertainty as the intensity or provision (re-

traction) of an investment-stimulating policy or of changing carbon price. Such

incentive-based policies typically take the form of subsidies, like feed-in tari�s

or investment credits. We extend the real option literature on policy uncertainty

by studying an uncertain regulatory policy. Regulatory policies are deemed to

become increasingly important in a CE se�ing. Both the Ellen Macarthur Foun-

dation [2019] and the EC [2018] concluded regulatory policies are an e�ective

policy tool to enable the transition toward a CE. �e best example of the la�er

is probably the progressive Chinese CE, which has been stimulated by the Chi-

nese Government who issued regulatory policies, e.g. banning imports of certain

plastic waste streams [Brooks et al., 2018]. �e potential of regulatory policies to

enable a CE is great. �erefore, more of this type of policies are to be expected,

increasing the relevance of this work.

3 Model
We consider a pro�t maximizing monopolistic �rm in a continuous time se�ing.

�e �rm has the option to invest, by investing it will become more circular. �e

type of investment can di�er, e.g. investing in a new production machine or the

education of workers. �e �rm faces the risk of being legally required to become

more circular at some point in the future, e.g. the mandatory utilization of a

certain fraction of recycled plastics in production processes. Such a policy, com-

pelling the �rm to be more circular, is assumed to be implemented at a random

future point in time, γ. �e random time, γ, is driven by an exogenous stochastic

process {Lt : t ≥ 0} with initial value l. �is process represents the public pres-

sure on the policymaker to regulate. If the public pressure or value of the process

reaches a critical level L∗, policy implementation follows. However, the critical

level L∗ is unknown ex ante to the �rm. Similar to Pawlina and Kort [2005], we

make the assumption that the policymaker is consistent. If the policy has not

been implemented by time φ, while L̂ is the highest realization of the process so

far, the policy will not be implemented at any time u > φ, as long as L(t) ≤ L̂
for all t ≤ u. A�er the policy implementation, the investment is a conditio sine
qua non to keep production running and therefore, to have a pro�t �ow.

A�er investing, extra production steps, higher input prices [Brooks et al.,
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2019], more production errors, higher quality control costs will in�uence the

pro�t �ow negatively. �erefore, we assume that investing lowers the pro�t by

an ex ante known and �xed factor δ ∈ [0, 1]. Nevertheless, the �rm still has

an incentive to invest, as the lack of investment results in zero pro�t a�er the

policy implementation. Hence, there exists a trade-o� between lost pro�ts due to

higher production costs before the policy implementation vs. the risk of losing

all pro�t a�er the policy implementation and before investment.

Without loss of generality, we assume the production of one unit per time

period t, using a combination of input materials qA(t) and qB(t). It holds that

qA(t) + qB(t) = 1. �e fraction qB , is the fraction to be regulated at the random

implementation time of the policy, e.g. a mandatory fraction of recycled plastics

that should be used in production processes. At the beginning of the planning

period we assume qB(0) = 0, i.e. no recycled plastics are used for production.

Upon introduction, the policy will require a fraction qB to be used. qB is known

at all times, and can be reached by investment. Lacking capacity of qB to reach

qB when t ≥ γ, will lower the pro�t function according to the lacked capac-

ity in qB . We assume that pro�ts cannot grow by overinvesting, i.e. qB ≤ qB .

�e following pro�t function captures these characteristics, and will therefore

be adopted in our model:

π(t) =


P − PδqB(t) if t < γ

qB(t)

qB
(P − PδqB(t)) if t ≥ γ

(1)

�e required investment to reach the desired capacity qB , is executed in n steps

(n > 1, n ∈ N). We exclude the case n = 1, because it yields a trivial problem.

�en it is always optimal to invest at the moment of policy implementation, i.e.

τ = γ, where τ denotes the investment time. Stepwise investment is a reasonable

constraint to impose. Firms allow themselves to adapt without jeopardizing their

entire production. A sudden change of the entire production, without testing nor

learning, could lead to all products being faulty. As a consequence, stepwise in-

vestment is expected to be cheaper than lumpy investment. �erefore, we de�ne

an investment cost function that internalizes the learning e�ects taking place

with stepwise investment, in which C is a positive constant:

I (qB) = C (eqB − 1) (2)

Equation (2) represents the total cost of the investment step in a fraction qB . �is

cost follows an exponential increase. �at is because it internalizes the lack of
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learning e�ects when investing in large fractions of qB per step. We assume a

minimal withholding time, θ, between the investment steps. Such a withhold-

ing time represents the time needed to adapt and incorporate learning e�ects

[Samadi, 2018]. Allowing the minimal withholding time to be zero in a continu-

ous time se�ing, yields a trivial problem comparable to the case n = 1.

We solve the model for a two-step investment with investment steps qB,1 and

qB,2, respectively made at t = τ1 and t = τ2. �erefore, the fraction of qB used

by the �rm throughout time, is given by:

qB(t) =


0, t < τ1

qB,1, τ1 ≤ t < τ2

qB,1 + qB,2, t ≥ τ2

(3)

�erewith, the optimal stopping problem for a two-step investment can be for-

mulated as follows:

V
(
l, L̂
)

= sup
τ1≥0,τ2≥τ1+θ

E

[∫ min(τ1,γ)

0

π(t)e−rtdt+

∫ min(τ1+θ,γ)

min(τ1,γ)

π(t)e−rtdt (4)

−I(qB,1)e
−rτ1 +

∫ max(τ1+θ,γ)

min(τ1+θ,γ)

π(t)e−rtdt

+

∫ τ2

max(τ1+θ,γ)

π(t)e−rtdt+

∫ +∞

τ2

π(t)e−rtdt −I(qB,2)e
−rτ2

]
Equation (4) represents the �rm’s expected pro�ts over the interval [0,+∞[, dis-

counted to the beginning of the planning period, t = 0. Note that in Equation

(4), we cannot write the pro�t function in terms of Equation (1), but have to refer

to π(t). �e reason is that the pro�t function depends upon γ, e.g. over the inter-

val [min (τ1, γ) ,max (τ1 + θ, γ)], the pro�t function is not de�ned a priori. �e

two investment timings, τ1 and τ2, are chosen in order to maximize the �rm’s

expected value. Initially the pro�t function is known, π(0) = P −PδqB(0) = P ,

since the policy has not arrived yet. �e pro�t function will change at t =
min (τ1, γ). If the policy arrives before the �rst investment, the pro�t drops to

zero until the �rm invests to reach the capacity qB,1. At τ1, the �rm invests in a

fraction qB,1. As a result, pro�t decreases if the policy is not implemented yet.

�e next possible change in pro�t occurs at t = min (τ1 + θ, γ), that is when

the minimal withholding time has expired or the policy has arrived. Under the
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hypothesis that the minimal withholding time has expired before the policy im-

plementation, the pro�t will remain unchanged until the �rm decides to undergo

the second investment or the policy implementation occurs. �e optimal stop-

ping problem takes into account this situation by considering a possible change

in the pro�t over the interval t ∈ [min (τ1 + θ, γ) ,max (τ1 + θ, γ)]. A�erwards,

it remains to account for the period before and a�er the second investment.

For the purpose of illustration, we introduced the simplest case, i.e. a two-step

investment, for which we will provide a solution. However, it is straightforward

to extend our model and to investigate the investment behavior when n > 2. �e

number of investment steps correspond with the number of decision moments.

