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Abstract 
 

The option prices can be used to extract the implied Risk-Neutral Density functions 

(RNDs) of the future underlying asset prices and returns. These market expectations provide 

valuable information that can be helpful to policy makers and investors. 

In this work, we tested the accuracy and stability of four non-structural models in 

estimating the “true” RNDs. These models are the Density Functional Based on Confluent 

Hypergeometric function (DFCH), the Mixture of Lognormal distributions (MLN), the 

Smoothed Implied Volatility Smile (SML) and the Edgeworth expansions (EE). The “true” 

RND is unknown, so it was generated using a structural model called CGMY Gamma-OU, 

that is able to produce RNDs that are closer to reality (more leptokurtic and with a higher 

probability of extreme events). The CGMY Gamma-OU is a Lévy process that models the 

asset returns and volatility as two stochastic processes with jumps, so it is more appropriate 

to the “true” RND generation than stochastic processes based on diffusion processes, like the 

Heston model which was used in previous studies. 

In order to build “true” RNDs that incorporate the characteristics of emerging market 

currency options, we used parameters which were estimated from the USD/BRL (US Dollar 

to Brazilian Real exchange rate) currency option prices. 

We observed that the DFCH and MLN outperformed the SML and the EE models in 

capturing the “true” RND. The SML had the best performance in terms of stability. 

 

JEL Classification: G13; C13; C15; F31 

 

Keywords: Risk–neutral density, Option pricing, Lévy processes, Natural spline, 

Hypergeometric function, Brazilian real exchange rate.  
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1. Introduction 
 

The prices of financial derivatives are mainly influenced by the expectations of the future 

underlying asset prices and by its uncertainty. Within this framework, the observed option 

prices play a very important role due to its capacity to provide information about implied 

Risk-Neutral Densities (RNDs). 

The RNDs estimated from the cross-sections of observed option prices provide 

information that is vital for policy makers, investors and risk managers because they can 

identify and monitor valuable information, such as market concerns and probabilities about 

extreme movements in key asset and commodity prices (tail events). Recent steps have been 

taken with a view to increase the public visibility of RNDs output and its usage by 

policymakers, as is the case of the Federal Reserve Bank of Minneapolis, which provides 

commentary on its website regarding the moments and tail probabilities of the RNDs from 

various markets. In order to improve the RNDs interpretation, it is important to extract them 

using a model that closely reflects the “true” RNDs. 

The standard model in option pricing, the Black and Scholes (B&S) model, has very 

strong assumptions, such as describing the asset returns as a stochastic process that evolves 

according to a geometric Brownian motion, with a constant expected return and a constant 

volatility. It is clear that the second assumption contradicts empirical evidence, as shown in 

two observed real world phenomena: different implied volatilities across maturities and 

across strike prices. The first phenomenon indicates that the volatility is stochastic over time. 

The second phenomenon is called volatility smile pattern and indicates higher volatilities for 

strike prices out-of-the-money. The use of Gaussian models in option pricing and RNDs 

estimation can be dangerous; such practice could lead to the underestimation of extreme 

losses and mispriced derivative products. 

In order to tackle these problems, various parametric models have been suggested to 

extract RNDs from option prices and several studies have been carried out to examine the 

robustness of these estimates and their information power. Jondeau et al. [2007] divide the 

alternative models into two categories: structural and non-structural. A structural model 

assumes a specific dynamic for the price or volatility process (examples: B&S model and 

jump processes). A non-structural model allows the estimation of a RND without describing 

any stochastic process for the price or volatility of the underlying asset, which can give more 

flexibility in the RND estimation. The non-structural approaches can be divided into three 

subcategories: parametric (propose a form for the RND without assuming any price 

dynamics for the underlying asset), semi-parametric (suggest an approximation of the “true” 

RND) and non-parametric models (do not propose an explicit form for the RND). 

In this work, we compare the performance of four non-structural models in the extraction 

of the “true” RND: the Density Functional Based on Confluent Hypergeometric function 

(DFCH), the Mixture of Lognormal distributions (MLN), the Smoothed Implied Volatility 

Smile (SML), and the Edgeworth expansions (EE). 

The “true” RND is unknown, so it was simulated using a structural model called CGMY 

Gamma-OU, a rich and sophisticated stochastic volatility model that generates jumps for 

asset returns and volatility and, consequently, is able to generate plausible “true” RNDs, with 

statistical properties similar to the ones observed in the real world (leptokurtic and with fat 

tails). In Cooper [1999] and Santos and Guerra [2014], the “true” RND was build using the 
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Heston stochastic volatility model, a diffusion-based model based on two Brownian motion 

processes, one for the asset return and the other for the volatility. As is well known, diffusion 

processes cannot generate jumps, which damage their capacity to generate realistic 

short-term RNDs. The adoption of a more flexible process that generates RNDs with patterns 

that deviate from the Gaussian forms, addresses the criticism of Bliss and Panigirtzoglou 

[2002] regarding the dependence from the accuracy tests of the model used to simulated the 

“true” RND. 

