
Further advances on the maximum severity of ruin
in an Erlang(n) risk process

Agnieszka I. Bergel and Alfredo D. Egidio dos Reis∗

CEMAPRE and ISEG, Technical University of Lisbon, Portugal

Abstract

For actuarial aplications we consider the Sparre-Andersen risk model
when the interclaim times are Erlang(n) distributed. We first address
the problem of computing χ(u, b), the probability that the surplus
reaches an upper given level b without first falling below zero, starting
from an initial surplus u, b ≥ u ≥ 0. Then, we work on the maximum
severity of ruin, if it occurs.
We start by presenting an alternative and improved method to find

an expression for calculating χ(u, b) to that presented by Li (2008).
This result will then allow us to find a generalization of Li’s (2008)
result, considering the natures of the roots of the generalized Lund-
berg’s equation, i.e., whether these roots are distinct or have some
multiplicity. For the case when single claim amounts are Erlang dis-
tributed we prove that they are always distinct.
Afterwards, we apply our findings above in the computation of

the distribution of the maximum severity of ruin, which computation
depends on the non-ruin probability, on the roots of the generalized
Lundberg’s equation, as well as also their nature.
We illustrate and give explicit formulae for Erlang(3) interclaim ar-

rivals with exponentially distributed single claim amounts and Erlang(2)
interclaim times with Erlang(2) claim amounts.
Keywords: Sparre-Andersen risk model; Erlang(n) interclaim times;

probability of reaching an upper barrier; severity of ruin; maximum
severity of ruin.
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1 Introduction

.In the present article we deal with the Sparre—Andersen model

U(t) = u+ ct−
N(t)∑
i=1

Xi, t ≥ 0, u ≥ 0,

The surplus process starts from an initial capital u, increases in time
with a loading factor c > 0, and decreases by the quantities Xi , which are
random variables and represent the claim amounts that appear randomly
in time. We assume that {Xi} is a sequence of independent and identically
distributed (i.i.d) random variables with common distribution function P (x)
and density p(x). Denote by µk = E[Xk

1 ] the k-th moment of Xi.
The number of claims that occurred before a given time t is represented

by N(t) = max{k : W1 +W2 + · · ·+Wk ≤ t}, where the random variables
Wi denote interclaim times which are considered i.i.d. and also independent
from the Xi .

We assume that the interclaim times are Erlang(n,λ) distributed, there-

fore with density k(t) =
λntn−1e−λt

(n− 1)!
, t ≥ 0, λ > 0, n ∈ N+.

It is assumed a positive loading factor, which means that cE(W1) > E(X1).

Since E(W1) =
n

λ
this gives the inequality cn > λµ1.

Now we set some mathematical preliminaries presenting main objects of
interest in the Sparre—Andersen model that we will take into consideration.

The time of ruin is denoted by T = inf{t > 0 : U(t) < 0}, u ≥ 0, where
T = ∞ if and only if U(t) ≥ 0 ∀t > 0. The ultimate ruin probability is
defined as Ψ(u) = P (T <∞), and the corresponding survival probability is
Φ(u) = 1−Ψ(u).

Regarding the barrier problem, which is related to the payment of di-
vidends, we denote by τ b = inf{t > 0 : U(0) = u, U(t) ≥ b} the first time
that the surplus upcrosses the level b ≥ u. The probability that the surplus
attains the level b from initial surplus u without first falling below zero is

χ(u, b) = P (T > τ b|U(0) = u),

with ξ(u, b) = 1 − χ(u, b) being the probability that ruin occurs from u
without the surplus ever reaching b.

If we assume that the surplus process continues after ruin, we denote the
time of the first upcross of the surplus through level 0 after ruin occurs by
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T ′ = inf{t : t > T, U(t) ≥ 0}. In the interval of time when surplus is at
deficit, we define the maximum severity of ruin as

Mu = sup{|U(t)| : U(0) = u, T ≤ t ≤ T ′}, u ≥ 0.

The distribution function of the maximum severity of ruin given that
ruin occurs is

J(z;u) = P (Mu ≤ z | T <∞), u, z ≥ 0.

The probability that ruin occurs and that the deficit at ruin is at most y is
G(u, y) = P (T <∞, U(T ) ≥ y). For a fixed u, this is a defective distribution
function since lim

y→∞
G(u, y) = Ψ(u), and the corresponding defective density

is g(u, y) =
dG(u, y)

dy
.