At each point, information based on the density of γ is incorporated. �erefore,

more investment steps allow the �rm to incorporate more information. �e setup

of the optimal stopping problem is thus under partial information and learning.

On the one hand, the �rm observes the pressure on the policymaker to regulate,

without having information on the level that triggers the decision of regulating.

On the other hand, the �rm is learning, as time goes by, it gains insight on the

responsiveness of the policymaker to the public pressure.

�e setup of partial information and learning has been adopted in real option

in a limited number of papers. Most of them consider that noisy information

is directly related to the project value, see for instance: Décamps et al. [2005],

Pawlina and Kort [2005], Dalby et al. [2018]. In our model, the stochastic process

is completely exogenous to the �rm. However, it does impact the value of the

investment, because it triggers the appearance of new regulation.

4 Model Solution
We start solving the optimal stopping problem by �rst de�ning the condition

under which a �rm is incentivized to invest, i.e. the investment is pro�table.

Investments are pro�table if net cash �ows are positive. At the policy imple-

mentation time, every �rm keeps the choice to either invest or leave the market.

�erefore, we de�ne the pro�tability condition of the investments in Proposition

1.

Proposition 1 �e �rst investment step is pro�table if:

I(qB,1) <
qB,1
qB

P − PδqB,1
r

10



�e second investment step is pro�table if:

I(qB,2) <
qB,2
qB

P − PδqB − PδqB,1
r

Note that these pro�tability conditions enable us to easily obtain bounds for qB .

It informs policymakers at which point their policies are destroying markets. We

will further elaborate on these boundaries when considering the case study (see

Section 5).

Proposition 2 �e distribution of capacities among qB,1 and qB,2 that allows the
largest qB without violating the pro�tability conditions, is qB,1 = qB,2 = qB

2
.

�erefore, the pro�tability conditions are not satis�ed if:

qB ≥
r

δP

(
P

r
− 2I

(
qB
2

))
Conditional on the pro�tability of the investment, we continue solving the model

by de�ning the optimal investment time for the second investment step, τ ∗2
3
.

Proposition 3 If the second investment step is pro�table:

τ ∗2 = max(γ, τ ∗1 + θ)

We distinguish two situations: (i) γ ≥ τ ∗1 + θ, that is, the policy arrives a�er the

�rst investment step has taken place and a�er the minimal withholding time has

expired, in that case τ ∗2 = γ, (ii) γ < τ ∗1 + θ, that is the policy arrives before

the second investment step can take place, in that case τ ∗2 = τ ∗1 + θ. Figure 1

graphically represents both situations with their concomitant solution.

(i)
τ ∗1 τ ∗1 + θ γ

τ ∗2

t

(ii)
τ ∗1 γ τ ∗1 + θ

τ ∗2

t

Figure 1: Optimal Investment Time of the Second Investment Step

3
�e superscript ‘*’ signi�es the optimal time.
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It remains to calculate the optimal time for the �rst investment step, τ ∗1 . �e

results presented in Proposition 4 state that τ ∗1 ≤ γ always holds. We make the

distinction between two cases depending on whether the �rm aims to invests

before or at the policy implementation, respectively τ ∗1 < γ and τ ∗1 = γ. If (i) the

minimal withholding time is zero, or (ii) the �rst investment step is pro�table but

the pro�t losses of investing early are greater than the losses due to the partial

market exclusion a�er the policy implementation, the optimal strategy is to in-

vest at the policy implementation time, τ ∗1 = γ. If losses due to the partial market

exclusion are relatively large, the optimal strategy depends upon the �rm’s belief

regarding the willingness of the policymaker to regulate. In this sense, the opti-

mal time is a random variable whose density depends on the density of γ. Note

that this result is atypical when compared with the de�ned thresholds, usually

found in real option literature.

Proposition 4 If the withholding time θ = 0, then:

τ ∗1 = γ

Under the assumption that θ > 0, the following holds:

1. if PδqB,1
r

+ I(qB,1) >
qB,2
qB

P−PδqB−PδqB,1
r

− I(qB,2), then: τ ∗1 = γ

2. if PδqB,1
r

+ I(qB,1) ≤ qB,2
qB

P−PδqB−PδqB,1
r

− I(qB,2), two situations may hap-
pen:

(a) θ ≥ θ̃

τ ∗1 =

{
γ − θ, max(θ, γ) = γ

γ, max(θ, γ) = θ

(b) θ < θ̃

τ ∗1 =

{
γ − θ, max(θ, γ) = γ

0, max(θ, γ) = θ

Given that θ̃ = 1
r

ln

( qB,2
qB

P−PδqB−PδqB,1
r

−I(qB,2)
PδqB,1/r+I(qB,1)

)
.

We note that θ̃ provides a bound to the minimal withholding time, θ, which de-

termines the optimal strategy in case 2 of Proposition 4. Fast learning �rms,

i.e. �rms with a small minimal withholding time, are thus more likely to �nd
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themselves in case 2b instead of case 2a, and vice versa. �erefore, it is not the

investment characteristics, such as the price, but the relative value of θ and θ̃
that directly in�uence τ ∗1 in case 2. In case 2b, the �rm always aims to make its

�rst investment before the policy arrives, (γ−θ or 0). As a consequence, market

supply is less a�ected in this case because �rms are not or only for a short period

of time excluded from the market. �erefore, the policymaker prefers case 2b.

We note that by adapting qB , the policymaker can in�uence the occurrence of

the applicable case.

To sum up: case 1 of Proposition 4 provides an investment rule, case 2 does

not. In case 1, the investment is pro�table, but pro�t losses before the policy im-

plementation are greater than pro�t losses a�er the policy implementation. As

a consequence, the �rm starts investing at the policy implementation time. Case

2 also analyzes the optimal time for the �rst investment step, τ ∗1 . However, the

outcome does not provide concrete information to the �rm due to the random-

ness of the policy implementation time, γ. �erefore, we provide probabilistic

information on τ ∗1 that helps the �rm in its decision process. In what is next, fγ
and fτ∗1 represent the probability density function (pdf) of γ and τ ∗1 , respectively.

Proposition 5 Assume that PδqB,1
r

+I(qB,1) ≤ qB,2
qB

P−PδqB−PδqB,1
r

−I(qB,2). �en
the optimal investment time τ ∗1 is a random variable with the following pdf:

(a) if θ ≥ θ̃, then

fτ∗1 (t) =


fγ(t+ θ) + fγ(t), 0 < t < θ

fγ(t+ θ), t > θ

0, elsewhere

and

E(τ ∗1 ) = E(γ)− θP (γ > θ) and V ar(τ ∗1 ) = V ar(γ) + θ2P (γ ≤ θ)P (γ > θ)

(b) if θ < θ̃, then

fτ∗1 (t) =


P (γ ≤ θ), t = 0

fγ(t+ θ), t > 0

0, elsewhere

and

E(τ ∗1 ) = E(max(γ − θ, 0)) and V ar(τ ∗1 ) = V ar(max(γ − θ, 0)).
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In what follows, we choose to work with the expected value of τ ∗1 de�ned in

Proposition 5. To provide practical insights on the optimal strategy, we develop

a numerical procedure to compute the expected value of τ ∗1 , τ ∗2 , and V
(
l, L̂
)

,

based on the Monte Carlo method. We proceed as follows to compute the above

mentioned expected value.