The characteristics of the USD/BRL options market were incorporated in the “true” RNDs 

through the application of the CGMY Gamma-OU parameters estimated from each month’s 

currency options (end of month prices). At the end of this work, we added an analysis about a 

methodology to transform the RND into a Subjective Probability Density Function (SPDF) 

and about the goodness of fit of the SPDF to the observed values of the USD/BRL. 

The remainder of this work is organized into six sections. Section 2 describes how option 

prices can provide information about the implied probabilities given by market participants 

to future events. Sections 3 and 4 describe the five models used in this work: CGMY 

Gamma-OU, DFCH, MLN, SML and EE. Section 5 presents the measures that evaluate the 

performance of these models in terms of accuracy and stability, as well as the results of the 

Monte Carlo simulation experiments that allow the comparison between the non-structural 

models. At the end of section 5 we also investigate whether the SPDFs obtained through 

non-structural models have a good fit to the observed returns of the exchange rate USD/BRL. 

Finally, section 6 presents the conclusions. 

 

2. Relation between option prices and the extraction of RNDs 
 

The value of a call option is given by the discounted value of its expected payoff on the 

expiration date T, 

 

   ,)(=),( TTT
X

rT dSXSSfeTXC 


  (1) 

 

where X is the exercise price, TS  is the price of the underlying asset at time T and r is the 

risk-free interest rate. Under risk neutrality, the expectation is taken with respect to the risk 

neutral probabilities. 

Breeden and Litzenberger [1978] were the first to realize that the RND can be recovered 

from the option prices, taking the second derivative of equation (1) with respect to the 

exercise price. Indeed, 
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3. Structural Models 
 

The structural models are very important due to their capacity of modeling the paths of 

asset returns through time. The tractability of these stochastic processes is very useful for 
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pricing and hedging purposes. For this reason, we generate the “true” RND using a structural 

model called CGMY Gamma-OU, which belongs to the class of Lévy processes with 

stochastic volatility. We consider that this process is capable of producing RNDs with 

statistical properties that are close to reality. 

In the next sections we introduce Lévy processes and three models: the Variance Gamma, 

the CGMY and the CGMY Gamma-OU (adds stochastic volatility to the CGMY model). 

 

3.1. Lévy processes and the Lévy-Khintchine formula 
 

The most famous structural model used in option pricing is the B&S model. Due to its 

limitations, other models that allow more flexible distributions should be used. A structural 

model should be able to generate not only a flexible static distribution, but also a flexible 

stochastic process. Within this scope, it is important to use processes that capture not just 

small moves but also large moves (jumps). In fact, the non-gaussian nature and fat-tails 

phenomenon is mainly influenced by rare large moves in asset returns. 

The class of Lévy processes, to which the Brownian motion belongs, encompasses 

sophisticated distributions and allows small moves and large jumps in asset returns and, at 

the same time, retains much of the tractability of geometric Brownian motion. The Merton 

jump-diffusion model, the Variance Gamma (VG), the Normal Inverse Gaussian (NIG), the 

CGMY, the Generalized Hyperbolic model and the Meixner model are examples of Lévy 

processes (see Schoutens, 2003). 

A Lévy process  0, tX t  is essentially a stochastic process with independent and 

stationary increments, which also satisfies the property of stochastic continuity.  

The well known Lévy-Khintchine formula provides a complete characterization of the 

distribution associated to a Lévy process (see Cont and Tankov, 2004). This formula states 

that the characteristic function of a Lévy process is given by 

 

 ,  )),((exp=)( R uutuX   (3) 

 

where the characteristic exponent in equation (3) is called Lévy exponent and is given by 
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where ,R  R  and   is a positive Radon measure on  0\R , called the Lévy 

measure and satisfying: 

 

 
 

  .<)(1,min 2

0\
 dxx 

R
 

 

From the Lévy-Khintchine formula, it is seen that in general, the Lévy process can be 

decomposed into three independent parts represented by the Lévy triplet ),,( 2  : 

 

1. The linear deterministic part t . This component is analogous to a drift, but depends on 

the chosen truncation function (for more details see Cont and Tankov, 2004, Chapter 3), 
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2. The Brownian part ,tW where tW  is a standard Brownian motion.  

 

3. The pure jump part, which is characterized by  . The Lévy measure )(dx  dictates 

how jumps occur. Jumps of sizes in the set RA  occur according to a Poisson process with 

intensity parameter )(dx
A
 . 

 

The Lévy measure also characterizes the activity and path properties of a Lévy process. 

When ,=)( R  the Lévy process has infinite activity. This means that almost all the paths 

of X have an infinite number of jumps on  T0, . If ,<)( R  the Lévy process has finite 

activity. This means that almost all paths of X have only a finite number of jumps on ].[0,T  

If the Lévy process has no Brownian part  0=  and ,<)(
1

 
dxx

x
  then almost all the 

paths of X have finite variation. If the Lévy process has a Brownian part  0  or 

,=)(
1

 
dxx

x
  then almost all paths of X have infinite variation. 