Finally the probability that the maximum deficit occurs at ruin is defined
by P (Mu = |U(T )| | T <∞). Picard (1994) showed that

P (Mu = |U(T )| | T <∞) =

∫∞
0 g(u, y)χ(0, y)dy

Ψ(u)
(1)

In the next section we present some of the mathematical background of
the model and write on the motivation. Sections 3 and 4 are the core of
this manuscript where we state our main theoretical results. Section 5 is
devoted to some particular cases where explicit expressions can easily be
found. Finally in the last section we state some concluding remarks.

2 Motivation and mathematical background

The Sparre—Andersen model has been one of the main points of interest
in the risk theory in the recent years. Many authors have done a lot of
important advances in the topic, either in general or in particular cases.

In this article we want to present some new developments. First of all
we present an improved method to find an expression for χ(u, b).

So far we know from Li & Dickson (2006) that χ(u, b) satisfies an order n
integro-differential equation with n boundary conditions that can be written
in the form

B(D)v(u) =

∫ u

0
v(u− y)p(y)dy, u ≥ 0, (2)
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where

B(D) =
(
I −

( c
λ

)
D
)n

=
n∑
k=0

(−1)k
( c
λ

)k (n
k

)
Dk

and D is the differential operator.

If we find n linearly independent particular solutions vj(u), j = 1, . . . , n
for this equation, then we have

χ(u, b) = −→v (u)[V (b)]−1−→e T , (3)

where−→v (u) = (v1(u), . . . , vn(u)) is a 1×n vector, (V (b))ij =
di−1vj(u)
dui−1

∣∣∣
u=b

is a n× n matrix and −→e = (1, 0, . . . , 0) is a 1× n vector.
What we improved is the way to seek for those solutions, depending on

the nature of the roots of the generalized Lundberg’s equation.

Recall that the generalized Lundberg’s equation is B(s) = p̂(s), where
B(s) = (1−( cλ)s)n. We denote by the numbers ρ1, ρ2, . . . , ρn−1 ∈ C, the only
roots of this equation which have positive real parts (there are of course other
roots, among which is 0 and −R, where R > 0 is the adjustment coeffi cient,
see Li & Garrido (2004)).

After that, we apply our results also to find the corresponding expres-
sions for the maximum severity of ruin.

Finally we present some numerical results for two particular cases, the
first is Erlang(3) distributed interclaim times with Exponentially distributed
claim amounts, and the second is Erlang(2) distributed interclaim times with
Erlang(2) distributed claim amounts.

First of all in the subsections 1.1 and 1.2 we set the mathematical
background and we explain the reasons that motivates the present work.
Sections 2 and 3 are the main core of this article where we state our main
theoretical results. Section 4 is devoted to some explicit expressions and
finally in section 5 we give the concluding remarks and possible future ways
of development.
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3 Solutions for the integro-differential equation

In order to obtain the solutions of the integro—differential equation Li (2008)
showed that

Theorem 1: If ρ1, ρ2, . . . , ρn−1 ∈ C are distinct, then we have the
following expressions for the vj(u)’s

v1(u) = Φ(u),

vj(u) =

j−1∑
i=1

ai,j

∫ u

0
Φ(u− y)eρiydy, j = 2, 3, . . . , n,

where ai,j = − 1∏j−1
k=1,k 6=i(ρk − ρi)

, i = 1, 2, . . . , j − 1.

We propose new version of Theorem 1 as follows

Theorem 2: If ρ1, ρ2, . . . , ρn−1 ∈ C are distinct, then we have the
following expressions for the vj(u)’s

v1(u) = Φ(u),

vj(u) =

∫ u

0
Φ(u− y)eρj−1ydy, j = 2, 3, . . . , n.

