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Abstract

In the present paper we study some existing duality features between two very known
models in Risk Theory. The classical Cramér–Lundberg risk model with application to
insurance, and the dual risk model with (some) financial application. For simplicity the
former will be referred as the primal model. The former has been of extensive treatment
in the literature, it assumes that a given surplus process has constant deterministic gains
(premiums) and random loses (claims) that come at random times. On the other hand,
the latter, called as dual model, works in opposite direction, losses (costs) are constant and
deterministic, and the gains (earnings) are random and come at random times. Sometimes
this one is called the negative model. Similar quantities, with similar mathematical
properties, work in opposite direction and have different meanings. There is however an
important feature that makes the two models quite distinct, either in their application or
in their nature: the loading condition, positive or negative, respectively.

The primal model has been worked extensively and focuses essentially in ruin problems
(in many different aspects) whereas the dual model has developed more recently and
focuses on dividend payments. I most cases, they have been worked apart, however they
have connection points that allow us to use methods and results from one to another.
basically form the first to the second. Identifying the right connection, or duality, is
crucial so that we transport methods and results. In the work by Afonso et al. (2013)
this connection is first addressed in the case when the times between claims/gains follow
an exponential distribution.

We can easily understand that the ruin time in the primal has a correspondence to
the dividend time in the latter. On the opposite side the time to hit an upper barrier in
the primal model has a correspondence to the time to ruin in the dual model. Another
interesting feature is the severity of ruin in the former and the size of the dividend payment
in the latter.

Keywords: Cramér–Lundberg risk model, Dual risk model; Erlang(n) interclaim
times; Phase–Type distribution, generalized Lundberg’s equation; ruin probability; time
of ruin; expected discounted dividends.
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1 Introduction

The well-known Cramér–Lundberg risk model, with application to insurance, is driven by
equation

UP (t) = u+ ct−
N(t)∑
i=0

Xi, t ≥ 0, u ≥ 0 (1.1)

where X0 ≡ 0, UP (t) represents the surplus of an insurance portfolio accumulated up to time
t, u = UP (0) is the initial surplus or the surplus known at a giving or starting instant, c
is the premium income per unit time, assumed deterministic and fixed. We will call this
model as the primal model for simplicity and as opposed to the dual model introduced
below. The index P refers to that. {Xi}∞i=1 is a sequence of i.i.d. random variables with
common cumulative distribution and density functions P (x), with P (0) = 0, and p(x),
respectively. We assume the existence of µ1 = E[X1]. We denote the Laplace transform
of p(x) by p̂(s). By N(t) = max{k : W0 + W1 + · · · + Wk ≤ t, W0 = 0} we denote the
number of claims occurring before or at a given time t, where the random variableWi denotes
the interarrival time between jumps i − 1 and i (≥ 1). We assume that {N(t), t ≥ 0} is a
renewal process, independent of the sequence {Xi}∞i=0, so that {Wi}∞i=0 is a sequence of i.i.d.
random variables (also independent from {Xi}). The process

{
S(t) =

∑N(t)
i=0 Xi, t ≥ 0

}
is

then a compound renewal process. Denote by K(t) and k(t) the distribution and the density
function of W1, respectively. Similarly to p̂(s), we denote by k̂(s) the Laplace transform of
k(x). We will assume particular distributions in some sections of this manuscript and we
state it appropriate and clearly. An important condition for the model is the so called income
condition, in the case positive loading condition: cE(W1) > E(X1). It brings an economical
sense to the model: it is expected that the income until the next claim is greater than the
size of the next claim. The net income between the (i − 1)-th and the i-th claims (inc.) is
cWi −Xi. In this model it is well known the notion of the adjustment coefficient, provided
that the moment generating function of X1 exists, in that case it is denoted by MX(.). The
existence on the adjustment coefficient is a condition in some situations and we will state it
clearly.