Algorithm 1 Investment Strategy and Firm’s Value

1: procedure Computing the expected value of τ ∗1 and τ ∗2
2: Generate N values, ui from a distribution U ∼ Uniform(0, 1);

3: For each ui, compute γi using the Inverse Transform Sampling �eorem:

γi :

∫ γi

0

fγ(s)ds = ui;

4: For each γi generate the times τ ∗1,i and τ ∗2,i according to Proposition 3 and 4;

5: Approximate the expected values using the sample generated:

EL,L̂[τ ∗1 ] =
1

N

N∑
i=1

τ ∗1,i and EL,L̂[τ ∗2 ] =
1

N

N∑
i=1

τ ∗2,i.

6: Let Zi represent the expression inside the expected value in Equation (4)

considering τ ∗1,i and τ ∗2,i. �en:

V (l, L̂) =
N∑
i=1

Zi
n
.

5 Results and Discussion

5.1 �e Polyethylene Case
Lately, EU citizens have urged the EU institutions to take environmentally en-

hancing measures. For plastics in particular, there exists a general concern
4

about

their impact on our environment. Lobby groups, such as FEAD, have launched

4
89 percent of the EU’s populations is worried about plastics and their in�uence of the envi-

ronment [EC, 2020a].
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calls to regulate a mandatory use of recycled plastics [FEAD, 2018]. In this paper

we elaborate on a case study that focusses on PE. We study how the uncertain

implementation time of a mandatory use of recycled PE, impacts investment be-

havior of manufacturers. Today, many manufacturers still use virgin PE. �e

main drivers for this choice are the small spread between procurement prices

of virgin and recycled PE
5
, and quality control challenges arising from the use

of recycled PE. �e la�er are caused by �uctuating mixtures of, e.g. pigments,

antioxidants, anti-static additives, etc. In order to stabilize the properties of re-

cycled PE, extra production steps are needed, resulting in increasing production

costs. Due to the rise of production costs and the small spread in procurement

prices, net pro�t is negatively in�uenced. �e combination of these challenges

leaves the market with li�le incentive to use recycled PE
6
. As a consequence, the

transition toward a large scale utilization can only be triggered by government-

driven incentives or regulating policies.

Pursuant to the public opinion and the call of lobbyists, we take into ac-

count, for this case study, that the EC considers to regulate a minimum fraction

of 30 percent recycled PE
7

to be used in the production of certain PE goods
8
.

�e EC will only regulate when public pressure grows and reaches a threshold

value. �is value, at which the EC issues a regulation is unknown. However, we

know this threshold value is larger than the maximum pressure reached so far
9
.

Moreover, we also know from the Eurobarometer that pressure is growing. �is

barometer is a collection of reports on the public opinion in the EU. Typically

1000 citizens per Member State are surveyed per report. Since 2007, �ve
10

top-

ical reports on the a�itudes of EU citizens toward the environment have been

published. �e two most recent reports, dating from 2017 [EC, 2017a] and 2019

[EC, 2020a], have a special focus on plastics. �ese reports reveal that more than

90 percent of EU citizens think it is important to protect the environment. In

2019, 89 percent of EU citizens were worried about the impact of plastic prod-

5
�e spread has even further decreased since the plunging oil prices a�er the �rst quarter of

2020 and the COVID-19 pandemic. Currently market prices for virgin and recycled PE have an av-

erage spread of 300 Euros per ton. Source: h�ps://www.vraagenaanbod.nl/thema/mark�rends/

6
In this study we do not take into account possible shortages of recycling capacity.

7
Lobby groups, such as the FEAD have launched such calls before, also for a 30 percent frac-

tion[FEAD, 2018].

8
Not all PE goods can be considered, health and safety regulation prevents direct contact

between food and recycled PE.

9
Otherwise, the EC is not consistent.

10
Eurobarometer 295, 365, 416, 468, 501
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ucts on the environment. �at is a 2 percentage point increase compared with

2017. Around one-third is convinced that production and consumption has to

change. In 2017, 62 percent blamed the EU institutions of ‘not doing enough to

protect the environment’. �is fraction increased to 68 percent in 2019. �e pres-

sure on policymakers to regulate thus increased by 4.7 percent per year. In re-

sponse, Commissioner V. Sinkevičius
11

acknowledged that the current EC wants

to start addressing these concerns with the European Green Deal, which for plas-

tics mainly refers to the 2018 plastics strategy. Nonetheless, in 2019, two-third of

EU citizens favored the enhancement of plastic recycling and the use of recycled

plastics in production. �erefore, pressure and support by the public remains to

incentivize and regulate recycling, as well as the use of recycled plastics.

We consider two hypotheses to analyze and model the impact of this grow-

ing pressure and support, by regarding a continuous and a discontinuous pro-

cess. We �nd compelling arguments for both types of processes to be used in the

model. On the one hand, no EU citizen has a voice powerful enough to change

policies. However, the gradual change of a group’s preferences has a signi�cant

e�ect on policymakers. In this case, we choose to model the public opinion with

a GBM
12

. A GBM is a continuous-time stochastic process which takes nonnega-

tive values only. On the other hand, citizens could group their voices and start a

European Citizens’ Initiative. If the initiative ful�ls the legal requirements, citi-

zens can directly request the EC to exercise her right of initiative. �is type of

initiative has been taken before in similar ma�ers, e.g. in the process of banning

glyphosate [EC, 2017b]. In such a case, we choose to model the pressure on the

policymaker with a Poisson jump process. A Poisson jump process is a stochastic

process showing jumps at random moments that follow a speci�c intensity. �e

intensity is de�ned as the expected number of jumps per unit of time.

5.2 Policy Implementation Timing and Investment Timing
We now present our base line parameter values which we use to generate nu-

merical results. �is section will then proceed by introducing the resulting pol-

icy implementation time and optimal investment timings for a continuous and a

11
European Commissioner for Environment, Oceans and Fisheries in the von der Leyen Com-

mission.

12
Note that the critique, expressed by Hasse� and Metcalf [1999] on the use of a GBM to

model policy uncertainty does not apply to our model. �e GBM we regard, only in�uences the

policymaker, and does not represent policy uncertainty itself. �erefore, the lack of ‘sharp’ jumps

does not cause any inacuracy.
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discontinuous growing pressure, respectively. Table 1 summarizes the base line

parameter values we use throughout the case study.

Table 1: Base Line Parameter Values

parameter symbol value

net pro�t P 1

net pro�t adjustment δ 0.8

investment steps qB1 and qB2 0.15

regulated fraction qB 0.3

withholding time (years) θ 0.5

investment cost C 30

discount rate r 0.02

�e pro�t, P , is normalized and equal to 1. According to Proposition 2, the

investment would not be pro�table, ceteris paribus, when P ≤ 0.25. A�er in-

vestment in qB , the corresponding pro�t decreases to PδqB . �e parameter δ
internalizes increased production costs and di�erent procurement prices of raw

material. Although prices for recycled PE are lower than the prices for virgin

PE, the labour costs to, e.g. stabilize the quality of each batch of recycled PE, are

higher. Moreover, production processes, e.g. extrusion, take more time with re-

cycled PE, and a higher quality control cost is incurred. If we assume a 10 percent

mark-up on the virgin PE production, and if we assume these extra costs sum up

to 30 percent of the procurement price of recycled PE, pro�ts are 20 percent lower

when using recycled PE. Hence, we set δ equal to 0.8. If δ ≥ 2.7, ceteris paribus,
pro�tability conditions are not ful�lled. �e �rm invests in two equal steps of

15 percentage points to reach qB , set at 0.3, corresponding with the call of FEAD

[2018]. Between the investment steps, a minimal withholding time of 0.5 years

is imposed, allowing learning e�ects to take place. �e learning pace is �rm-

speci�c and determines the solution of case 2 in Proposition 4. �e policymaker,

who prefers case 2b, can in�uence the applicable case by se�ing a di�erent frac-

tion of recycled material to be used, qB . Given the base line parameter values, θ̃
becomes negative when qB ≥ 0.34. As a consequence, case 1 of Proposition 4 is

applicable if the pro�tability conditions are ful�lled. For qB = 0.3, θ̃ = 11.171.