 

In finance, the price of an underlying asset tS  can be modeled by an exponential Lévy 

process and the risk-neutral dynamics is given by: 

 

 ),(exp= 0 tt XSS  (5) 

 

where tX  is a Lévy process under the equivalent martingale measure Q. The use of different 

types of exponential Lévy models in finance depends mainly on the choice for the Lévy 

measure  . Lévy processes used in finance can be divided into two categories: 

 

1. Jump diffusion models, where the evolution of prices is given by a diffusion process 

punctuated by jumps at random intervals (rare events). 

 

2. Infinite activity pure jump models. These models are able to capture both frequent small 

jumps and rare large jumps. Geman et al. [2001] have suggested that price processes of 

financial assets must have a jump component but there is no need to introduce a diffusion or 

Brownian component. 

 

3.1.1. Variance Gamma process 

 

The Variance Gamma (VG) process has been extensively used in the modeling of asset 

returns due to its capacity in capturing a wide range of realistic distributional and stochastic 

properties, while remaining relatively tractable (see Madan et al., 1998 and Carr et al., 2002). 

The VG is an infinite activity model with finite variance paths. It has no diffusion 

component, given the ability of its high activity to capture both frequent small moves and 

rare large jumps. The process has two possible representations: as a difference of two gamma 

processes or as a subordinating Brownian motion. 

In the subordinating approach, the VG is defined as a Brownian motion with drift   at a 
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random time given by a gamma process, 

 

   ),(= ttVG GWGtX    (6) 

 

where tG  is a gamma process, with mean t  and variance rate ,vt  independent of the 

Brownian motion W. The characteristic function of the VG process is given by 
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The definition of the VG process as a difference of two gamma processes is useful 

because it determines the representation of its Lévy measure (see Madan et al., 1998 and Carr 

et al., 2002): 
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where 
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3.1.2. CGMY process 

 

Carr et al. [2002] generalized the VG Lévy density in equation (8) in order to obtain the 

CGMY process (named after Carr, Geman, Madan and Yor), a pure jump process that 

generalizes the VG process allowing finite activity and infinite variation. The Lévy density 

of the CGMY process is given by 

 

 ,

0>for
)(exp

0<for
)(exp

=)(

1

1


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




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x
x

MxC

x
x

xGC

dxf

Y

Y

CGMY
 (9) 

 

where 2<Y  is also a model parameter. 

A process increment over a time interval of length t  is distributed according to the 
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distribution ,),,,( YMGtCCGMY  with characteristic function 

 

 )).))((((exp=),,,,( YY

X GiuMYCtYMGtCu
CGMY

  (10) 

 

The Y  parameter controls the integrability of the Lévy density, characterizing the 

structure of the process by controlling the behavior of small jumps. The case of 0=Y  is the 

special case of the VG process. If 1,< Y  the Lévy density is not monotonic, which means 

that the small jumps are less frequent than the large jumps (finite activity and finite 

variation). If 1> Y , the Lévy density becomes monotonic. The density has finite activity if 

0<Y . When 1<<0 Y , the process has infinite activity but is still of finite variation. Finally, 

if 1>Y , the process has infinite activity and infinite total variation. The parameter C  can 

be viewed as a measure of the overall level of activity, scaling the expected number of jumps 

of all sizes. The parameters G  and M  control the rate of exponential decay on the right 

and left tails of the Lévy density, respectively. 

 

3.1.3. CGMY Gamma-OU process 

 

The introduction of jumps proved to be efficient in generating implied volatility patterns 

only for a single short maturity. Nevertheless, due to the independence of log-returns, the 

exponential-Lévy models fail to reproduce the implied volatility smiles and skews observed 

in options market prices over a range of different maturities. This drawback is due to the 

volatility clustering phenomenon. A solution to this problem is to introduce a stochastic 

process for volatility. 

The introduction of a volatility stochastic process adds another dimension to the analysis. 

Now, we are modeling log returns using changes in prices and changes in volatility. In order 

to capture the positiveness and volatility clustering, the volatility evolution should be 

captured by a process that is positive and mean-reverting. We can build this process making 

time stochastic: in periods of high volatility time runs faster than in periods of low volatility. 

Thus, random changes in volatility can be captured by random changes in time. One of the 

alternatives to model this time change is through the Gamma-OU process. The concept of 

stochastic time in asset pricing was first used in Clark [1973]. 

The Ornstein-Uhlenbeck (OU) process was introduced by Barndorff and Shephard [2001] 

as a model to describe volatility in finance. It is defined as the solution of the SDE 

 

 0,>,= 0ydzdtydy ttt    

 

where  0, tzt  is a subordinator (strictly positive and increasing Lévy process) and .0>  

The process tz  is also called a Background Driving Lévy Process (BDLP). 