Still for this model, let the time to ruin be denoted by TP = inf{t > 0 : UP (t) <
0|UP (0) = u}, and TP =∞ if and only if UP (t) ≥ 0 ∀, t > 0. The ultimate ruin probability
is defined as ψP (u) = Pr(TP < ∞) and the corresponding non–ruin probability (or survival
probability) is φP (u) = 1− ψP (u).

Consider an upper level β ≥ u and define the first time the surplus process reaches level
β, irrespective of ruin.

τP,β = min{t ≥ 0 : UP (t) = β|UP (0) = u}.

Let us now define the distribution of the severity of ruin, it plays an important role
in relation to distribution of a single dividend amount in the dual model. The probability
that ruin occurs and that the deficit at ruin is at most y is given by GP (u, y) = Pr(TP <
∞, UP (TP ) ≥ −y|UP (0) = u). For a given u, this is a defective distribution function, clearly
limy→∞GP (u, y) = ψP (u). The corresponding (defective) density is denoted as gP (u, y).

Let us now consider the dual model. It assumes that the surplus or equity of the company
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is commonly described by the equation

UD(t) = u− ct+
N(t)∑
i=0

Xi, t ≥ 0, u ≥ 0. (1.2)

where UD(t) is the surplus accumulated up to time t for this model. We give the same notation
for the quantities that have a similar mathematical meaning to those of the primal model
(1.1), noting however that they have different interpretation: c is now the rate of expenses,
assumed equally deterministic and fixed, and the sequence {Xi}∞i=1 is the gains sequence,
still a sequence of i.i.d. random variables with common cumulative distribution and density
functions P (x), with P (0) = 0, and p(x), respectively. Likewise, we assume the existence of
µ1 = E[X1]. The mathematical properties of sequences {Xi}, {Wi} and processes {N(t)},
{S(t)} as well as their stochastic relationships remain unchanged. Obviously, here N(t) and
S(t) are the number of gains and the accumulated gains occurred up to time t, respectively.
We may particularize the distribution of W1 to come from the Erlang(n) family, with density

kn(t) = λntn−1e−λt/(n− 1)! , t ≥ 0, λ > 0 , n ∈ N+ .

A crucial difference between the two models is the income condition: in the dual model
the income condition is reversed. Here it is assumed the existence of the negative loading
condition, i.e. cE(W1) < E(X1), again, giving an economic sense to the model: on average
gains are greater than expenses, per unit time.

This model has been of increasing interest in ruin theory in recent times. There are many
possible interpretations for the model. We can look at the surplus as the amount of capital of
a business engaged in research and development, where gains are random, at random instants,
and costs are certain. More precisely, the company pays expenses which occur continuously
along time for the research activity, gets occasional revenues along time according to some
predefined distribution K(.). Revenues can be interpreted as values of future gains from an
invention or discovery, the decrease of surplus can represent costs of production, payments
to employees, maintenance of equipment, etc. Invested capital will be rewarded through
occurring future dividends. For that we will need to set up an upper dividend barrier, beyond
which a dividend will be payable.

For now let’s consider the model free of dividend barrier. Let

τx = inf {t > 0 : UD(t) = 0|UD(0) = x} ,

be the time to ruin, this is the usual definition for the model free of the dividend barrier
(τx =∞ if UD(t) ≥ 0 ∀t ≥ 0). Let

ψD(x, δ) = E
[
e−δτxI(τx <∞)|UD(0) = x

]
,

where δ is a non negative constant. ψD(u, δ) is the Laplace transform of time to ruin τx. If
δ = 0 it reduces to the probability of ultimate ruin of the process free of the dividend barrier,
when δ > 0 we can see ψD(u, δ) as the present value of a contingent claim of 1 payable at τx,
evaluated under a given valuation force of interest δ [see Ng (2010)]. For simplicity we write
ψD(x) = limδ→ 0+ ψD(x, δ).
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Let’s now consider an arbitrary upper level β ≥ u ≥ 0 in the model, see the upper graph
of Figure 1, we don’t call it yet a dividend barrier. Let

Tx = inf {t > 0 : UD(t) > β|UD(0) = x}

be the time to reach an upper level β ≥ x ≥ 0 for the process which we allow to continue even
if it crosses the ruin level “0”. Due to the income condition Tx is a proper random variable
since the probability of crossing β is one.