Proof:

We know from Li (2008) that any solution v(u) of (2) has Laplace trans-
form

v̂(s) =
dv(s)

B(s)− p̂(s) ,

where

dv(s) =

n−1∑
i=0

(
n∑

k=i+1

(
n

k

)(
−c
λ

)k
v(k−1−i)(0)

)
si

Also as Φ(u) is solution of (2) with Laplace transform

Φ̂(s) = −Φ(0)
( c
λ

)n ∏n−1
i=1 (ρi − s)
B(s)− p̂(s) ,

so

dΦ(s) = −Φ(0)
( c
λ

)n n−1∏
i=1

(ρi − s)
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Now to see that any function vj(u) =
∫ u

0 Φ(u−y)eρj−1ydy, with j = 2, 3, . . . , n,
is solution of (2) we can easily prove that

B(D)vj(u) = dΦ(ρj−1)eρj−1u +

∫ u

0
(B(D)Φ(u− t))eρj−1tdt

and that ∫ u

0
vj(u− y)p(y)dy =

∫ u

0
(B(D)Φ(u− t))eρj−1tdt.

Since dΦ(ρj−1) = 0 we get the desired equality.

So the only remaining thing to prove is that those vj(u)’s are linearly
independent.

Suppose that we have a linear combination
n∑
j=1

cjvj(u) = 0, ∀u ≥ 0,

Consider the case (i) and (ii). We start with (i) and see that

If c1 = 0:

Let H(t) =
n∑
j=2

cje
ρj−1t

n∑
j=1

cjvj(u) =
n∑
j=2

cj

∫ u

0
Φ(u− y)eρj−1ydy

=

∫ u

0
Φ(u− y)

n∑
j=2

cje
ρj−1ydy

= Φ ∗H(u) = 0.

The fact that Φ ∗H(u) = 0, ∀u ≥ 0 with Φ(u) 6≡ 0, implies H(u) ≡ 0
almost everywhere. But H(t) is a continuously differentiable function, this
implies that c1 = c2 = · · · = cn = 0.
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For (ii) If c1 6= 0:

Define G(t) =

n∑
j=2

(
−cj
c1

)
eρj−1t, so Φ ∗G(u) = Φ(u) ∀u ≥ 0.

Not all the remaining coeffi cients cj’s can be 0, otherwise G(t) ≡ 0. But
then limu→+∞G(u) = ±∞ depending on the sign of the non zero coeffi cients.
As Φ(u) is a non—decreasing non—negative function with limu→+∞Φ(u) = 1,
we will have that limu→+∞Φ ∗G(u) = ±∞, which is a contradiction.
This completes the proof. �

An advantage of theorem 2, is that, since for any complex root ρ of
the Lundberg’s equation the conjugate ρ̄ is also a root, we will have that

v(u) =

∫ u

0
Φ(u− y)eρydy and its conjugate v(u) =

∫ u

0
Φ(u− y)eρ̄ydy are

both solutions of (2).
Now we consider the case when there might be multiple roots. It is easy

to prove that for the case of Erlang distributed claim amounts the roots are
all different, like we can see in the following lemma.

Lemma 1: If the individual claim amounts Xi’s have Erlang(m,β) dis-
tribution then the generalized Lundberg’s equation does not have multiple
roots.

Proof: We have p(x) =
βmxm−1e−βx

(m− 1)!
, since claim amounts are Erlang(m,β)

distributed. Define the function

f(s) = B(s)− p̂(s) =
(

1−
( c
λ

)
s
)n
− βm

(s+ β)m
.

Then the roots of the generalized Lundberg’s equation are all the solu-
tions of f(s) = 0.

These solutions are

ρ1, ρ2, . . . , ρn−1, 0,−R1,−R2, . . . ,−Rm,

where Re(ρi) > 0, Re(Rj) > 0, and 0 < R1 < β is the adjustment coeffi cient.

Let g(s) = (1− ( cλ)s)n(s+ β)m − βm. Then f(s) = 0 and g(s) = 0 have
the same set of solutions. The derivative of g is
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g′(s) =
(

1−
( c
λ

)
s
)n−1

(s+ β)m−1
(
−(m+ n)

( c
λ

)
s+m− n

( c
λ

)
β
)
.

The roots of g′(s) are

λ

c
, −β, and s0 =

m− n( cλ)β

(m+ n)( cλ)
.

Since −β < s0 < 0 and s0 6= −R1, none of those roots are roots of g(s).

This implies that g(s) and therefore f(s) don’t have multiple roots. �

Despite of the last lemma, it hasn’t been proven yet that for every pos-
sible phase—type distribution that we could choose as claim distribution, the
resulting roots ρ1, ρ2, . . . , ρn−1 would be all different. So we state some res-
ults for possible cases when we could find multiple roots.

