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1 Introduction

The compound binomial model for the risk process was introduced by Ger-
ber (1988) and is sometimes considered as a discrete time approximation to
the classical compound Poisson model in continuous time; Dickson (1994)
discusses this issue.
After having introduced some notation in Section 2, we describe the model

and set up some recursions for the in�nite time ruin probability in Section 3.
The core of the paper is Section 4. Here we present the Lundberg in-

equality and the Cramér-Lundberg approximation for the in�nite time ruin
probability in the compound binomial model and characterise the class of
severity distributions for which the asymptotic expression is exact.
Finally, in Section 5, we compare this characterisation with the analogous

characterisation in the continuous time Poisson model. Although it is well-
known in the latter model, we give a deduction comparable with the one in
Section 4.

�Support from Fundação para Ciência e Tecnologia - FCT/POCTI is gratefully ac-
knowledged.

yA part of the present research was carried out while the �rst author stayed at
CEMAPRE/ISEG in Lisbon October 2004.
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2 Notation

We denote a cumulative distribution function (brie�y referred to as distrib-
ution) by a capital letter, its tail by that letter with superscript c, and its
mean, moment generating function, and probability generating function by
that letter as subscript to �, ', and � . Its probability function or density is
denoted by the corresponding lower case letter. Thus, f would be the prob-
ability function or density of a distribution F , and this distribution has tail
F c, mean �F , moment generating function 'F , and probability generating
function �F , to the extent that these quantities exist.
By the notation

a (x) � b (x) , (x " 1)
we shall mean that limx"1 a (x) =b (x) = 1.

3 The model

3A. We consider an insurance portfolio over time. The units of time and
money are chosen such that the premium for each time unit is equal to one.
LetXi denote the aggregate claims of time unit i. We assume that theXis are
non-negative, integer-valued, independent, and identically distributed with
distribution G with

�G < 1, (1)

that is, the premium has a positive risk loading.
For n = 0; 1; 2; : : : , we let Sn =

Pn
i=1Xi be the aggregate claims up to

time n and Un the reserve at time n. Denoting the initial reserve at time
zero by u, we have Un = u+ n� Sn, that is,

U0 = u

Un = Un�1 + 1�Xn. (n = 1; 2; 3; : : : )

We de�ne the in�nite time probability of ruin  (u) as the probability that
the reserve becomes strictly negative at some time, that is,

 (u) = Pr ([1n=1 (Un < 0)) . (u = 0; 1; 2; : : : )

By conditioning on the aggregate claim amount of the �rst time unit, we
immediately obtain

 (u) = Gc (u+ 1) +

u+1X
x=0

g (x) (u+ 1� x) , (u = 0; 1; 2; : : : ) (2)

2



which solved with respect to  (u+ 1) can be used for recursive evaluation
of  .

3B. The following parameterisation of this model is often used in the
literature: Let

q = Pr (Xi = 0) ; p = Pr (Xi > 0) = 1� q

F (x) = Pr (X � x jX > 0) =
G (x)�G (0)

p
(x = 1; 2; 3; : : : )

f (x) = Pr (X = x jX > 0) =
g (x)

p
. (x = 1; 2; 3; : : : )

In the present parameterisation, we can rewrite (2) as

 (u) = q (u+ 1) + p

 
F c (u+ 1) +

u+1X
x=1

f (x) (u+ 1� x)

!
. (3)

(u = 0; 1; 2; : : : )

When the present parameterisation is used, one would normally let the
time unit be so short that it could be assumed that at most one claim can
occur per time unit. Then p becomes the probability that a claim occurs,
and F the distribution of the severity of that claim.

4 Cramér-Lundberg results

4A. We assume that there exists an R > 0 such that

E eR(Xi�1) = 1. (4)

Then it follows from e.g. Lemma 10.1 in Sundt (1999) that  (u) � e�Ru for
u = 0; 1; 2; : : : . This is the Lundberg inequality.
We see that (4) can be written as 'G (R) = eR. However, as we now work

in a discrete framework, it will be more convenient to work with probability
generating functions than with moment generating functions, so we assume
that there exists a w > 1 such that

�G (w) = w. (5)

Then the Lundberg inequality can be written as

 (u) � w�u. (u = 0; 1; 2; : : : ) (6)
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In terms of the other parameterisation, we can write the Lundberg con-
dition (5) as

q + p�F (w) = w. (7)

Shiu (1989) shows that

 (0) =
p

q
(�F � 1) . (8)

Liu et al. (2005) present a generalisation of the compound binomial
model, and within their model, they deduce an asymptotic result for  (u).
As a special case, this result gives that if (7) is satis�ed in our model, then

 (u) � 1� p�F
p� 0F (w)� 1

w�(u+1) =
1� �G

� 0G (w)� 1
w�(u+1); (u " 1) (9)

see also Cosette et al. (2004). This is a Cramér-Lundberg approximation for
the ruin probability.