Hence, in our study, case 2a will not be applicable, a learning period of more
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than 11.171 years is not realistic, and θ = 0.5. �e investment cost C is set to

30. WhenC = 30 and the other base line parameter values hold, the pro�tability

conditions are ful�lled as long as qB ≤ 0.66. �is value is found to be a realistic

value for the use of recycled plastics [Sevenster et al., 2007]. Any higher level

will drive �rms out of the market because the pro�tability conditions presented

in Propositions 1 and 2 are not ful�lled. �e discount rate is assumed to be equal

to 2 percent, re�ecting the current low in�ation and interest rates in the EU. Note

that for case 2, presented in Proposition 4, only the withholding time impacts the

optimal strategy directly. All other parameter values presented in Table 1, impact

the strategy in case 2 by providing a bound to θ, that is θ̃.

5.2.1 Continuous Growth of Pressure

We �rst model the continuous pressure on the policymaker, L(t), by a GBM,

represented by the following equation:

dL(t) = αL(t)dt+ σL(t)dz(t) (5)

α is the deterministic dri� rate that represents the growth rate of public pres-

sure. According to the Eurobarometer [EC, 2017a, 2020a], this growth rate is 5

percent. σ is the instantaneous standard deviation, and dz is the increment of

a Wiener process. We assume that the standard deviation is rather high and set

it to 10 percent. Our motivation to consider a high volatility is that some situ-

ations, like the COVID-19 pandemic, can distract the public and shi� a�ention

from environment to other ma�ers. �e current level of the GBM is set equal to

the percentage (68 percent) of citizens that urge the EC to change policies
13

[EC,

2020a]. We assume that the highest level of the GBM, or pressure, reached so far

is 0.7. Once a new maximum is reached, we assume the �rm knows the proba-

bility of a policy change. �at follows from the fact that the normal cumulative

distribution function (cdf), with mean µ and variance ω2
, measuring the occur-

rence probability of a policy change, is known at all times. ω2
is set at 0.01.

We assume a moderately responsive EC so that µ = 0.8. �ese parameters are

summarized in Table 2, and a sensitivity analysis is shown in Table 3.

13
We do not specify which policies. �e survey asked if EU institutions were doing enough to

protect the environment.
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Table 2: Geometric Brownian Motion Parameter Values

dri� rate α 0.05

standard deviation σ 0.1

current level of GBM L 0.68

maximum level of GBM L̂ 0.7

variance of normal cdf ω2
0.01

average of normal cdf µ 0.8

Given that fγ|L∗=a(t) represents the density function of the �rst hi�ing time

of a GBM at the level L∗ = a and fL∗(a) represents the density function of a

normal distribution conditional to the information that L∗ > L̂, then the density

function of γ can be obtained according to the following Equation:

fγ(t) =

∫ +∞

L̂

fγ|L∗=a(t)fL∗(a)da, (6)

=

∫ +∞

L̂

e−
(a−µ)2

2ω2
−

(
−t

(
α−σ

2

2

)
+log(a1 )

)2

2tσ2 log
(
a
1

)
π
√
t3σω

(
1− 2√

π

∫ L̂−µ√
2ω

0 e−t2
) da.

Integrating Equation (6) in t, yields the cdf that is known at all times by the �rm.

Numerical results can be obtained by applying Algorithm 1. We split the re-

sults into: (i) dynamics caused at the policymaking side, and (ii) dynamics caused

at the private investor’s side. We proceed by �rst showing the dynamics found

at the policymaking side. Figure 2 shows the truncated normal pdf of the pol-

icy implementation time, γ, obtained with the base line parameter values that

are shown in Table 2. Our simulation results show that a policy change is most

likely to arrive within the �rst few years. Indeed, when analyzing the base line

parameter values, our results show that the policy implementation is expected

to take place in 3.648 years
14

. We also �nd that the expected timing of the policy

implementation is sensitive to certain parameter values, e.g. the standard de-

viation, σ. Table 3 shows the likelihood of the policy implementation to arrive

before one, two, or three years, with regard to di�erent parameter values. �e

14
Based on the situation in 2019.
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second value of the parameters in Table 3 is equal to the base line value for the

given parameter.

2 4 6 8 10
year

0.05

0.10

0.15

0.20

0.25

Prob

3.648 = expected policy arrival

Figure 2: Probability Density Function of γ for Continuous Pressure
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Table 3: Sensitivity of γ with respect to Continuous Pressure

parameter value P[γ ≤ 1] P[γ ≤ 2] P[γ ≤ 3]

µ 0.60 0.512 0.692 0.787

0.80 0.228 0.411 0.545

1.00 0.018 0.076 0.166

ω 0.05 0.249 0.472 0.616

0.10 0.228 0.411 0.545

0.15 0.190 0.343 0.467

α 0.03 0.192 0.336 0.444

0.05 0.228 0.411 0.545

0.07 0.267 0.490 0.646

σ 0.05 0.113 0.274 0.438

0.10 0.228 0.411 0.545

0.15 0.336 0.511 0.616

L̂ 0.68 0.262 0.438 0.567

0.70 0.228 0.411 0.545

0.80 0.061 0.227 0.382

Table 3 indicates that the responsiveness of the EC, µ, and its associated stan-

dard deviation, ω, have a relatively large impact on the likelihood of the policy

implementation time, γ, to arrive before a certain time, e.g. one year. Take for

example ∆P[γ ≤ 1] = 21 percent when µ shi�s from 0.8 to 1. We conclude

that the expected policy implementation time, γ, is quite sensitive to the policy-

maker’s responsiveness, µ, and the associated standard deviation, ω. Obviously,

the expected policy implementation time is delayed when the policymaker is

less responsive or when the standard deviation increases. �e dri� rate, α, and

standard deviation, σ, of the GBM have a similar but toned down impact, e.g.

∆P [γ ≤ 1] = 11 percent when σ shi�s from 0.05 to 0.10. �is means that a

fast growing and uncertain public pressure leads to an advanced expected policy

implementation time, γ. �e larger the di�erence between the maximum and

current state of the GBM or public pressure, respectively L̂ and L(t), the lower

the risk for a policy implementation in the near future. �is result follows our

intuition since the policymaker is assumed to be consistent.

We continue by introducing the dynamics found at the private investor’s side.

21



�ese dynamics, based upon the solution found in Proposition 4, are presented

in Table 4. Given the base line parameter values, case 2b is always applicable.