Let’s now introduce into the model the barrier β = b as a dividend barrier, and the ruin
barrier “0”, respectively reflecting and absorbing, such that if the process isn’t ruined it will
reach the level b. Here, an immediate dividend is paid by an amount in excess of b, the surplus
is restored to level b and the process resumes. We will be mostly working the case 0 < u ≤ b.
Dividend will only be due if Tx < τx and ruin will only occur prior to that upcross otherwise.
Whenever we refer to conditional random variables, or distributions, we will denote them by
adding a “tilde”, like T̃x for Tx|Tx < τx.

Let χ(u, b) denote the probability of reaching b before ruin occurring, for a process with
initial surplus u, and ξ(u, b) = 1 − χ(u, b) is the probability of ruin before reaching b. We
have χ(u, b) = Pr (Tu < τu).

Because of the existence of the barrier b ultimate ruin has probability 1. The ruin level
can be attained before or after the process is reflected on b. Then the probability of ultimate
ruin is χ(u, b) + ξ(u, b) = 1.

Let Du = {UD(Tu)− b and Tu < τu} be the dividend amount and its distribution function
be denoted as

GD(u, b;x) = Pr(Tu < τu and UD(Tu) ≤ b+ x)|u, b)

with density gD(u, b;x) = d
dxGD(u, b;x). GD(u, b;x) is a defective distribution function,

clearly GD(u, b;∞) = χ(u, b).
We refer now to the upper graph in Figure 1. If the process crosses b for the first time

before ruin at a random instant, say T(1), then a random amount, denoted as D(1) is paid.
The process repeats, now from level b. The random variables D(i) and T(i), i = 1, 2, ...,
respectively dividend amount i and waiting time until that dividend, make a bivariate sequence
of independent random variables

{(
T(i), D(i)

)}∞
i=1

. We mean, D(i) and T(i) are dependent
in general but D(i) and T(j), i 6= j, are independent. Furthermore, if we take the subset{(
T(i), D(i)

)}∞
i=2

we have now a sequence of independent and jointly identically distributed
random variables (and independent of the

(
T(1), D(1)

)
, the bivariate random variables only

have the same joint distribution if u = b). To simplify notations we set that
(
T(i), D(i)

)
is

distributed as (Tb, Db), i = 2, 3, ..., and
(
T(1), D(1)

)
is distributed as (Tu, Du).

Let M denote the number of dividends of the process. Total amount of discounted div-
idends at a force of interest δ > 0 is denoted as D(u, b, δ) and D(u, b) = D(u, b, 0+) is the
undiscounted total amount. Their n-th moments are denoted as Vn(u; b, δ) and Vn(u; b),
respectively. For simplicity denote as V (u; b, δ) = V1(u; b, δ). We have

D(u, b, δ) =
∞∑
i=1

e−δ(
∑i
j=1 T(j))D(i)

Vn(u; b, δ) = E[D(u, b, δ)n] .
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2 Connecting the primal and the dual model

If we first consider the model without barriers we can relate the two models by setting the
primal surplus process driven in the following way

UP (t) = u∗ + ct− S(t) = (β − u) + ct− S(t), t ≥ 0, β > u, (2.1)

where u∗ = (β − u). When we consider the dividend problem and put the barriers back in
order to establish the wanted relation between the primal and the dual models. We refer
to Figure1. In the dual we consider it with an upper dividend barrier and a ruin barrier.
The first is reflecting and the second is absorbing. In the corresponding primal model, the
corresponding dividend barrier, β = b, can be seen as the ruin barrier of a surplus starting
from initial surplus β − u. The other mentioned barrier usually is not considered in the
standard primal model, and it may just correspond to an upper line at level β. See again
Figure 1.