4B. Let us now assume that the Cramér-Lundberg approximation (9)
holds exact, that is, that there exists a k such that

 (u) = kw�u. (u = 0; 1; 2; : : : ) (10)

We want to characterise the class of severity distributions F for which this
result holds.
As  (0) = k, we must have k � 1. Furthermore, if k = 1, then (3) gives

that  (u) = 1 for all positive integers u. This contradicts the assumption
that w > 1, so we must have k < 1.

Theorem 1. If (10) should hold, then

f (x) =

�
� (x = 1)
(1� �) (1� �)�x�2 (x = 2; 3; 4; : : : )

(11)

with

� =
pw � k (w � q)

pw (1� k)
; � =

1� kw

w (1� k)
. (12)

Proof. By replacing u with u�1 in (3), we obtain that for u = 1; 2; 3; : : :

 (u� 1) = q (u) + p

 
F c (u) +

uX
x=1

f (x) (u� x)

!
.
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Insertion of (10) and multiplication by wu gives

kw = kq + p

 
F c (u)wu + k

uX
x=1

f (x)wx

!
. (13)

In particular, for u = 1, we obtain

kw = kq + p ((1� f (1))w + kf (1)w) ,

which gives

f (1) =
pw � k (w � q)

pw (1� k)
= �. (14)

By replacing u with u� 1 in (13), we obtain

kw = kq + p

 
F c (u� 1)wu�1 + k

u�1X
x=1

f (x)wx

!
, (u = 2; 3; 4; : : : )

and subtraction of this from (13) and division by pwu�1 gives

F c (u)w � F c (u� 1) + kf (u)w = 0. (u = 2; 3; 4; : : : ) (15)

By replacing u with u� 1, we obtain

F c (u� 1)w � F c (u� 2) + kf (u� 1)w = 0. (u = 3; 4; 5; : : : )

and subtraction of (15) gives

wf (u)� f (u� 1) + kw (f (u� 1)� f (u)) = 0, (u = 3; 4; 5; : : : )

from which we obtain

f (u) =
1� kw

w (1� k)
f (u� 1) = �f (u� 1) , (u = 3; 4; 5; : : : )

so that
f (u) = f (2)�u�2. (u = 2; 3; 4; : : : ) (16)

We have
w (1� k)� (1� kw) = w � 1 > 0

so that

� =
1� kw

w (1� k)
< 1.
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As F is a distribution, application of (14) and (16) gives

1 =
1X
x=1

f (x) = �+ f (2)
1X
x=2

�u�2 = �+
f (2)

1� �
,

so that f (2) = (1� �) (1� �), which together with (14) and (16) proves
Theorem 1. Q.E.D.

The following corollary follows easily from Theorem 1 by solving (12) for
k and w and insertion in (10).

Corollary 1. If f satis�es (11), then

 (u) =
p (1� �)

q (1� �)

�
p

q
(1� �) + �

�u
. (u = 0; 1; 2; : : : ) (17)

We easily obtain that in the present case we have

�F = �+ (1� �)
2� �

1� �
= 1 +

1� �

1� �
. (18)

Insertion in (17) gives

 (u) =
p

q
(�F � 1)

�
p

q
(1� �) + �

�u
, (u = 0; 1; 2; : : : )

which is consistent with (8).
Let us look at the condition (1). From (18), we obtain that in the present

case we have

�G = p

�
1 +

1� �

1� �

�
.

Hence, (1) gives that

p

�
1 +

1� �

1� �

�
< 1.

which we rewrite in the following two ways:

p (1� �)

q (1� �)
< 1;

p

q
(1� �) + � < 1:

The �rst inequality shows that the constant factor in (17) is less than one,
and the second that the power part is less than one. In the limiting case
�G = 1, both these expressions approach one, so that the ruin probability
goes to one, which is reasonable.
Let us now look at some special cases of Corollary 1:
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1. � = 1. In this case, F is concentrated in one so that all claims are equal
to one. Hence, the claims will never exceed the premiums, so that the
reserve will never decrease. Thus,  (u) = 0 for u = 0; 1; 2; : : : .

2. � = 0. In this case, the claims cannot exceed two. We obtain

 (u) =

�
p

q
(1� �)

�u+1
, (u = 0; 1; 2; : : : )

which is given by Willmot (1993).

In the special case � = 0, the claims are concentrated in two. This
corresponds to the gambler�s ruin problem discussed by Shiu (1989),
Willmot (1993), and Sundt (1999) (roulette example in Chapter 10).
We obtain that  (u) = (p=q)u+1 for u = 0; 1; 2; : : : .

3. � = 1� �. This is the shifted geometric distribution given by f (x) =
(1� �)�x�1 for x = 1; 2; 3; : : : . We obtain

 (u) =
p

1� �

�
�

q

�u+1
. (u = 0; 1; 2; : : : )

This case is considered by Willmot (1993) and Dickson (1994).

4. � = 0. This is the shifted geometric distribution given by f (x) =
(1� �)�x�2 for x = 2; 3; 4; : : : . We obtain

 (u) =
p

q (1� �)

�
p

q
+ �

�u
. (u = 0; 1; 2; : : : )

The cases 2 and 3 are treated in a more general compound Markov bino-
mial model by Cossette et al. (2004).