�at is because the inequality presented in Proposition 4 leads us to case 2, since

θ = 0.5 and θ̃ = 11.171, we always end up in case 2b. As a consequence, case 2a

will never be applicable for these base line parameter values, a learning period

of more than 11.171 years is not realistic. However, by changing the minimal

withholding time, θ, we are able to �nd examples that result in case 2a. Note that

case 1 would be applicable if ceteris paribus qB > 0.33, which is the case when

EC imposes a more far-reaching policy. Results for case 1 can be obtained by

changing the base line parameter values, so that the inequality that is presented

in Proposition 4 has a di�erent outcome. To investigate, we consistently change

one investment parameter at a time. According to Proposition 4, the inequality’s

outcome changes, when ceteris paribus P ≤ 0.95, or δ ≥ 0.82, or C ≥ 31, or

r ≥ 0.03. �at is, pro�ts are lower, or pro�ts decrease less a�er investing, or the

investment cost is higher, or the discount rate is higher. �ese changes have in

common that they reduce the investment’s net present value, thus making the

investment less a�ractive. Note that for case 1, it is always optimal to make the

�rst investment late, i.e. at the policy implementation time, τ ∗1 = γ. �e last

column represents the expected discounted value of the �rm at the beginning of

the planning period. �is value is sensitive to changing investment parameter

values because they impact Equation (4). For case 2, this value changes similarly.

Table 4: Sensitivity Investment Characteristics in a Continuous Pressure se�ing

(Base line parameter values: P = 1, δ = 0.8, C = 30, r = 0.02)

case Prop 4 parameter value θ θ̃ E(τ ∗1 ) V (l, L̂)

1

base line and P=0.7 0.5 N.D. 3.648 18.107

base line and δ=0.95 0.5 N.D. 3.648 27.650

base line and C=50 0.5 N.D. 3.648 23.712

base line and r=0.03 0.5 N.D. 3.648 17.344

2a base line 20 11.171 3.382 26.314

2b base line 0.5 11.171 3.183 29.653

Proposition 4 states that for case 2, the optimal investment time of the �rst

investment step does not provide concrete information on when the �rm should

invest. �erefore, we provide probabilistic information on the distribution of τ ∗1

22



in Table 5.

Table 5: Distribution τ ∗1 in a Continuous Pressure se�ing (Base line parameter

values: P = 1, δ = 0.8, C = 30, r = 0.02)

Case

Prop 4

E(τ ∗1 ) V ar(τ ∗1 ) ζ0.25 ζ0.50 ζ0.75 P (γ ≤ θ)

2a 3.382 5.757 1.093 2.582 5.370 0.981

2b 3.183 5.036 0.607 2.130 5.059 0.116

Table 5 provides probabilistic information on the timing of the �rst invest-

ment step, τ ∗1 , for case 2a (θ = 20) and 2b (θ = 0.5) of Proposition 4. Namely, the

expected value, the variance, quantiles, and probability of the policy implemen-

tation being sooner than the expiration of the minimal withholding. �is table

corresponds to the last two rows of Table 4. We �nd that, for case 2a (θ = 20),

there exists a 50 percent probability that the policy implementation time lies in

the interval, γ ∈ [1.093, 5.370]. Given that the withholding time is 20 years,

θ = 20, it is li�le surprising that the probability of the policy implementation

time, γ, being sooner than the expiring of the withholding time, θ, is very high

(98 percent). As a consequence, �rms will most likely decide to invest when the

policy arrives. For case 2b (θ = 0.5), there exists a 50 percent probability that

the policy implementation time lies in the interval, γ ∈ [0.607, 5.059]. Given

that the withholding time is 1/2 year, θ = 0.5, there only exists an 11.6 per-

cent probability that the policy is implemented before the withholding time, θ,

has expired. As a consequence, �rms will most likely aim to start investing at

E(γ − θ), so that the second investment step can take place at, or not too far

from the expected policy implementation time.

5.2.2 Discontinuous Growth of Pressure

In this subsection, we generate results for the hypothesis in which public pres-

sure follows a discontinuous process. Note that comparing results between the

two hypotheses (continuous - discontinuous) is not straightforward because that

implies that two di�erent contexts are compared.

�e discontinuous pressure on the policymaker, L(t), is assumed to follow a

Poisson process with intensity λ1. We choose to set this parameter to 1/15, which
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means we expect a jump or a successful Citizen’s Initiative every 15 years. L∗,
that is the level at which the policymaker implements a new policy, follows a zero

truncated Poisson distribution with intensity λ2. We set this parameter equal to

1
15

, as we expect that only one successful Citizen’s Initiative
16

is needed to trigger

a policy change. �erefore, the actual level of the distribution does not ma�er.

Since the Poisson process is increasing, the initial condition veri�es, l = L∗. We,

therefore, set the initial level equal to zero.

Given the properties of the Poisson process and the analysis above, we have

that γ|L∗ = n is Gamma distributed with parameters n and λ1. If fγ|L∗=n(t)
represents the density function of the Gamma distribution and fL∗(n) represents

the density function of the zero truncated Poisson random variable. Conditional

on L∗ > L̂, the density function of γ equals:

fγ(t) =
+∞∑
n=1

fγ|L∗=n(t)fL∗(n), (7)

=
e−λ1tt−1

eλ2 − 1

+∞∑
n=1

(tλ1λ2)
n

n!(n− 1)!

Integrating Equation (7) in t, yields the cdf that is known at all times by the �rm.

Similar to the numerical results presented in Section 5.2.1, we split the results

into: (i) dynamics caused at the policymaking side, and (ii) dynamics caused

at the private investor’s side. We proceed by presenting the dynamics at the

policymaking side. Figure 3 shows the pdf of the policy implementation time, γ,

for the base line parameter values, i.e. λ1 = 1/15 and λ2 = 1. We �nd that a

policy change is most likely not to arrive soon. For the base line parameter values,

we get that the policy implementation is expected in 23.768 years
17

. �is result

re�ects our observations of the European Citizens’ Initiatives. Several initiatives

have been undertaken since the framework’s inception by the Lisbon Treaty of

2007, few have been successful. Table 6 shows the sensitivity of the likelihood

of the policy implementation, γ, arriving before one, two, or three years, with

regard to the intensities.

15
�e expected value of a zero truncated Poisson process is

λ
1−e−λ . �erefore, we choose

values for λ2 that yield an expected values close to 1.

16
We de�ne ‘successful’ as an Initiative that changes policies. Note the di�erence to what

successful would mean with regard to legal requirements.

17
Based on the situation in 2019.
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Figure 3: Probability Density Function of γ for Discontinuous Pressure

Table 6: Sensitivity of γ with respect to Discontinuous Pressure

parameter value P[γ ≤ 1] P[γ ≤ 2] P[γ ≤ 3]

λ1 1/10 0.057 0.111 0.162

1/15 0.038 0.075 0.111

1/20 0.029 0.057 0.084

λ2 0.8 0.043 0.084 0.123

1 0.038 0.075 0.111

1.2 0.034 0.067 0.099

Table 6 shows that the likelihood of the policy implementation, γ, arriving

before a certain point in time, is closely linked to λ1. When λ1 doubles, e.g. from

1/20 to 1/10, the respective probabilities that the policy is implemented before a

certain time, also almost double. As we expect that one jump is enough to trigger

a policy implementation, we choose values for λ2 so that the expected value of

the zero truncated Poisson process is close to 1.

In Table 7, we present results related to the dynamics found at the private

investor’s side. Note that the setup of this table is similar to the one of Table 4,
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and that dynamics follow the results of Proposition 4. Since Proposition 4 is not

in�uenced by the process that models the public pressure, previously presented

interpretations and bounds linked to Table 4 remain the same for Table 7. �e

main di�erence between the two tables is that in Table 7 the policy implementa-

tion is expected to take place at a later point in time, which increases the project

value.