An important issue that we have to take into account is the income condition. The models
use opposite conditions, in order to relate results from one to the other we have to set which
condition we are in, in most situations. The primal model has been widely studied, we favor
to find results for the dual model adapting from the former. So, let’s consider as a basis the
negative loading condition used for the dual model.

With that condition, as far as the dual model (DM) is considered, we note that if the ruin
level wasn’t absorbing, i.e., the process would continue if the ruin level “0” was achieved, then
the upper level b would be reached with probability 1, due to the income condition. However,
we follow the model defined by Avanzi et al. (2007) where we should only pay dividends if
the process isn’t ruined. Perhaps we could work with negative capital, but that is out of
scope in this work for now [that kind problem is addressed by Cheung (2012)]. We are only
interested working over the set of the sample paths of the surplus process that do not lead to
ruin. Hence, we need to calculate the probability of the surplus process reaches the barrier b
before crossing the level zero. Note that this probability does not correspond to the survival
probability, from initial level u.

Look at Figure 1, upper graph again. If we turn it upside down (rotate 180o) and look
at it from right to left we get the classical model shape, where level “β = b” is the ruin level,
“u” is the initial surplus, becoming β − u, and the level “0” is an upper barrier.

{
D(i)

}∞
i=2

is
viewed as a sequence of i.i.d. severity of ruin random variables from initial surplus zero and
D(1) the independent, but not identically distributed, severity of ruin random variable from
initial surplus “β − u”. Similarly, we have that

{
T(i)
}∞
i=2

can be viewed as a sequence of i.i.d.
random variables meaning time of ruin from initial surplus 0, independent of T(1) which in
turn represents the time of ruin from initial surplus β − u. The connection between the two
models is briefly mentioned by Avanzi (2009) (Section 3.1), however not clearly. It is implicit
here that in the case of the classical model whenever ruin occurs, the surplus is replaced at
level “0”.
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Figure 1: Classical vs dual model
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3 Lundberg’s equations

The adjustment coefficient, denoted as R, is the unique positive real root of the fundamental
Lundberg’s equation, developed as follows,

E
[
e−r(cW1−X1)

]
= 1⇔ E

[
e−rcW1

]
E
[
erX1

]
= 1 (3.1)

We note that expectation E
[
erX1

]
exists at least for r < 0, however E

[
erX1

]
is a moment

generating function if expectation exists for a neighbourhood of zero. In that case R exists and
expectation E

[
e−RcW1

]
exists, it is a Laplace transform. The lefthand side of the equation

above can be regarded as the expected discounted profit for each waiting arrival period. So
that the adjustment coefficient R, provided that it exists, makes the expected discounted
profit even (considering that premium income and claim costs come together). Constant R
can then seen as an interest force. That equation is known as the fundamental Lundberg’s
equation.

For practical purposes we find the fundamental Lundberg’s equation in the literature
written in a different way. We make a change of variable s = −r and extend the domain for
s ∈ C. Then, we get E

[
erX1

]
= p̂(s) and E

[
e−rcW1

]
= k̂(−cs), so that Equation (3.1) takes

the form
k̂(−cs)p̂(s) = 1 . (3.2)

In particular if W1 follows an Erlang(n) distribution Equation (3.2) takes the form

p̂(s) =
(
1−

( c
λ

)
s
)n
, s ∈ C . (3.3)

Consider now the dual model case driven by equation (1.2). The equation corresponding
to the fundamental Lundberg’s equation in (3.1), taking a similar reasoning, is now given by

E
[
e−s(X1−cW1)

]
= 1⇔ E

[
escW1

]
E
[
e−sX1

]
= 1⇔ k̂(−cs)p̂(s) = 1 , (3.4)

where the corresponding net income per waiting arrival period i is given by the reversed
difference Xi − cWi. Equation (3.4) looks the same as (3.3), after the change of variable in
the the latter.