First of all, suppose that we have one root with multiplicity n− 1.

Theorem 3: If ρ1 = ρ2 = . . . = ρn−1 = ρ, then we have the following
expressions for the vj(u)’s

v1(u) = Φ(u),

vj(u) =

∫ u

0
Φ(u− y)yj−2eρydy, j = 2, 3, . . . , n.

Proof: It can be easily proven that

B(D)vj(u) =

j−2∑
l=0

(
j − 2

l

)
d

(l)
Φ (ρ)uj−2−leρu +

n∑
k=0

(
n

k

)(
−c
λ

)k ∫ u

0
Φ(k)(u− t)tj−2eρtdt,

and that∫ u

0
vj(u− y)p(y)dy =

n∑
k=0

(
n

k

)(
−c
λ

)k ∫ u

0
Φ(k)(u− t)tj−2eρtdt.
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Since dΦ(s) = −Φ(0)
( c
λ

)n
(ρ − s)n−1, then all the derivatives d(l)

Φ (ρ),

l = 0, . . . , n− 2, are zero, and we get the desired equality as before.

To see the linear independence of the vj(u)’s we can use a slight modi-
fication of the proof given for the Theorem 2. �

Consider now a case when there is one root with multiplicity k− 1, this
is, ρ1 = ρ2 = . . . = ρk−1 = ρ, while the remaining ρk, ρk+1, . . . , ρn−1 have
multiplicity 1. We have

Theorem 4: Under the conditions described above, we have the follow-
ing expressions for the vj(u)’s

v1(u) = Φ(u),

vj(u) =

∫ u

0
Φ(u− y)yj−2eρydy, j = 2, 3, . . . , k,

vj(u) =

∫ u

0
Φ(u− y)eρj−1ydy, j = k + 1, . . . , n.

Finally, we can show the general case. Suppose that we have k different
roots, ρ1, ρ2, . . . , ρk, where the root ρi has multiplicity mi and

k∑
i=1

mi = n− 1 or
k∑
i=1

mi + 1 = n.

Theorem 5: Under the conditions described above, we have the follow-
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ing expressions for the vj(u)’s

v1(u) = Φ(u),

vj(u) =

∫ u

0
Φ(u− y)yj−2eρ1ydy, j = 2, 3, . . . ,m1 + 1,

vj(u) =

∫ u

0
Φ(u− y)yj−m1−2eρ2ydy, j = m1 + 2, . . . ,m1 +m2 + 1,

vj(u) =

∫ u

0
Φ(u− y)yj−(m1+m2)−2eρ3ydy,

j = m1 +m2 + 2, . . . ,m1 +m2 +m3 + 1,
...

vj(u) =

∫ u

0
Φ(u− y)yj−(m1+···+mk−1)−2eρkydy,

j =
k−1∑
i=1

mi + 2, . . . ,
k∑
i=1

mi + 1 = n.

With some small modifications to the proofs of Theorems 2 and 3 we
can obtain the proofs of the Theorems 4 and 5.

4 The maximum severity of ruin

In the previous section we have shown how to obtain the solutions of the
integro—differential equation in different situations, depending on the nature
of the roots of the generalized Lundberg’s equation.

Now we will use these results to obtain the maximum severity of ruin.

We will find an expression for the maximum severity of ruin which only
depends on the non ruin probability Φ(u) and the claim amounts distribu-
tion.

From Dickson (2005) and (3) we know that the distribution of the max-
imum severity of ruin J(z;u) can be expressed as:

J(z;u) =
1

1− Φ(u)

∫ z

0
g(u, y)(v1(z − y), . . . , vn(z − y))dy[V (z)]−1−→e T (4)
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If we denote by

−→
h (z, u) =

∫ z

0
g(u, y)(v1(z − y), . . . , vn(z − y))dy

=

(∫ z

0
g(u, y)v1(z − y)dy, . . . ,

∫ z

0
g(u, y)vn(z − y)dy

)
= (h1(z, u), . . . , hn(z, u))

then we only have to find an expression for every component of
−→
h (z, u).