Table 7: Sensitivity Investment Characteristics in a Discontinuous Pressure set-

ting (Base line parameter values: P = 1, δ = 0.8, C = 30, r = 0.02)

case Prop 4 parameter value θ θ̃ E(τ ∗1 ) V (l, L̂)

1

base line and P=0.7 0.5 N.D. 23.768 22.734

base line and δ=0.95 0.5 N.D. 23.768 33.765

base line and C=50 0.5 N.D. 23.768 30.925

base line and r=0.03 0.5 N.D. 23.768 23.001

2a base line 20 11.171 14.368 31.697

2b base line 0.5 11.171 23.268 35.274

Just like Table 5, Table 8 provides probabilistic information on the timing of

the �rst investment step, τ ∗1 , when parameter values are chosen so that case 2

applies. We �nd, for case 2a (θ = 20), that there exists a 50 percent probabil-

ity that the policy implementation time lies in the interval, γ ∈ [6.778, 32.803].
Given that the withholding time is 20 years, θ = 20, there exists a 44.4 percent

probability that it has expired before the policy is implemented. As a conse-

quence, �rms are moderatly incentivized to invest for the �rst time at the ex-

pected policy implementation time. For case 2b (θ = 0.5), we �nd there exists

a 50 percent probability that the policy implementation time lies in the inter-

val, γ ∈ [4.720, 17.733]. Given that the withholding time is 1/2 year, θ = 0.5,

there exists a 98.1 percent probability that it has expired before the policy is im-

plemented. As a consequence, �rms will be most likely invest at E(γ − θ), so

that the second investment step can take place at, or not too much later than the

expected policy implementation time.
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Table 8: Distribution τ ∗1 in a Discontinuous Pressure se�ing

Case

Prop 4

E(τ ∗1 ) V ar(τ ∗1 ) ζ0.25 ζ0.50 ζ0.75 P (γ ≤ θ)

2a 23.268 18.211 6.778 16.654 32.803 0.556

2b 14.368 24.566 4.720 10.429 17.733 0.019

6 Investment Capacities as Decision Variables
�roughout this paper, we have assumed an investment in two steps with equal

capacity, that is qB,1 = qB,2. However, the distribution among qB,1 and qB,2
in�uences the expected value of the �rm at the beginning of the planning period

through Equation (4). Note that Equation (4) is calculated regardless of which

stochastic process applies. �erefore, in this section, we build upon the results

found in Section 5, and de�ne the following optimization problem:

( ˜qB,1, ˜qB,2) = arg maxqB,1,qB,2 V
(
l, L̂; qB,1, qB,2

)
qB,1 + qB,2 = qB

qB,1 ≥ 0, qB,2 ≥ 0

Recall that for our case study, qB = 0.3. �e analysis of this optimization prob-

lem is done in a numerical way since the function V
(
l, L̂; qB,1, qB,2

)
is highly

nonlinear. �e nonlinearity is driven by the di�erent strategies that can be fol-

lowed. Figure 4 shows the sensitivity of V
(
l, L̂; qB,1, qB,2

)
with respect to qB,1

for P = 0.618
. We �nd that V

(
l, L̂; qB,1, qB,2

)
is non-monotonic with respect

to qB,1. It follows from this non-monotonic behavior that there exists an optimal

distribution among qB,1 and qB,2 that maximizes the value of the investment.

18P = 0.6, it follows case 2 of Proposition 4 applies.
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Figure 4: Sensitivity of V
(
l, L̂; qB,1, qB,2

)
with regard to qB,1

Table 9 shows this optimal distribution by de�ning ˜qB,1 for di�erent values

of the investment characteristics. We �nd that ˜qB,1 is decreasing in P , but in-

creasing in δ, C , and r. We conclude that the �rm, when regarding the base

line parameter values, will invest in the following optimal capacities for the two

investment steps: ˜qB,1 = 0.138 and ˜qB,2 = 0.162. Note that, contrary to the

optimal investment timings, the optimal capacities, ˜qB,1 and ˜qB,2, are directly

in�uenced by the investment characteristics.
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Table 9: Value maximizing ˜qB,1

P 0.8 1 1.2 1.4

˜qB,1 0.150 0.138 0.137 0.136

δ 0.6 0.7 0.8 0.9

˜qB,1 0.140 0.139 0.138 0.150

C 15 22.5 30 45

˜qB,1 0.133 0.137 0.138 0.150

r 0.01 0.015 0.02 0.03

˜qB,1 0.142 0.139 0.138 0.150

�ese results are driven by the expected policy implementation time, γ, which

determines the pro�t function in Equation (1). In the previous parts of this pa-

per, we discussed how the optimal investment times, τ ∗1 and τ ∗2 , are determined.

In this Section, we �nd that not only the investment times, but also the optimal

distribution of the capacity among the investment steps is in�uenced by policy

uncertainty. We obtain that �rms choose a small capacity for qB,1, which reduces

pro�ts through δ, and a larger capacity for qB,2 which increases the investment

cost for that step. �at is because a lower capacity of qB,1 reduces the pro�t re-

duction before the policy is implemented, but the result is a higher capacity of

qB,2 making the corresponding investment costs considerably higher due to the

exponential increase of costs in investment quantity. For case 1 of Proposition

4, we seemingly �nd an equal capacity distribution between the two investment

steps ( ˜qB,1 = 0.150). However, there is a di�erence, too small to be noticed for

our case study. �at is because the di�erences of the capacity distribution for

case 1 are driven by the discounted investment costs. Note that the investment

steps are only 0.5 years separated from each other, and that the discount rate is

2 percent.
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7 Conclusion
�is study develops a real option model that calculates the optimal investment

strategy for a stepwise investment in circular plastics. With this research, we

extend the existing literature on policy uncertainty within the �eld of real option.

We develop a model that allows the �rm to observe the public pressure on the

policymaker to regulate. Based on these observations, the �rm makes projections

on when the policy will be implemented. �e optimal investment strategy can be

derived from these projections. �e model thus o�ers a tool to: (i) �rms to plan

their investment steps, (ii) policymakers to assess the impact of their behavior

and policies, e.g. assessing if policies destroy the market.

We solve the model for a two-step investment in the use of recycled PE. Con-

ditional on the investments to be pro�table, we �nd that the �rst investment step

occurs before or right at the moment of the policy implementation. �e timing

of the second investment step depends upon the timing of the �rst investment

step. If the minimal withholding time, representing the time the �rm needs to

learn, has expired when the policy is implemented, the second investment will

be made at the policy implementation time. Otherwise, the second investment

step will be made as soon as the minimal withholding time has expired.

Our results indicate that expected investment timings are not very sensitive

to the investment characteristics. �erefore, we conclude that incentive-based

policies accompanying a regulatory policy would only impact investment tim-

ings if they would be su�ciently strong. If the policymaker wants the market to

convert more quickly, the regulatory policy can simply be implemented earlier.

If the market receives clear signals about advancing the policy implementation

in time, uncertainty on the market is reduced, minimizing market distortions.

�e expected value of the �rm at the beginning of the planning period is

found to be sensitive for investment characteristics. We are able to determine

the optimal distribution of the capacity sizes of the two investment steps that

maximize the �rm’s expected value. For our case study, we �nd that the optimal

capacity of the �rst investment is smaller than the optimal capacity of the second

investment.