If W1 follows an Erlang(n) distribution Equation (3.4) takes the form of (3.3), i.e.,

p̂(s) =
(
1−

( c
λ

)
s
)n
, s ∈ C . (3.5)

Similarly to the primal model, and for the the case whenW1 follows an Erlang(1) distribution,
Gerber (1979) defines a unique positive solution, say ρ, of Equation (3.5) so that

ψD(x, 0) = e−ρx.

However this definition might look similar to the one of adjustment coefficient for the primal
model, it has a different nature and importance and its uniqueness property may not be true
for other distributions of W1, as shown by Rodríguez-Martínez et al. (2013).

A generalization of each of Equations (3.1) and (3.4) were introduced to the actuarial
literature and became known as the generalized Lundberg’s equation. They take the following
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form, respectively for the primal and the dual model, for a constant δ > 0 (see e.g. Landriault
and Willmot (2008)):

E
[
e−δW1e−r(cW1−X1)

]
= 1 and E

[
e−δW1e−s(X1−cW1)

]
= 1,

equivalent to, setting s = −r,

k̂(δ − cs)p̂(s) = 1, s ∈ C . (3.6)

This equation can be found in Gerber and Shiu (2005) and Ren (2007). The positive constant
δ is often regarded as an interest force and we can think of (3.4) as the limiting case of (3.7)
when δ → 0+.

We remark that although the generalized Lunderg’s equation is presented the same for both
models, solutions, on s, aren’t the same as the income condition is reversed for the models,
that implies a different parameter choice. In the following section we discuss the solutions of
both the fundamental and generalized Lundberg’s equations under this particularization.

When W1 follows an Erlang(n) distribution Equation (3.6) takes the following form:

p̂(s) =

(
1 +

δ

λ
−
( c
λ

)
s

)n
. (3.7)

4 Solutions of the Lundberg’s equations

In this section we discuss the solutions of Lundberg equations for the case when W1 follows
an Erlang(n) distribution.

According to Theorem 2 and Remark 1 of Li and Garrido (2004a), in a Sparre–Andersen
risk model with Erlang(n) distributed interclaim times, Equation (3.7) has n roots with
positive real parts and Equation (3.5) has n− 1 roots with positive real parts.

In the dual model, we can use Rouché’s theorem, as in Theorem 2 of Li and Gar-
rido (2004a), to prove that both equations have exactly n roots with positive real parts.
Let ρ1(δ), . . . , ρn(δ) denote these roots. Moreover, if n is an odd number only one of these
roots is real, say ρn(δ), and if n is even there are always two real roots, say ρn(δ) and ρn−1(δ)
such that 0 < ρn(δ) <

λ+δ
c < ρn−1(δ). The other roots form pairs of conjugate complex

numbers on each situation. We note that Remark1 of that theorem does not totally apply to
the dual model since it needs the loading condition in its point 2, which is reversed in this
case.

The difference between Li and Garrido (2004a)’s conclusion for the primal model and
the dual one concerning the number of roots in the limiting case δ → 0+ lies on the loading
condition. To understand this we can proceed as in Li and Garrido (2004a). Let’s define the
function

h(s) =

(
λ

c

)n
p̂(s)−

(
λ+ δ

c
− s
)n

.

Since h(0) < 0 and lims→−∞ h(s) = +∞, for a sufficiently smooth density p(x) (it is sufficient
that p̂(s) is continuous) we will have at least one negative real root, we denote the largest by
−R(δ). Also, we have

h′(0) = −
(
λ

c

)n
µ1 + n

(
λ+ δ

c

)n−1
=

(
λ

c

)n−1(
−λ
c
µ1

)
+ n

(
λ+ δ

c

)n−1
< 0,
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due to the negative loading condition (cn < λµ1) and for a sufficiently small δ. Note that
h(s) has a local minimum between 0 and ρn(δ). Therefore, limδ→0+(−R(δ)) = 0 because
limδ→0+ h(0) = 0. In the limit only the root −R(δ) equals zero, all the others remain nonzero,
since the limδ→0+ ρn(δ) > 0. Note that if we considered the loading condition to be reversed,
which makes economical sense for the primal model, we would have limδ→0+ ρn(δ) = 0 [see
Remark 1 of Theorem 2 in Li and Garrido (2004a)].