The D-OU process  0, tyt  is a nonnegative nondecreasing Lévy process with no 

Brownian part, nonnegative drift and only positive increments. This process is strictly 

stationary on the positive half-line, that is, there exists a law D, called the stationary law or 

the marginal law, such that ty  will follow the law D for every t if 0y  is chosen according to 

D. In the case of a Gamma-OU process, the BDLP  0, tzt  is a Gamma process that has a 

Lévy density of the form 
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  ,)(exp=)( 0>xbxabxw 1  

 

where a  and b  are positive parameters. The Gamma-OU process has the characteristic 

function 
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The stochastic process CGMY Gamma-OU transforms the CGMY process tX  into a 

stochastic volatility process tZ  through a random time change process, modeled by an 

increasing Lévy process (subordinator) tY  independent of the original process. In this case, 

we are subordinating a CGMY process  tX  to a Gamma-OU process  tY . This type of 

stochastic volatility for Lévy processes was introduced in Carr et al. [2003]. 

The characteristic function of the CGMY Gamma-OU process is given by  
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For more details about the subordination of Lévy processes, see Cont and Tankov [2004] and 

Sato [1999]. 

Given the characteristic function of the Lévy process, the RND can be extracted from 

option prices with a method based on the Fourier Transform. For this calculation we follow 

Carr and Madan [1999]. The method consists of two parts. First, we obtain an analytical 

expression for the Fourier transform of an option price. Then, we recover the option price by 

inverting the Fourier transform using the Fast Fourier Transform (FFT) algorithm. 

 

 

4. Non-Structural Models 
 

The non-structural models do not assume any stochastic process for the underlying asset 

price and focus directly on the RND, which provides more flexibility and makes them more 

appropriate in recovering the “true” RND. 

 

4.1. Parametric models 
 

4.1.1. Density Functional Based on Confluent Hypergeometric function 

 

This model allows the estimation of a RND without assuming a specific functional form 

for it. It consists on the use of a formula that encompasses various densities, such as the 

normal, gamma, inverse gamma, Weibull, Pareto and mixtures of these probability densities. 
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Abadir and Rockinger [2003] developed a functional based on the confluent hypergeometric 

function 11 F . These authors suggest that the usefulness of 11 F  relies on the fact that it 

includes special cases of the incomplete gamma, normal and mixtures of the two 

distributions. In fact, this function has the advantage of being more efficient than fully 

nonparametric estimation methods for small samples and more flexible than other parametric 

methods, since it does not restrict functional forms. 

The confluent hypergeometric function can be defined by 
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with )(v , for  1,02,...,\ Rv , being the gamma function and  0 N .  

The functional considered for option pricing is called density functional based on confluent 

hypergeometric function (DFCH) and specifies the European call price as a mixture of two 

confluent hypergeometric functions: 
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1
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indicator function.  

 

Some restrictions must be set in order to guarantee that f  in equation (2) integrates to 1. 

Through these restrictions, we obtain that 
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Using assumptions 221 = mcc  , 321 1= bab  , ,
2

1
=5 a  ,

2

1
=6a  formula (16) can be 

further simplified (see Abadir and Rockinger, 2003) and the final number of parameters to 

estimate in the calculation of the theoretical price in equation (16) is reduced to seven. 

 

4.1.2. Mixture of lognormal distributions 

 

The mixture of lognormal distributions (MLN) was proposed by Bahra [1997] and Melick 

and Thomas [1997] and assumes a functional form for the RND that accommodates various 

stochastic processes for the underlying asset price. Instead of specifying the dynamics for the 



11 
 

underlying asset price (which leads to a unique terminal value), it is possible to make 

assumptions about the functional form of the RND function itself and then obtain the 

parameters of the distribution by minimizing the distance between the observed option prices 

and those that are generated by the assumed parametric form. According to the authors, this 

makes this model more flexible than the B&S model and increases its ability to capture the 

main contributions to the smile curve, namely the skewness and the kurtosis of the 

underlying distribution. 

It is well known that the price of a European call option at time t can be expressed as 
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where .tT   Bahra [1997] assumed the lognormal distribution as the functional form of 

)( TSf  and considered that it would be plausible to use a weighted sum of two lognormal 

density functions, 
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where ),,( Tii SL   is the i -th lognormal density with parameters i  and i : 
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The price of an European call option is given by (see Jondeau et al., 2007) 
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4.2. Semi-parametric models 
 

4.2.1. Edgeworth expansions 

 

The B&S assumption of a lognormal distribution for the underlying asset is relaxed in this 

method by using a more flexible distributional form, based on an Edgeworth series expansion 

around a lognormal distribution. This technique was developed by Jarrow and Rudd [1982]. 

Edgeworth expansions are conceptually similar to Taylor expansions, but are applied to 

densities instead of points. 