—For the case in theorem 2

In a similar way as it is done in Li (2008) we get

(∗) For j = 1:

∫ z

0
g(u, y)v1(z − y)dy = Φ(u+ z)− Φ(u) (5)

(∗) And for j = 2, . . . , n:

∫ z

0
g(u, y)vj(z − y)dy =

∫ z

0
g(u, y)

∫ z−y

0
Φ(z − y − x)eρj−1xdxdy∫ z

0
eρj−1x[Φ(u+ (z − x))− Φ(u)]dx

—For the general case in theorem 5

(∗) For j = 1:

∫ z

0
g(u, y)v1(z − y)dy = Φ(u+ z)− Φ(u)

11



(∗) For j = 2, . . . ,m1 + 1:∫ z

0
g(u, y)vj(z − y)dy =

∫ z

0
g(u, y)

∫ z−y

0
Φ(z − y − x)xj−2eρ1xdxdy

(y = z − y, y = z − y, dy = −dy)

=

∫ z

0
g(u, z − y)

∫ y

0
Φ(y − x)xj−2eρ1xdxdy

(0 ≤ x ≤ z → x ≤ y ≤ z)

=

∫ z

0
xj−2eρ1x

∫ z

x
g(u, z − y)Φ(y − x)dydx

(t = z − y, y = z − t, dt = −dy)

=

∫ z

0
xj−2eρ1x

[∫ z−x

0
g(u, t)Φ((z − x)− t)dt

]
dx

By (5) we have
∫ z−x

0
g(u, t)Φ((z − x)− t)dt = Φ(u+ (z − x))− Φ(u), so

∫ z

0
g(u, y)vj(z − y)dy =

∫ z

0
xj−2eρ1x[Φ(u+ (z − x))− Φ(u)]dx

(∗) For j = m1 + 2, . . . ,m1 +m2 + 1:
In a similar way we get∫ z

0
g(u, y)vj(z − y)dy =

∫ z

0
xj−m1−2eρ2x[Φ(u+ (z − x))− Φ(u)]dx

(∗) Finally for j =
∑k−1

i=1 mi + 2, . . . ,
∑k

i=1mi + 1 = n:

∫ z

0
g(u, y)vj(z − y)dy =

∫ z

0

[
xj−(m1+···+mk−1)−2eρkx

]
[Φ(u+ (z − x))− Φ(u)]dx

In this way we get the desired expression for (4).
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5 Explicit expressions

In the section the aim is to determine the moments of the maximum severity
of ruin as well as the probability that the maximum severity occurs at ruin.
Li (2008) considered those moments for Erlang(2) interclaim times and ex-
ponential claims.
Here we will present the formulas and some numerical calculations obtained
for two other cases:
—Interclaim arrivals Erlang(3,λ) distributed, and claim amounts Exponential(β)
distributed. For simplification we will denote this case by Erlang(3) —Ex-
ponential.
—Interclaim arrivals Erlang(2,λ) distributed, and claim amounts Erlang(2,β)
distributed. We will denote this case by Erlang(2) —Erlang(2).

5.1 Erlang(3) —Exponential case

Considering the safety loading c =
(1 + θ)λ

3β
with θ > 0, the generalized

Lundberg’s equation takes the form(
1−

( c
λ

)
s
)3
− β

(s+ β)
= 0,

which has four roots: 0, ρ1, ρ2 and −R, where 0 < R < β is the
adjustment coeffi cient, ρ1, ρ2 are complex roots with positive real parts and
ρ2 = ρ1.

The 3 solutions for the integro—differential equation (2) are

Φ(u) = 1−
(

1− R

β

)
e−Ru

v2(u) =
−1

ρ1

+
β −R

β(R+ ρ1)
e−Ru +

R(β + ρ1)

ρ1β(R+ ρ1)
eρ1u

v3(u) =
−1

ρ2

+
β −R

β(R+ ρ2)
e−Ru +

R(β + ρ2)

ρ2β(R+ ρ2)
eρ2u

5.1.1 The moments of Mu

After calculating (4) we get
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1− J(z;u) =
αe−Rz

1− γe−(ρ1+R)z − δe−(ρ2+R)z − ηe−Rz
,

where

α =
R(R+ ρ1)(R+ ρ2)

β(β + ρ1)(β + ρ2)
γ = − R(β −R)(R+ ρ2)

ρ1(β + ρ1)(ρ2 − ρ1)

δ =
R(β −R)(R+ ρ1)

ρ2(β + ρ2)(ρ2 − ρ1)
η =

(β −R)(R+ ρ1)(R+ ρ2)

βρ1ρ2

with 0 < α < 1, δ = γ and 0 < η = 1− α− γ − δ.