Future research could, instead of investigating a GBM and a Poisson process

separately, look into a combined GBM Poisson process. �is would allow to com-
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pare both processes more easily. Also, the optimal time for the policymaker to

implement a regulation has not yet been studied.

A Proofs

A.1 Proof of Proposition 3
�e investment occurs in two steps, the second investment step does not occur

before γ. If γ ≤ τ ∗1 + θ, then the result is trivial. Let us assume that γ > τ ∗1 + θ.

�en∫ γ

τ∗1+θ

(P − PδqB,1)e−rtdt−(∫ τ∗2

τ∗1+θ

(P − PδqB,1)e−rtdt− I(qB,2)e
−rτ2 +

∫ γ

τ∗2

(P − Pδ(qB,1 + qB, 2))e−rtdt

)

=

∫ γ

τ∗2

(P − PδqB,1)e−rtdt+ I(qB,2)e
−rτ∗2 −

∫ γ

τ∗2

(P − Pδ(qB,1 + qB,2))e
−rtdt

=

∫ γ

τ∗2

(P − PδqB,1)e−rtdt+ I(qB,2)e
−rτ∗2 −

∫ γ

τ∗2

(P − Pδ(qB,1 + qB,2))e
−rtdt

=

∫ γ

τ∗2

(PδqB,2)dt+ I(qB,2)e
−rτ∗2 ≥ 0.

If the second investment step if pro�table then τ ∗2 = max(γ, τ ∗1 + θ).∫ τ∗2

max(γ,τ∗1+θ)

(
qB,1
qB

(P − PδqB,1)
)
e−rtdt+

∫ +∞

τ∗2

(
qB,1 + qB,2

qB
(P − PδqB)

)
e−rtdt

− I(qB,2)e
−rτ∗2 −

∫ +∞

max(γ,τ∗1+θ)

(
qB,1 + qB,2

qB
(P − PδqB)

)
e−rtdt− I(qB,2)e

−rmax(γ,τ∗1+θ)

=

∫ τ∗2

max(γ,τ∗1+θ)

(
qB,1
qB

(P − PδqB,1)−
qB,1 + qB,2

qB
(P − PδqB)

)
e−rtdt

+ I(qB,2)

>0 whenτ∗2>max(γ,τ
∗
1+θ)︷ ︸︸ ︷(

e−rmax(γ,τ
∗
1+θ) − e−rτ∗2

)
=

(
I(qB,2)−

qB,2
qB

(P − PδqB − PδqB,1)
r

) >0 when τ∗2>max(γ,τ
∗
1+θ)︷ ︸︸ ︷(

e−rmax(γ,τ
∗
1+θ) − e−rτ∗2

)
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�en it holds that the second investment step is pro�table when:

I(qB,2) <
qB,2
qB

P − PδqB − PδqB,1
r

and the optimal time is τ ∗2 = max(γ, τ ∗1 + θ).

A.2 Proof of Proposition 4
�e �rst investment step does not occur a�er γ; Assume τ ∗1 > γ.∫ γ

0

Pe−rtdt+

∫ τ∗1

γ

0e−rtdt+

∫ τ∗1+θ

τ∗1

(P − PδqB,1)e−rtdt

− I(qB,1)e
−rτ∗1 − I(qB,2)e

−r(τ∗1+θ) +

∫ +∞

τ∗1+θ

qB,1 + qB,2
qB

(P − PδqB) e−rtdt

−
(∫ γ

0

Pe−rtdt+

∫ γ+θ

γ

qB,1
qB

(P − PδqB,1)e−rtdt− I(qB,1)e
−rγ − I(qB,2)e

−r(γ+θ)

+

∫ +∞

γ+θ

qB,1 + qB,2
qB

(P − PδqB) e−rtdt

)

=

(
qB,1
qB

P − PδqB,1
r

− I(qB,1)

) <0 because τ∗1>γ︷ ︸︸ ︷(
e−rτ1 − e−rγ

)
+

(
qB,2
qB

P − PδqB
r

− I(qB,2)

) <0 because τ∗1+θ>γ+θ︷ ︸︸ ︷(
e−r(τ

∗
1+θ) − e−r(γ+θ)

)
�erefore, if I(qB,1) <

qB,1
qB

P−PδqB,1
r

, we know that τ ∗1 ≤ γ. Assume now that

τ ∗1 < γ and θ = 0, which implies that max(τ ∗1 + θ, γ) = γ; then,

∫ τ∗1

0

Pe−rtdt+

∫ γ

τ∗1

(P − PδqB,1)e−rtdt− I(qB,1)e
−rτ∗1

+

∫ +∞

γ

qB,1 + qB,2
qB

(P − PδqBe−rtdt− I(qB,2)e
−rγ −

∫ γ

0

Pe−rtdt− I(qB,1)e
−rγ

−
∫ +∞

γ

qB,1 + qB,2
qB

(P − PδqBe−rtdt+ I(qB,2)e
−rγ =

<0 because γ>τ∗1︷ ︸︸ ︷
(PδqB,1 + I(qB,1)

(
e−rγ − e−rτ∗1

)︸ ︷︷ ︸
>0
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Combining this outcome with the previous outcome, it yields τ ∗1 = γ.

Assume that θ > 0, then it is a ma�er of calculations to verify that∫ τ∗1

0

Pe−rtdt+

∫ γ

τ∗1

(P − PδqB,1)e−rtdt− I(qB,1)e
−rτ∗1

+

∫ max(τ∗1+θ,γ)

γ

qB,1
qB

(P − PδqB,1)e−rtdt− I(qB,2)e
−r max(τ∗1+θ,γ)

+

∫ +∞

max(τ∗1+θ,γ)

qB,1 + qB,2
qB

(P − PδqB)e−rtdt−
∫ γ

0

Pe−rtdt+ I(qB,1)e
−rγ

−
∫ γ+θ

γ

qB,1
qB

(P − PδqB,1)e−rtdt+ I(qB,2)e
−r(γ+θ) −

∫ +∞

γ+θ

qB,1 + qB,2
qB

(P − PδqB)e−rtdt

=−
∫ γ

τ∗1

PδqB,1e
−rtdt− I(qB,1)(e

−rτ∗1 − e−rγ)−
∫ γ+θ

max(τ∗1+θ,γ)

qB,1
qB

(P − PδqB,1)e−rtdt

+

∫ γ+θ

max(τ∗1+θ,γ)

qB,1 + qB,2
qB

(P − PδqB)e−rtdt+ I(qB,2)
(
e−r(γ+θ) − e−r max(τ∗1+θ,γ)

)
=−

(
PδqB,1
r

+ I(qB,1)

)(
e−rτ

∗
1 − e−rγ

)
+

(
qB,2
qB

P − PδqB − PδqB,2
r

− I(qB,2)

)(
e−r max(τ

∗
1+θ,γ) − e−r(γ+θ)

)
�erefore, if

PδqB,1
r

+ I(qB,1) <
qB,2
qB

P−PδqB−PδqB,1
r

− I(qB,2), then τ ∗1 = γ. If the
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inequality does not hold, we �nd:∫ τ∗1

0

Pe−rtdt+

∫ γ

τ∗1

(P − PδqB,1)e−rtdt− I(qB,1)e
−rτ∗1

+

∫ max(τ∗1+θ,γ)

γ

qB,1
qB

(P − PδqB,1)e−rtdt− I(qB,2)e
−r max(τ∗1+θ,γ)