In order to show how an Edgeworth expansion can be obtained, consider the “true” 

cumulative distribution function (cdf) F , the approximating cdf L , the probability density 

function (pdf) f, the approximating pdf l, the random variable TS  and the characteristic 

function of F, .)(=)( dssfeu ius

F 



  Given that n  moments )(Fu j

 exist, the first 1n  

cumulants )(Fk j
 also exist and are defined by the expansion (the cumulant-generating 

function)  
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Thus, if the characteristic function )(uF  is known, it is possible to obtain the cumulants by 

taking an expansion of its logarithm around 0=u . Jarrow and Rudd [1982] showed that 

after imposing the equality of the first moment of the approximating density and true density, 

the implied probability density function can be written as 
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where )( TS  captures the neglected terms of the fourth order expansion.  

   Jarrow and Rudd [1982] suggested the lognormal distribution )( TSl  as the 

approximating function and imposed the condition )(=)( 22 LkFk . After imposing the 

equalities of the first and second moments of the approximating and true densities and using 

the pdf given in equation (23) into equation (2), we have the following option price formula: 
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 (24) 
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Corrado and Su [1986] rewrote equation (26) in order to estimate directly the skewness, 

)(1 F , and the kurtosis, )(2 F , using the relationships 
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The parameters to be estimated are the implied volatility ,2  the skewness )(1 F  and the 

kurtosis )(2 F . 

 

4.3. Non-parametric models 
 

4.3.1. Spline methods 

 

These methods are based on the derivation of the RND using the results of Breeden and 

Litzenberger [1978], but with a preliminary process of smoothing the volatility smile. The 

first Spline method approach was developed by Shimko [1993]. In this work, we used the 

method proposed in Bliss and Panigirtzoglou [2002], and applied a natural cubic spline in the 

volatility/delta space and a smoothness parameter  , which weights the degree of curvature 

of the spline function. This method consists in connecting the adjacent points ,),( ii   

,),( 11  ii   using the cubic functions ,10,...,= ,ˆ nii  in order to piece together a curve 

with continuous first and second order derivatives. Thus, i̂  is a third order polynomial 

defined by 

 

 ,)()()(=)(ˆ 32

iiiiiiii abcd   (26) 

 

with  1,  ii . 

The natural spline minimizes the objective function 

 

 ,));(''()),(ˆ()(1min
22

1=

 



dw iiij

N

i




 (27) 

 

where N is the number of quoted deltas, ),(ˆ  ii   is the implied volatility corresponding to 

the spline parameters represented by vector   and iw  represents the weight attributed to 

each observation. The first term measures the goodness of fit and the second term measures 

the smoothness of the spline. 

The variable regarding the weight parameter w  in equation (27) is described by Bliss and 
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Panigirtzoglou [2002] as a source of price error. It is known that in the context of the B&S 

formula, the only unobservable parameter is volatility ),(  which means that the 

uncertainty regarding the probability density function lies in .  The greek vega )(v  

measures the sensitivity of the option price with respect to   and reflects the uncertainty 

concerning the volatility. As in Bliss and Panigirtzoglou [2002], we use this v  weighting 

when fitting the volatility smile because this weighting scheme places more weight on 

near-the-money options and less weight on away-from-the-money options. We tested this 

method using the value   that minimizes the RMISE (root mean integrated squared error). 

 

 

5. Accuracy and Stability analysis 
 

5.1. Data 
 

The data used in this work was the currency OTC option prices with the underlying 

USD/BRL (price of US dollars in terms of Brazilian reals). The quotes were taken from the 

daily settlement bid prices in Bloomberg for Offshore USDBRL FX Options1. The data 

covers the period from June 2006 (half a year before the problems regarding the subprime 

crisis started to worsen) to February 2010 (seven months after the Brazilian general election) 

and comprises the monthly quotes (end of month prices). 

The calls and puts used are of the European type and are priced in volatility as a function 

of delta. The grid of quoted deltas is 0.05, 0.1, 0.15, 0.25, 0.35 and 0.5 deltas. This means that 

we only considered out-of-the money options (calls and puts) and at-the-money options2, due 

to the general understanding that out-of-the-money options tend to be more liquid than 

in-the-money options. We estimate the RNDs using one, three and six months to maturity 

options. 

 

5.2. Testing RND estimation techniques using a Monte Carlo approach 
 

In order to test the accuracy of the referred non-structural models at capturing the 

risk-neutral density functions, we have to see how closely they fit the “true” RND. For each 

month, we build a “true” RND from just that month’s option prices (using the calibrated 

CGMY Gamma-OU parameters). This way, we generate 45 “true” RNDs for the whole 

period (because we follow this process for each maturity – 1, 3 and 6 months – we have 

ended up with 135 “true” RNDs) between June 2006 and February 2010. With this process, 

we simulated “true” RNDs that incorporate the characteristics of the USD/BRL option 

market over an extended period, full of market events. For each “true” RND we obtained the 

corresponding “true” option prices. 