Note that this expression for J(z;u) is independent from u.

Now we compute the moments of Mu given that ruin occurs by the
formula

E(M r
u|T <∞) = r

∫ ∞
0

zr−1(1− J(z;u))dz

= rα

∫ ∞
0

zr−1e−Rz

1− γe−(ρ1+R)z − δe−(ρ2+R)z − ηe−Rz
dz,(6)

for r ≥ 1.
Since |γe−(ρ1+R)z + δe−(ρ2+R)z + ηe−Rz| < 1 we can write

1− J(z;u) = αe−Rz
∞∑
k=0

(γe−(ρ1+R)z + δe−(ρ2+R)z + ηe−Rz)k

and then

E(M r
u|T <∞) = αr!

∞∑
k=0

k∑
j=0

k−j∑
l=0

(
k

j

)(
k − j
l

)
ηjγlδk−j−l

(R(k + 1) + ρ1l + ρ2(k − j − l))r ,

However, after computing explicit values in software like Mathematica
the last formula takes much more time to produce results than formula (6).
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Now choosing β = 1, λ = 3 and c = 1 + θ we evaluate formula (6) for
some values of θ with r = 1 and compare with Li (2008) results.

Table 1: The values of E(Mu) and s.d.(Mu) for n = 1, 2, 3; m = 1.
n = 1 n = 2 n = 3
m = 1 m = 1 m = 1

θ E(Mu) s.d.(Mu) E(Mu) s.d.(Mu) E(Mu) s.d.(Mu)

0.05 3.197 7.324 2.474 5.532 2.236 4.933
0.1 2.638 5.007 2.063 3.805 1.875 3.404
0.15 2.342 4.015 1.848 3.069 1.687 2.754
0.2 2.150 3.443 1.709 2.646 1.567 2.381
0.25 2.012 3.064 1.611 2.368 1.481 2.136
0.3 1.906 2.792 1.536 2.169 1.416 1.962

>From the table we observe that the mean and the standard deviation
of Mu decrease as θ increases for the 3 cases. This was expected since an
increase in θ means an increase in our positive safety loading c, which will
give faster grow of the surplus per unit of time. Also we note that for a fixed
θ the mean and the standard deviation of Mu decrease as n increases. The
reason for this is that for higher values of n with fixed m we are increasing
the expected value of the interclaim times, which is given by E(Wi =

n

λ
),

so in average we will get claims in longer intervals of time.

5.1.2 The probability that the maximum severity occurs at ruin

Due to the memory—less property of the exponential distribution we have
that g(u, y) = Ψ(u)p(y). Hence from (1)

P (Mu = |U(T )| | T <∞) =

∫∞
0 g(u, y)χ(0, y)dy

Ψ(u)∫ ∞
0

χ(0, y)p(y)dy.

Now from (3) we get, for u = 0
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χ(0, y) =

(
R

β

)
1 + ρ1γ

R e−(ρ1+R)y + ρ2γ
R e−(ρ2+R)y

1− γe−(ρ1+R)y − δe−(ρ2+R)y − ηe−Ry
.

So

P (Mu = |U(T )| | T <∞) =

(
R

β

)∫ ∞
0

1 + ρ1γ

R
e−(ρ1+R)y + ρ2γ

R
e−(ρ2+R)y

1− γe−(ρ1+R)y − δe−(ρ2+R)y − ηe−Ry βe
−βydy

=

∫ ∞
0

R+ ρ1γe
−(ρ1+R)y + ρ2γe

−(ρ2+R)y

1− γe−(ρ1+R)y − δe−(ρ2+R)y − ηe−Ry e
−βydy (7)

We can write this probability in the form of a series as we did before for
the moments of Mu to obtain the following

P (Mu = |U(T )| | T <∞) =

∞∑
k=0

k∑
j=0

k−j∑
l=0

(
k

j

)(
k − j
l

)
ηjγlδk−j−l ·[

R

β +Rk + ρ1l + ρ2(k − j − l) +
ρ1γ

β +R(k + 1) + ρ1(l + 1) + ρ2(k − j − l) +

+
ρ2γ

β +R(k + 1) + ρ1l + ρ2(k − j − l + 1)

]
,

In the same way, after computing explicit values with Mathematica the
last formula takes much more time to produce results than formula (7).