Following Ji and Zhang (2012) we note that roots ρ1(δ), . . . , ρn(δ) are all distinct for
δ ≥ 0, see end of their Section 1, p. 75. This remark was originally described for the primal
model, but it remains valid in the case of the dual (their equation corresponding to (3.7)
although dependent of c is irrespective of the loading condition). This feature will be very
important later on this manuscript.

For simplicity we will denote ρi(δ) by ρi, i = 1, ..., n, unless stated otherwise.

5 On the time to ruin and the first hitting time to reach an
upper barrier

In this section we explore the duality between the time to ruin in the dual model and the
time to reach a given upper barrier in the primal model. First, we start with the dual model,
specifically we study the Laplace transform of the time of ruin. Then, we relate it to the
Laplace transform of the first time when the surplus reaches a given barrier, say β, in the
primal model. Throughout this section we consider thatW1 follows an Erlang(n) distribution.

5.1 The Laplace transform of the time to ruin in the dual risk model

Developments done in this subsection can be found in Rodríguez-Martínez et al. (2013). For
the Erlang(n) case, the Laplace transform of the time to ruin satisfies the renewal equation

ψD(u, δ) = (1−Kn (t0)) e
−δt0 +

∫ t0

0

kn (t) e
−δt
∫ ∞
0

p(x)ψD(u− ct+ x, δ)dxdt. (5.1)

with t0 = u/c. The following theorem shows an integro–differential equation for ψD(u, δ).

Theorem 5.1. In the Erlang(n) dual risk model the Laplace transform of the time of ruin
satisfies the integro–differential equation((

1 +
δ

λ

)
I +

( c
λ

)
D
)n

ψD(u, δ) =

∫ ∞
0

p(x)ψD(u+ x, δ)dx, (5.2)

with boundary conditions

ψD(0, δ) = 1,
di

dui
ψD(u, δ)

∣∣∣∣
u=0

= (−1)i
(
δ

c

)i
, i = 1, . . . , n− 1. (5.3)

Proof. We take successive derivatives of (5.1). Then, changing variable the renewal equation
can be rewritten in the form

ψD(u, δ) =
(
1−Kn

(u
c

))
e−δ(

u
c
) +

1

c

∫ u

0
kn

(
u− s
c

)
e−δ(

u−s
c

)Wδ(s)ds,
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where Wδ(s) =
∫∞
0 ψD(s+ x, δ)p(x)dx.

After applying the operator
((
1 + δ

λ

)
I +

(
c
λ

)
D
)
to the Laplace transform we get((

1 +
δ

λ

)
I +

( c
λ

)
D
)
ψD(u, δ) =

(
1−Kn−1

(u
c

))
e−δ(

u
c
)

+
1

c

∫ u

0
kn−1

(
u− s
c

)
e−δ(

u−s
c

)Wδ(s)ds.

Similarly, following an inductive argument, we show that((
1 +

δ

λ

)
I +

( c
λ

)
D
)i
ψD(u, δ) =

(
1−Kn−i

(u
c

))
e−δ(

u
c
)

+
1

c

∫ u

0
kn−i

(
u− s
c

)
e−δ(

u−s
c

)Wδ(s)ds,

for i = 1, . . . , n− 1. In particular, we obtain((
1 +

δ

λ

)
I +

( c
λ

)
D
)n−1

ψD(u, δ) =
(
1−K1

(u
c

))
e−δ(

u
c
)

+
1

c

∫ u

0
k1

(
u− s
c

)
e−δ(

u−s
c

)Wδ(s)ds.

Applying once more the operator gives((
1 +

δ

λ

)
I +

( c
λ

)
D
)n

ψD(u, δ) =Wδ(u).