In order to test the robustness of the DFCH, MLN, SML and EE models, we add a 

uniformly distributed random noise in the “true” option prices of size between minus half and 

half of the tick size (according to BM&FBOVESPA, the minimum tick size is 0.001) as in 

                                                      
1 Information provided by Bloomberg for the OTC Market. The USDBRL is quoted in volatility in terms of delta according to international 

conventions (does not use the specific maturity of BM&F calendar and a day count of business days/252 just like other financial instruments 

traded in BM&F) 
2 The delta value varies from 0 for very out-the-money options to 1 for deeply in-the-money options. At the money options have a delta 

clclose to 0.5. 
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Bliss and Panigirtzoglou [2002]. Given these shocked option prices, we use the four 

non-structural models to estimate the “true” RNDs. This process of first shocking prices and 

then fitting the RND is repeated 500 times for the 135 combinations of maturities and dates. 

The performance of these models is then evaluated by the root mean integrated squared error 

(RMISE) as in Bu and Hadri [2007]. We did not examine the bias of the higher statistical 

moments, skewness and kurtosis as in Cooper [1999] and Santos and Guerra [2014], due to 

the poor reliability of these measures, which are extremely sensitive to the tails of the 

distribution. The adoption of the CGMY Gamma-OU process in the “true” RND generation 

allows us to avoid the criticism of Bliss and Panigirtzoglou [2002] regarding the dependence 

from the accuracy tests of the model used to simulated the “true” RND: the CGMY 

Gamma-OU model is much more flexible than the Heston model (used in Cooper, 1999, Bu 

and Hadri, 2007, and Santos and Guerra, 2014) and can produce RNDs with more forms and 

patterns, allowing leptokurtic distributions that deviate from the Gaussian paradigm and are 

closer to reality. 

By considering )(ˆ
tSf  as the estimator of the “true” RND, we define the Root Mean 

Integrated Squared Error (RMISE) by 

 

 ,]))()(ˆ([=)ˆ( 2

0
ttt dSSfSfEfRMISE 



 (28) 

 

representing a measure of the average integral of the squared error over the support of the 

RND. It is a measure of the quality of the estimator. The square of the RMISE can also be 

broken down into the sum of the square of the RISB (root integrated squared bias) and the 

square of the RIV (root integrated variance): 

 

 ),ˆ()ˆ(=)ˆ( 222 fRIVfRISBfRMISE   (29) 
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0
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 (31) 

 

The model with the best overall performance will have the lower RMISE: a higher 

accuracy is represented by a lower RISB and a higher stability is represented by a lower RIV. 

 

5.3. Performance of the non-structural models in capturing “true” 

RNDs 
 

In order to summarize the information contained in the series of the monthly statistical 

measures between June 2006 and February 2010 (45 data points for each maturity and 

statistical indicator), we present tables with the quartiles of these distributions (Tables A.1, 

A.2 and A.3 in the appendix). 
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Besides summarizing the statistical measures for the whole period, the results were also 

analyzed looking separately to three subperiods: the first is from June 2006 to July 2007 

(after the subprime crisis became apparent in August 2007 - hereafter called “normal 

period”), the second is between August 2007 and August 2008 (a period characterized by the 

uncertainty regarding the seriousness of the problem - hereafter called “rumors period”) and 

the third is between September 2008 and February 2010 (the period of higher turbulence in 

financial markets, where the main events regarding the subprime crisis took place - hereafter 

called “peak period”). 

 

5.3.1. Analysis using RMISE 

 

The results regarding the evolution of the RMISE values for the analyzed period are 

shown in Figures 1, 2 and 3. These values, as well as the RISB and RIV measures, are 

summarized in Tables A.1, A.2 and A.3 in the appendix. 

 

 
 

Figure 1: One-month RMISE for the period between June 2006 and February 2010. 

a) number of times of each model as the best model. 

 

In general terms, the DFCH and MLN models outperformed the other models as overall 

estimators of the “true” RND. The DFCH had the lowest RMISE in 78 pairs of dates and 

maturities and the MLN model had inferior RMISE values 56 times. The worst RND 

estimator was the EE model, having the higher RMISE values in the majority of dates. 

In Table A.2 it is noticed a slightly better performance of the DFCH over the MLN model 

in terms of accuracy, having lower quartiles RISB values most of times. The DFCH model 

had the smallest RISB 71 times (29 dates in one month term, 18 dates in three months term 

and 24 dates in six months term) and the MLN model had an inferior RISB 64 times (16 dates 

in one month term, 27 dates in three months term and 21 dates in six months term). 

Analyzing the results in more detail, we observe that the MLN model had a slightly better 

accuracy in the “normal period” for one month and three months terms. Nevertheless the 

DFCH model had a better fit for the six months term. 
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Figure 2: Three-month RMISE for the period between June 2006 and February 2010. 

a) number of times of each model as the best model. 

 

 
Figure 3: Six-month RMISE for the period between June 2006 and February 2010. 

a) number of times of each model as the best model. 