Choosing the same values of λ, β and θ as before we evaluate (7) to get
the following table
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Table 2: Probability that the maximum deficit occurs at ruin for n = 3,
m = 1.

n = 3
θ P (Mu = |U(T )| | T <∞)

0.05 0.735
0.1 0.752
0.15 0.768
0.2 0.782
0.25 0.795
0.3 0.808

From the table we conclude that the probability that the maximum defi-
cit occurs at ruin increases as θ increases. This means that for bigger safety
loadings c is less likely that the surplus will drop to lower levels of deficit
after the time of ruin.

5.2 Erlang(2) —Erlang(2) case

Considering the safety loading c =
(1 + θ)λ

β
with θ > 0, the generalized

Lundberg’s equation takes the form(
1−

( c
λ

)
s
)2
− β2

(s+ β)2
= 0,

which has four real roots: 0,−R1,−R2 and ρ, where 0 < R1 < β is
the adjustment coeffi cient and R2, ρ > β .

The 2 solutions for the integro—differential equation (2) are

Φ(u) = 1− R2(β −R1)2

β2(R2 −R1)
e−R1u − R1(β −R2)2

β2(R1 −R2)
e−R2u

v2(u) =
−1

ρ
+

R1R2(β + ρ)2

β2ρ(ρ+R1)(ρ+R2)
eρu +

R2(β −R1)2

β2(R2 −R1)(ρ+R1)
e−R1u +

R1(β −R2)2

β2(R1 −R2)(ρ+R2)
e−R2u

17



5.2.1 The moments of Mu

In this case the formula that we get from (4) is not independent from u, we
write it in the following way

J(z;u) =
1

Ψ(u)

[
R2(β −R1)2

β2(R2 −R1)
e−R1uJ1(z;u) +

R1(β −R2)2

β2(R1 −R2)
e−R2uJ2(z;u)

]
,

and so

1−J(z;u) =
1

Ψ(u)

[
R2(β −R1)2

β2(R2 −R1)
e−R1u(1− J1(z;u)) +

R1(β −R2)2

β2(R1 −R2)
e−R2u(1− J2(z;u))

]
where

J1(z;u) =
1− γ1e−(ρ+R1)z − γ2e−(ρ+R2)z − (1− γ1)e−R1z − τ1e−R2z − ω1e−(ρ+R1+R2)z

1− γ1e−(ρ+R1)z − γ2e−(ρ+R2)z − δ1e−R1z − δ2e−R2z − ηe−(ρ+R1+R2)z

J2(z;u) =
1− γ1e−(ρ+R1)z − γ2e−(ρ+R2)z − τ2e−R1z − (1− γ2)e−R2z − ω2e−(ρ+R1+R2)z

1− γ1e−(ρ+R1)z − γ2e−(ρ+R2)z − δ1e−R1z − δ2e−R2z − ηe−(ρ+R1+R2)z

and

γ1 = −R1(β −R1)2(ρ+R2)

ρ(R2 −R1)(β + ρ)2
γ2 = −R2(β −R2)2(ρ+R1)

ρ(R1 −R2)(β + ρ)2

δ1 =
R2(β −R1)2(ρ+R1)

β2ρ(R2 −R1)
δ2 =

R1(β −R2)2(ρ+R2)

β2ρ(R1 −R2)

τ1 =
R1(β −R2)2(ρ+R2)

ρ(R1 −R2)(β + ρ)2
τ2 =

R2(β −R1)2(ρ+R1)

ρ(R2 −R1)(β + ρ)2

ω1 = −(β −R2)2

(β + ρ)2
ω2 = −(β −R1)2

(β + ρ)2

η = −(β −R1)2(β −R2)2

β2(β + ρ)2
α =

R1R2(ρ+R1)(ρ+R2)

β2(β + ρ)2
,

with 0 < α < 1 and η = 1− α− γ1 − γ2 − δ1 − δ2.