+

∫ +∞

max(τ∗1+θ,γ)

qB,1 + qB,2
qB

(P − PδqB)e−rtdt

=

∫ γ

0

Pe−rtdt−
∫ γ

τ∗1

PδqB,1e
−rtdt− I(qB,1)e

−rτ∗1 +

∫ +∞

γ

qB,1
qB

(P − PδqB,1)e−rtdt

+

∫ +∞

max(τ∗1+θ,γ)

qB,2
qB

(P − PδqB − PδqB,1)e−rtdt− I(qB,2)e
−r max(τ∗1+θ,γ)

=
P

r
(1− e−rγ)− PδqB,1

r
(e−rτ

∗
1 − e−rγ)− I(qB,1)e

−rτ∗1 +
qB,1
qB

P − PδqB,1
r

e−rγ

−
(
−qB,2
qB

P − PδqB − PδqB,1
r

+ I(qB,2)

)
e−r max(τ

∗
1+θ,γ)

=
P

r
+
qB,1
qB

P − PδqB,1
r

e−rγ − P

r
e−rγ +

PδqB,1
r

e−rγ − PδqB,1
r

e−rτ
∗
1

− I(qB,1)e
−rτ∗1 +

(
qB,2
qB

P − PδqB − PδqB,1
r

− I(qB,2

)
e−r max(τ

∗
1+θ,γ)

=
P

r
−
(
P

r
− qB,1

qB

P − PδqB,1
r

− PδqB,1
r

)
e−rγ −

(
PδqB,1
r

+ I(qB,1)

)
e−rτ

∗
1

+

(
qB,2
qB

P − PδqB − PδqB,1
r

− I(qB,2)

)
e−r max(τ

∗
1+θ,γ)

=
P

r
−
(
P

r
− qB,1

qB

P

r

)
e−rγ

−


>0︷ ︸︸ ︷

PδqB,1
r

 e−rτ
∗
1 +


>0︷ ︸︸ ︷

qB,2
qB

P − PδqB − PδqB,1
r

− I(qB,2

 e−r max(τ
∗
1+θ,γ)

︸ ︷︷ ︸
z(τ∗1 )
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�e situation we want to analyze is:

qB,2
qB

P − PδqB − PδqB,1
r

− I(qB,2) >
PδqB,1
r

+ I(qB,1)

Assume thatmax(θ, γ) = γ, then the function z(τ ∗1 ) is increasing when τ ∗1 < γ−
θ. �erefore, the optimal investment time would be τ ∗1 = γ−θ. Ifmax(θ, γ) = θ,

then z(τ ∗1 ) veri�es the following:

z(τ ∗1 ) =
P

r
−
(
P

r
− qB,1

qB

P

r

)
e−rγ −

(
PδqB,1
r

+ I(qB,1)

)
e−rτ

∗
1

+

(
qB,2
qB

P − PδqB − PδqB,1
r

− I(qB,2)

)
e−r max(τ

∗
1+θ,γ)

=
P

r
−
(
P

r
− qB,1

qB

P

r

)
e−rγ −

(
PδqB,1
r

+ I(qB,1)

)
e−rτ

∗
1

−
(
qB,2
qB

P − PδqB − PδqB,1
r

− I(qB,2)

)
e−rθ

Two situations may occur:

1)
PδqB,1
r

+ I(qB,1) <

(
qB,2
qB

P − PδqB − PδqB,1
r

− I(qB,2)

)
e−rθ

�en τ ∗1 = 0

2)
PδqB,1
r

+ I(qB,1) >

(
qB,2
qB

P − PδqB − PδqB,1
r

− I(qB,2)

)
e−rθ

�en the function z(τ ∗1 ) is increasing, we know that τ ∗1 ≤ γ therefore, τ ∗1 = γ.

A.3 Proof op Proposition 1
�e proof of Proposition 1 follows from the computations in the proof of Propo-

sitions 3 and 4
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A.4 Proof of Proposition 5

We substitute
1
r

ln

( qB,2
qB

P−PδqB−PδqB,1
r

−I(qB,2)
PδqB,1/r+I(qB,1)

)
for θ̃. Assume that θ ≥ θ̃, then

Fτ∗1 (t) = P (τ ∗1 ≤ t) = P (γ − θ ≤ t, γ ≥ θ) + P (γ ≤ t, γ < θ)

=


0, t < 0

Fγ(t+ θ)− Fγ(θ) + Fγ(t), 0 ≤ t < θ

Fγ(t+ θ), t ≥ θ

�e, pdf can be obtained by di�erentiating the cdf. To compute the expected

value and the variance of τ ∗1 , one may verify that

E(τ ∗1 ) = E(γ − θ)P (γ > θ) + E(γ)P (γ ≤ θ).

E((τ ∗1 )2) = E((γ − θ)2)P (γ > θ) + E(γ2)P (γ ≤ θ).

= E(γ2) + (θ2 − 2θE(γ))P (γ > θ).

Assume that θ < θ̃, then

Fτ∗1 (t) = P (τ ∗1 ≤ t) = P (γ − θ ≤ t, γ ≥ θ) + P (γ < θ)

=

{
0, t < 0

Fγ(t+ θ), t ≥ 0
,

which allows us to get the pdf of τ1 as in the proposition. �e expected value

and variance are trivial in light of the de�nition of τ ∗1 .

A.5 Proof of Proposition 2
Information to the policymaker: the economic maximum of qB with qB,1 and qB,2
�xed:

I(qB) = C(eqB − 1)

C(eqB,1 − 1) <
qB,1
qB

P − PδqB,1
r

C(eqB,2 − 1) <
qB,1
qB

P − PδqB − PδqB,1
r
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�erefore, it holds that:

I(qB,1) + I(qB,2) <
qB,1
qB

P − PδqB,1
r

+
qB,1
qB

P − PδqB − PδqB,1
r

⇐⇒ I(qB,1) + I(qB,2) <
1

qB

(
PqB,1 − Pδq2B,1 + PqB,2 − PδqBqB,2 − PδqB,1qB,2

r

)

=
1

qB

qB − PδqB,1
(
qB,1 + qB

qB,2
qB,1

+ qB,2

)
r


=

1

qB

qB − PδqB,1
(
qB + qB

qB,2
qB,1

)
r


=P

1− δqB,1
(

1 +
qB,2
qB,1

)
r

=P
1− δqB

r

⇐⇒ I(qB,1) + I(qB,2) <
P

r
− Pδ

r
qB

⇐⇒ qB <
r

Pδ

(
P

r
− I(qB,1)− I(qB,2)

)

37



We now maximize qB by choosing levels for qB,1 and qB,2.

Max
r

Pδ

(
P

r
− I(qB,1)− I(qB,2)

)
s.t. qB,1 + qB,2 = qB

MaxqB,1≥0
r

Pδ

(
P

r
− C (eqB,1 − 1)− C (eqqB−qB,1 − 1)

)
︸ ︷︷ ︸

f(qB,1)

∂f (qB,1)

∂qB,1
=

r

Pδ
C
(
−eqB,1 + eqB−qB,1

)
∂f (qB,1)

∂qB,1
= 0

⇐⇒ eqB−qB,1 = eqB,1

⇐⇒ qB,1 =
qB
2

∂2f (qB,1)

∂2qB,1
=

r

Pδ

(
−eqB,1 − eqB−qB,1

)
< 0

⇒ qB,1 =
qB
2

Investing in n equal steps maximizes the economic threshold value of qB .
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