 

For the “rumors period”, the DFCH outperforms the MLN as the “true” RND estimator 

for all the maturities, as demonstrated in the lower RMISE values. It is interesting to note that 

in the first months of the “peak period”, the DFCH model was capable of producing the 

RNDs with the lower bias in comparison to the true ones for all the maturities. Let us recall 

that the four months between September 2008 and December 2008 were marked by a 

sequence of negative events and defined the peak of the subprime crisis: in September 2008, 

the Government-sponsored enterprises Fannie Mae and Freddie Mac, which owned or 

guaranteed about half of the U.S mortgage, were taken over by the US government, Lehman 
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Brothers filed for bankruptcy and the Bank of America purchased Merril Lynch; in October 

2008 the US government bailed out Goldman Sachs and Morgan Stanley. This indicates that 

during this stressing period, characterized by the maximum uncertainty levels and highest 

probability of extreme events, the DFCH showed a higher capacity and flexibility to capture 

these abnormal “true” RNDs.  This can be observed in Figure 4, where the RND produced 

through the DFCH model is closer to the “true” RND. 

For the remainder “peak period” the DFCH model showed the highest accuracy for the 

one month term and the MLN model performed better in the longer terms. 

Taking the RIV measure as the stability indicator, we conclude that the SML model was 

the most stable and the EE model was the most unstable. It is also important to compare the 

stability of the two models that had the best performance in terms of accuracy. The MLN was 

the most stable model for one month to maturity RNDs and the DFCH had the higher stability 

in the longer terms. 

 

 
 

Figure 4: One month "true" RND vs RND estimations - 29th October 2010. 

 

5.4. The Subjective Probability Density Function 
 

An additional analysis about the usefulness of the RNDs as predictive tools was given. For 

this purpose, the non-structural methods were also used to extract the RNDs directly from 

observed option prices3. The goodness of fit of these RNDs to the observed returns of the 

exchange rate USD/BRL was then assessed. It should be noted that these measures are risk 

neutral, so there is a natural inclination to consider its usage inappropriate. However, option 

prices are also influenced by investor's expectations on the future asset prices, so they also 

incorporate information about the subjective probabilities that investors attribute to the future 

realizations. This way, under certain assumptions, we can transform the RND into a 

Subjective Probability Density Function (SPDF) and compare this estimation with the 

                                                      
3 These RNDs are different from the RNDs in the previous sections, which were obtained from the “true” 
option prices (generated by the CGMY Gamma-OU model).  
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observed values of the exchange rate USD/BRL. The conversion of the RND into the SPDF 

was made following the approach of Bliss and Panigirtzoglou [2004]: a rational investor can 

predict, on average, the future realized returns of the underlying asset, meaning that the 

difference between the RND and the future outcomes is given by the degree of the investor 

risk aversion. Therefore, as long as we know investors’ risk preferences, the SPDF can be 

estimated through the relation provided by Ait-Sahalia [2000]: 

 

 
 
 

 ,,
'

'
tT

t

T SS
SU

SU

RND

SPDF
   (32)  

 
 

 

 
 
 
 

 

 

,

'

'

'

'

'

'

,

,




dx
xU

RND

SU

RND

RNDdx
xU

SU

RND
SU

SU

dx
Sx

RND

SS

RND

SPDF T

t

T

t

t

tT








 (33) 

 

where λ is constant and ),( tT SS  is the pricing kernel. The SPDF must be normalized to 

integrate to 1. For the utility function )( tSU , we assumed a parametric form based on the 

exponential utility function: 

 .)(
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e
SU



  (34)  

The SPDF was obtained by searching the parameter γ that minimizes the difference between 

the SPDF and the realized outcomes. The statistical distance was measured by the statistical 

test proposed by Berkowitz [2001], an appropriate method that is used to compare density 

estimations with just one realization in each point of time. 

We executed the optimization procedure for the whole period and, additionally, for the 

subsamples shown in Tables 1 and 2 (these results were obtained for the one month term).  

The results in Table 2 show the best fit of the SPDF obtained through the DFCH method. In 

fact, in contrast to the other methods, the SPDFs estimated from the DFCH have p-values 

that are significantly above 5% for the considered sub-periods and also for the whole sample. 

It should be noted that the MLN, SML and EE methods perform poorly in the period 

immediately preceding the subprime crisis (rumors period). This analysis was also made for 

the longer terms (fit of the 3/6 months SPDF to the observed USD/BRL after 3/6 months 

term). The p-values for the longer terms were statistically insignificant (very close to zero), 

which reveals that the SPDF is a biased estimator for the longer terms. 