In the same way we compute the moments ofMu given that ruin occurs
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E(M r
u|T <∞) = r

∫ ∞
0

zr−1(1− J(z;u))dz

=
r

Ψ(u)

[
R2(β −R1)2

β2(R2 −R1)
e−R1u

∫ ∞
0

zr−1(1− J1(z;u))dz+

R1(β −R2)2

β2(R1 −R2)
e−R2u

∫ ∞
0

zr−1(1− J2(z;u))dz

]
, (8)

for r ≥ 1.

Also since

|γ1e
−(ρ+R1)z + γ2e

−(ρ+R2)z + δ1e
−R1z + δ2e

−R2z + ηe−(ρ+R1+R2)z| < 1,

Like we did before, we found an expression for the moments of the max-
imum severity in the form of a series. The formula is very long and we will
omit it. For computing purposes in Mathematica are using formula (8).

Now choosing β = 1, λ = 1 and c = 1 + θ we evaluate formula (8) for
some values of θ with r = 1 and compare with Li (2008) results.

Table 3: The values of E(Mu) and s.d.(Mu) for n = 1, 2; : m = 1 and
n = m = 2.

n = 2 n = 2
m = 1 m = 2

θ E(Mu) s.d.(Mu) E(Mu) s.d.(Mu)

0.05 2.474 5.532 3.279 7.137
0.1 2.063 3.805 2.759 4.911
0.15 1.848 3.069 2.485 3.959
0.2 1.709 2.646 2.307 3.411
0.25 1.611 2.368 2.179 3.049
0.3 1.536 2.169 2.082 2.791

From the table we observe that the mean and the standard deviation
of Mu decrease as θ increases for the 3 cases. This was expected since an
increase in θ means an increase in our positive safety loading c, which will
give faster grow of the surplus per unit of time. Also we note that for a fixed
θ the mean and the standard deviation of Mu are higher in the Erlang(2)

19



— Erlang(2) case than in the Erlang(2) — Exponential case. The reason
for this is that for higher values of m with fixed n we are increasing the
expected value of the claim amounts, which is given by E(Xi =

m

β
), so we

are increasing the average size of the claims that we will receive.

5.2.2 The probability that the maximum severity occurs at ruin

In this case the Erlang(2) distribution is not memory—less, so we don’t have
g(u, y) = Ψ(u)p(y) as in the Erlang(3)—Exponential case.

After computing g(u, y) we get

g(u, y) =
(β −R1)2
R2 −R1

(1−(β−R2)y)e−βye−R1u+
(β −R2)2
R1 −R2

(1−(β−R1)y)e−βye−R2u

From (3) we get, for u = 0

χ(0, y) =

(
R1R2

β2

)
1 + ργ1

R1
e−(ρ+R1)y + ργ2

R2
e−(ρ+R2)y

1− γ1e−(ρ+R1)z − γ2e−(ρ+R2)z − δ1e−R1z − δ2e−R2z − ηe−(ρ+R1+R2)z
.

So

P (Mu = |U(T )| | T <∞) =

∫∞
0 g(u, y)χ(0, y)dy

Ψ(u)
(9)

The formula that we obtain in (9) is too large and we omit it.

Choosing the same values of λ, β and θ as before we evaluate (9) to get
the following table

Table 4: Probability that the maximum deficit occurs at ruin for n = 2,
m = 2.
n = m = 2

θ P (Mu = |U(T )| | T <∞)

0.05 0.730
0.1 0.745
0.15 0.759
0.2 0.772
0.25 0.784
0.3 0.795
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From the table we conclude that the probability that the maximum de-
ficit occurs at ruin increase as θ increases. Like in Section 5.1.2, this means
that for bigger safety loadings c is less likely that the surplus will drop to
lower levels of deficit after the time of ruin.

6 Summary and Conclusions

In this article we have shown, based on the techniques provided by Li (2008),
a new method to find expressions for the distribution of the maximum sever-
ity of ruin in the Sparre—Andersen model with Erlang(n) interclaim times.
Those expressions depend exclusively on the non—ruin probability and the
claim amounts distribution.

Following the approach of this article other explicit formulas for the mo-
ments of the maximum severity of ruin can be found for particular cases of
interest, like Erlang(n) - Erlang(m) for higher values of m and n, since for
those cases the expression for the non—ruin probability is available.
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