This proves equation (5.2).
For the boundary conditions, clearly ψD(0, δ) = 1. We find the remaining conditions

computing directly the derivatives of ψD(u, δ) and evaluate at u = 0,

di

dui
ψD(u, δ) =

(−δ
c

)i (
1−Kn

(u
c

))
− 1

ci

i∑
j=1

(
i

j

)
(−δ)i−j k(j−1)n

(u
c

) e−δ(uc )
+

(
1

c

)∫ u

0

 1

ci

i∑
j=0

(
i

j

)
(−δ)i−j k(j)n

(
u− s
c

) e−δ(u−sc )Wδ(s)ds,

for i = 1, . . . , n− 1, so that we get diψD(u, δ)/du
i
∣∣
u=0

= (−δ/c)i , i = 1, . . . , n− 1.

The solution for ψD(u, δ) is given in the following theorem.

Theorem 5.2. The Laplace transform of the time of ruin can be written as a combination of
exponential functions

ψD(u, δ) =
n∑
k=1

 n∏
i=1,i 6=k

(
ρi − δ

c

)
(ρi − ρk)

 e−ρku, (5.4)

where ρ1, . . . , ρn are the only roots of the generalized Lundberg’s equation (3.7) which have
positive real parts.
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Proof. All the functions e−ρku, k = 1, ..., n, are particular solutions of the integro–differential
equation ((

1 +
δ

λ

)
I +

( c
λ

)
D
)n

f(u) =

∫ ∞
0

p(x)f(u+ x)dx. (5.5)

Since these functions are linearly independent, we can write every solution of (5.5) as a linear
combination of them. Therefore,

ψD(u, δ) =
n∑
i=1

aie
−ρiu,

where ai, i = 1, ...n, are constants and solutions of the system of equations
a1
a2
...
an

 =


1 1 · · · 1
ρ1 ρ2 · · · ρn
...

...
. . .

...
ρn−11 ρn−12 · · · ρn−1n


−1

1
δ
c
...(

δ
c

)n−1
⇔ a = P−1Λ,

in matrix form, where P = P(ρ1, . . . , ρn) is a Vandermonde matrix, a′ = (a1, a2, . . . , an) and
Λ′ = (1, δ/c, . . . , (δ/c)n−1).

Finally, we get expressions for the coefficients

ak =
(−1)k−1(

∏n
i=1, i 6=k(ρi −

δ
c ))(

∏
1≤i<j≤n, i 6=k, j 6=k(ρj − ρi))∏

1≤i<j≤n(ρj − ρi)

=
(−1)k−1(

∏n
i=1, i 6=k(ρi −

δ
c ))

(
∏k−1
i=1 (ρk − ρi))(

∏n
j=k+1(ρj − ρk))

=

n∏
i=1,i 6=k

(
ρi − δ

c

)
(ρi − ρk)

.

We note that δ/c is not a root of equation (3.7). Hence, we get the result.

Remark:
Note that for the limiting case δ → 0+ we obtain the ruin probability, since

lim
δ→0+

ψD(u, δ) = E[I(τu <∞) | U(0) = u] = ψD(u).

Therefore

ψD(u) = lim
δ→0+

n∑
k=1

 n∏
i=1,i 6=k

(
ρi − δ

c

)
(ρi − ρk)

 e−ρku =
n∑
k=1

 n∏
i=1,i 6=k

ρi
(ρi − ρk)

 e−ρku . (5.6)

5.2 The Laplace transform of first hitting time to reach an upper level in
the primal model

For δ ≥ 0 define the Laplace transform of first hitting time to reach an upper level in the
primal model

R(u, β) = E[e−δτP,β |U(0) = u],
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An expression for R(u, β) was found by Li (2008a) for the case when the interclaim times
follow a Phase–Type distribution. In particular when the interclaim times are Erlang(n)
distributed he obtained the following formula

R(u, β) =
n∑
k=1

 n∏
i=1,i 6=k

(
ρi − δ

c

)
(ρi − ρk)

 e−ρk(β−u) (5.7)

Note that for the limiting case δ → 0+ we obtain 1,

lim
δ→0+

R(u, β) = lim
δ→0+

E[e−δTP,β |U(0) = u] = 1.