 

Risk Neutral Density Functions FIT 
Periods Período DFCH MLN Spline Edge 
normal period: 

rumours period: 

peak period: 

Jun2006•Jul2007 
Aug2007•Aug2008 
Sep2008•Feb2010 

43,42% 
70,77% 
49,86% 

42,94% 
1,51% 

73,55% 

6,61% 
5,71% 

12,27% 

3,04% 
3,87% 
1,43% 

All sample Jun2006•Aug2013 26,40% 5,19% 0,71% 3,73% 
Table 1: p-values obtained by the RND for the considered calibration samples. 
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Subjective Probability density Functions FIT 

Periods Período DFCH MLN Spline Edge 

normal period 

rumours period 

peak period 

Jun2006•Jul2007 

Aug2007•Aug2008 

Sep2008•Feb2010 

89,70% 

70,85% 

52,81% 

79,39% 

1,58% 

78,12% 

65,13% 

7,02% 

44,21% 

83,94% 

5,98% 

6,12% 

All sample Jun2006•Aug2013 31,85% 5,94% 8,09% 18,40% 

Table 2: p-values obtained  by the SPDF for the considered calibration samples. 
 

The results suggest that the DFCH method, besides being able to capture the “true” RND, 

is also flexible enough to adjust the future observed prices of the currency USD/BRL for the 

one month term. This capacity was not revealed by the MLN, a method which together with 

the DFCH produced the unbiased estimators of the “true” RND. 

 

 

6. Conclusion 
 

In this work, the analysis in Cooper [1999] and Santos and Guerra [2014] was deepened 

and the performance of the non-structural models in estimating the “true” RNDs was 

measured through a process that generates “true” RNDs that are closer to reality, due to the 

use of the CGMY Gamma-OU model, which is a stochastic model with jumps in asset returns 

and stochastic volatility. We also considered more scenarios by generating a “true” RND that 

incorporates the characteristics of the USD/BRL currency options for each month between 

October 2006 and February 2010, a period characterized by important market events. 

According to the RMISE criterion, the DFCH model has a higher overall performance as 

the “true” RND estimator, especially during the first four months of the “peak period”, 

between September 2008 and December 2008. However, we noticed that the MLN model 

was slightly better than the DFCH model in capturing the shorter terms “true” RNDs during 

the “normal period”, before the subprime crisis became apparent in August 2007. In the 

stability analysis, the SML model showed the best results, having the lowest RIV for almost 

all pairs of dates and maturities. The EE model estimated the most biased RNDs. 

Additionally, we assessed the goodness of fit of the SPDFs (extracted from observed 

option prices) to the observed returns of the USD/BRL. In this regard, the DFCH showed the 

best fit to the realized returns of the USD/BRL for the one month term. None of the 

non-structural methods was able to adjust the observed returns for the three and six months 

terms. This shows that the SPDF may be a useful risk management tool, but further research 

is needed to demonstrate the predictive power of these densities in out-of-sample data and 

across different types of assets. 
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Appendix A 
 

 

 
 

Table A.1: Quartiles of the observed RMISE values between June 2006 and February 2010. 

 

 
 

Table A.2: Quartiles of the observed RISB values between June 2006 and February 2010. 

 

 

 
 

Table A.3: Quartiles of the observed RIV values between June 2006 and February 2010. 

 

  

Mean 1st quartile 3rd quartile Mean 1st quartile 3rd quartile Mean 1st quartile 3rd quartile

DFCH 0,25683 0,14029 0,28655 0,18710 0,10746 0,25851 0,18996 0,12264 0,21165

MLN 0,27854 0,15134 0,34650 0,19589 0,10875 0,26544 0,19685 0,11157 0,24024

SPLINE 0,44684 0,29727 0,46346 0,33388 0,26983 0,39032 0,33900 0,26183 0,39284

EDGE 0,87609 0,56928 0,99845 0,55168 0,44105 0,65977 0,44517 0,33245 0,50581

1 month to Maturity 3 months to Maturity 6 months to Maturity

RMISE

Mean 1st quartile 3rd quartile Mean 1st quartile 3rd quartile Mean 1st quartile 3rd quartile

DFCH 0,21687 0,12198 0,22542 0,18364 0,10542 0,23403 0,18862 0,12233 0,21158

MLN 0,24555 0,13926 0,29740 0,18417 0,08982 0,25018 0,19369 0,11040 0,23577

SPLINE 0,44079 0,29408 0,45523 0,33156 0,26809 0,38650 0,33808 0,26106 0,39100

EDGE 0,79547 0,50882 0,89182 0,51498 0,40505 0,61890 0,42482 0,32231 0,47687

1 month to Maturity 3 months to Maturity 6 months to Maturity

RISB

Mean 1st quartile 3rd quartile Mean 1st quartile 3rd quartile Mean 1st quartile 3rd quartile

DFCH 0,11593 0,06291 0,14496 0,02634 0,01097 0,02910 0,01500 0,00712 0,01723

MLN 0,11573 0,04140 0,12414 0,04963 0,02126 0,05669 0,02755 0,00873 0,03482

SPLINE 0,02488 0,01423 0,03140 0,01043 0,00669 0,01395 0,00612 0,00421 0,00833

EDGE 0,34714 0,22601 0,42875 0,18678 0,14645 0,22832 0,11984 0,07930 0,16116

RIV

1 month to Maturity 3 months to Maturity 6 months to Maturity
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