5 Comparison with the continuous time com-
pound Poisson model

5A. The compound binomial model is sometimes used as an approximation
to the continuous time compound Poisson model. In the present section, we
shall present the equivalent results for the latter model to results shown for
the former model in the previous section. We do not present the compound
Poisson model in its most general form, but, as the purpose of the presen-
tation is just to indicate the relation to the binomial model, we make the
simplifying assumption that the claim amounts are continuously distributed.
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We assume that claims occur in continuous time with intensity � inde-
pendent of the occurrence times and amounts of other claims. The claim
amounts are independent and identically distributed on the positive num-
bers with continuous distribution F . The premium is paid continuously, and
the units of time and money are chosen such that the rate is equal to one. It
is assumed that the premium has a positive risk loading, that is,

��F < 1: (19)

Let St denote the aggregate claims up to time t and Ut the reserve at time
t. Denoting the initial reserve at time zero by u, we obtain that Ut = u+t�St
for t � 0. Like in the compound binomial model, we de�ne the in�nite time
ruin probability  (u) as the probability that the reserve becomes strictly
negative at some time, that is,

 (u) = Pr ([t>0 (Ut < 0)) . (u � 0)

We shall now deduce an integro-di¤erential equation corresponding to the
recursion (3). By in�nitesimal reasoning, conditioning on what happens in
the time interval (0; h) for some small h > 0, we immediately obtain

 (u) = (1� �h) (u+ h)+�h

�
F c (u+ h) +

Z u+h

0

 (u+ h� x) f (x) dx

�
,

which we rewrite as

 (u+ h)�  (u)

h
=

�

�
 (u+ h)� F c (u+ h)�

Z u+h

0

 (u+ h� x) f (x) dx

�
.

By letting h # 0, we obtain

d+

du
 (u) = �

�
 (u)� F c (u)�

Z u

0

 (u� x) f (x) dx

�
. (20)

5B. We assume that there exists an R > 0 such that

'F (R) =
R

�
+ 1. (21)

Then it is well known that  (u) � e�Ru for u � 0; cf. e.g. Section 13.4 in
Bowers et al. (1997) or Section 10.3 in Sundt (1999).
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Analogous to (8) and (9), we have

 (0) = ��F (22)

 (u) � 1� ��F
�'0F (R)� 1

e�Ru; (u " 1) (23)

cf. e.g. Example (a) in Section XI.7 in Feller (1971).

5C. Let us now assume that the Cramér-Lundberg approximation (23)
holds exact, that is, there exists a k � 1 such that

 (u) = ke�Ru. (u � 0) (24)

We want to characterise the class of severity distributions F for which this
result holds.

Theorem 2. If (24) should hold, then we must have

k =
�

�+R
(25)

f (x) = �e��x (x > 0) (26)

with

� =
R

1� k
. (27)

Proof. Insertion of (24) in (20) and multiplication with eRu gives

�kR = �

�
k � F c (u) eRu � k

Z u

0

eRxf (x) dx

�
,

from which we obtain

F c (u) eRu = k

�
R

�
+ 1�

Z u

0

eRxf (x) dx

�
. (28)

In particular, for u = 0, this gives

1 = k

�
R

�
+ 1

�
,

from which we obtain (25).
Di¤erentiation of (28) with respect to u gives

�f (u) eRu + F c (u)ReRu = �keRuf (u) ,
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from which we obtain
f (u)

F c (u)
=

R

1� k
= �.

Thus, F has constant failure rate � and must then be the exponential distri-
bution given by (26). Q.E.D.

The following corollary follows easily from Theorem 2 by solving (25) and
(27) for k and R and insertion in (24).

Corollary 2. If f satis�es (26), then

 (u) =
�

�
e�(���)u. (u � 0) (29)

As now �F = 1=�, we can rewrite (29) as

 (u) = ��F e
�(���)u, (u � 0)

which is consistent with (22).
The condition (19) can be written in the following two ways:

�=� < 1; � � � > 0:

Like in the discrete case, these two inequalities ensure that each of the two
factors in (29) is less than one, and in the limiting case ��F = 1, both of
them and the ruin probability go to one.
In Example (b) in Section XIV.2 of Feller (1971), Theorem 2 is proved

by using Laplace transforms. We have used the present proof for easier
comparison with our proof of Theorem 1. We also refer to Section 13.6 in
Bowers et al. (1997).
It is interesting to compare Theorems 1 and 2. As pointed out earlier,

the discrete compound binomial model is sometimes used as an approxima-
tion to the continuous compound Poisson model. In the latter model, the
Cramér-Lundberg approximation holds exact only when the severity distri-
bution is exponential. The geometric distribution is the discrete analogue to
the exponential distribution, and it is then natural that in the discrete case,
the Cramér-Lundberg approximation will hold exact for this severity distri-
bution. However, in the discrete case, it is exact for a wider class, allowing
for severity distributions with a limited range.
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Abstract

In the present paper, we characterise the class of severity distributions for
which the Cramér-Lundberg approximation for the in�nite time ruin proba-
bility in the compound binomial model is exact, and we compare this char-
acterisation with the continuous time classical compound Poisson model.
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