This means that for the primal model the process attains an upper level, starting from a given
initial surplus, with probability one.

The Laplace transform (5.4), in the dual model, shows an interesting form, it corresponds
to formula (5.7) concerning the primal model. This result enhances the duality between
the two models as explained by Afonso et al. (2013) who worked the compound Poisson,
or Erlang(1), model. We mean, the first hitting time in the primal model corresponds to
the ruin time in the dual model. It is interesting that the duality features shown for the
classical Erlang(1) model can be extended [see beginning of Section 3 of Afonso et al. (2013)].
Note, however, that the loading conditions in the two models are reversed. We refer to the
explanations for the Lundberg’s equations in Sections 3 and 4. Formulae (5.4) above and
(5.7) show the same appearance but parameter c have different admissible values.

Formula (5.6) is a limiting case, as δ → 0+, of (5.4). As described above the same
behaviour does not happen concerning formula (5.7) derived for the primal model. This is
due to the reversed loading condition. The first hitting time in the primal model is a proper
random variable whereas the time to ruin in the dual model is a defective one.

6 On the single dividends amount

In this section we consider that the interarrival time W1 follows an Erlang(1) distribution.
As for the dual model with a a dividend barrier β = b, Afonso et al. (2013) shows the
computation of now we get back to the usual model with an integro-differential equation for
the distribution and the density of the single dividend amount , GD(u, b;x) and gD(u, b;x).

Using a standard procedure, conditioning on the first gain we get, where t0 is such that
u− ct0 = 0,

GD(u, b;x) =

∫ t0

0
λe−λt

[∫ b−(u−ct)

0
p(y)G(u− ct+ y, b;x) dy +

∫ b−(u−ct)+x

b−(u−ct)
p(y)dy

]
dt.

Rearranging and differentiating with respect to u, we get the following integro-differential
equation

λGD(u, b;x) + c
∂

∂u
GD(u, b;x) = λ

∫ b

u
p(y − u)GD(y, b;x) dy + λ [P (b− u+ x)− P (b− u)] ,

(6.1)
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with boundary condition GD(0, b;x) = 0. We get, differentiating with respect to x,

λgD(u, b;x) + c
∂

∂u
gD(u, b;x) = λ

∫ b−u

0
p(y)gD(u+ y, b;x) dy + λp(b− u+ x). (6.2)

Like is shown in Figure1 the dividend payment in the dual model can have a correspon-
dence with the amount of the severity of ruin in the primal. Indeed, the single dividend
distribution can be gotten from the formula for the distribution of the severity of ruin, previ-
ously adapted with the reversed income condition [see Afonso et al. (2013)].

For that, first consider the process continuing even if ruin occurs. The process can cross
for the first time the upper dividend level before or after having ruined. Then we can write
the (proper) distribution of the amount by which the process first upcrosses b, denoted as
H(u, b;x) = Pr [UD(Tu) ≤ b+ x]. We have

H(u, b;x) = H(u, b;x|Tu < τu)χ(u, b) +H(u, b;x|Tu > τu)ξ(u, b)

= GD(u, b;x) + ξ(u, b)H(0, b;x).

The second equation above simply means that the probability of the amount by which the
process first upcrosses b is less or equal than x, equals the probability of a dividend claim
less or equal than x plus the probability of a similar amount but in that case it cannot be a
dividend. This second probability can be computed through the probability of first reaching
the level “0”, ξ(u, b), times the probability of an upcrossing of level b by the same amount
(≤ x) but restarting from 0, H(0, b;x).

We can compute H(u, b;x) through expressions known for the distribution of the severity
of ruin from the primal risk model (recall that the income condition is reversed, making it a
proper distribuition function). Then we get

GP (b− u;x) = GD(u, b;x) + ξ(u, b)GP (b;x)

equivalent to
GD(u, b;x) = GP (b− u;x)− ξ(u, b)GP (b;x). (6.3)
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