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Abstract: This paper generalizes the results on optimal reinsurance pre-

sented in Centeno and Guerra (2008) to the case of an insurer holding a portfolio

of k dependent risks. It is assumed that the number of claims of a risk may

depend on the number of claims of the other risks of the portfolio. Our aim

is to determine the optimal form of reinsurance for each risk when the cedent

seeks to maximize the adjustment coe¢ cient of the retained portfolio - which

is equivalent to maximizing the expected utility of wealth, with respect to an

exponential utility with a certain coe¢ cient of risk aversion - and restricts the

reinsurance strategies to functions of the individual claims.

Assuming that the premium calculation principle is a convex functional we

prove existence and uniqueness of solutions and provide a necessary optimality

condition. These results are used to �nd the optimal reinsurance policy for a
�This research has been supported by Fundação para a Ciência e a Tecnologia (FCT)

- project PTDC/ECO/66693/2006 - through PIDDAC, partially funded by the Portuguese

State Budget.
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given risk when the reinsurance loading is either proportional to the expected

value or increasing with the variance of the ceded claims. The type of the

optimal arrangement for a given risk only depends on the premium of that

particular risk.

Key words: optimal reinsurance, dependent risks, adjustment coe¢ cient,

expected utility, exponential utility function, convex premium principles.

1 Introduction

Although the topic of dependency among risks has been quite popular in the

recent actuarial literature, only very few articles deal with the problem in re-

lation to traditional reinsurance. An exception is Centeno (2005) where it was

calculated, from the insurance point of view, the optimal excess of loss retention

limits for two dependent risks, when the optimization criteria used were the ex-

pected utility of wealth with respect to the exponential utility function and the

adjustment coe¢ cient of the retained aggregate claims amount. In that paper

we considered that the number of claims is generated by a bivariate Poisson

distribution and that the premium calculation principle used for the excess of

loss treaties is the expected value principle. So the key point was only on the

retention limits chosen and not on the type of reinsurance, which was limited to

excess of loss reinsurance, which at least for the independent case we knew that

was the optimal form of reinsurance, when the reinsurer priced their treaties

according to the expected value principle (see Gerber (1979)). That model was,

among others, considered by Wang (2008) on the description of correlated risk

portfolios. The dependence between two lines of business arises generally by a

common e¤ect, which a¤ects both the number and the claim size of both lines.

However in some situations the severities have little correlation, in which case

the model can be applied. The classical case of dependence is natural hazards
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where usually at least two lines of business are a¤ected - homeowners and motor

hull.

In Centeno and Guerra (2008) we proved that excess of loss reinsurance is no

longer the optimal form of reinsurance if the reinsurer�s premium loadings are

not proportional to the expected ceded claims. If the loading is an increasing

function with the variance of the ceded claims and the number of claims belongs

to the Katz family, i.e. if it is Poisson, Negative Binomial or Binomial, it was

proved, under some fair assumptions, that the optimal form of reinsurance, when

reinsurance is placed on the individual claims satis�es

y = Z (y) +
1

R
ln
Z (y) + �

�
; (1)

where y is the amount of an individual claim, Z(y) is the ceded claim, R is

either the adjustment coe¢ cient of the retained claims or the coe¢ cient of risk

aversion, depending on the optimization criterion chosen and � is a positive

constant (whose value can easily be calculated, see Centeno and Guerra (2008)

and Guerra and Centeno (2008b)). Note that the same form was found for the

aggregate case in Guerra and Centeno (2008a).

In the present article we generalize the results of Centeno and Guerra (2008)

to k dependent aggregate risks, although the individual claim amounts are sup-

posed to be independent among lines.

2 Assumptions and preliminaries

Let us assume that a insurer seeks reinsurance for k � 1 risks. Let N be the

random vector (N1; N2; : : : ; Nk), with joint probability function

p (n) = Pr fN1 = n1; N2 = n2; :::; Nk = nkg ;

where Ni; i = 1; 2; : : : ; k; is the number of claims of risk i in a given period of

time. Let Yi;j ; i = 1; 2; : : : ; k; j = 1; 2; : : : ; Ni be the value of the jth claim of
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risk i and bYi =P1�j�Ni
Yi;j the aggregate claim amount of risk i in the same

period.

Let Zi (y) be the value ceded under the reinsurance policy in force for risk i

and Pi(Zi) the respective reinsurance premium. The set of all possible reinsur-

ance policies for risk i is denoted Zi and de�ned as

Zi = f� : [0;+1[ 7! IRj � is measurable and 0 � � (y) � y; 8y � 0g :

Let Z =
Nk

i=1Zi; be the cartesian product of all Zi i.e. the set of the vector

functions Z = (Z1; Z2; : : : ; Zk):

The aggregate ceded claims of risk i is

bZi = NiX
j=1

Zi (Yi;j) :

Hence, denoting by c the insurer�s premium (before reinsurance) of the port-

folio of the k risks for each period of time, the insurer�s net pro�t, after reinsuring

the k risks, is

LZ = c�
kX
i=1

h
Pi (Zi)�

�bYi � bZi�i =
= c�

kX
i=1

24Pi (Zi)� NiX
j=1

(Yi;j � Zi (Yi;j))

35 :
Our objective in this article is to determine the vector of reinsurance arrange-

ments Z that maximizes the adjustment coe¢ cient of the aggregate retained

claims of the portfolio. That problem was already considered in Centeno and

Guerra (2008) for the case k = 1; hence we do not go into many details whenever

the generalization is straightforward.

In what follows we consider the assumptions:

Assumption 1 Pr fLZ < 0g > 0 holds for every Z 2 Z.

Assumption 2 For each i 2 f1; 2; : : : ; kg, all Yi;j, j 2 N, are i.i.d. nonnegative

continuous random variables with common density function fi. We denote by

Yi a generic r.v. with density fi and assume that E[Y 2i ] < +1:
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Assumption 3 The moment-generating function of N is �nite in some neigh-

bourhood of zero, which is equivalent to saying that the probability generating

function of N;

�(x) = E

"
kY
i=1

xNi
i

#
=
X
n2Nk0

 
kY
i=1

xnii

!
p(n); (2)

is �nite in some neighbourhood of the point x = (1; 1; :::; 1).

Assumption 4 The random variables Yi, i = 1; 2; : : : ; k are mutually indepen-

dent and independent of the random vector N;

Assumption 5 All functionals Pi : Zi 7! [0;+1] are convex, Pi (0) = 0, and

are continuous in the mean-squared sense, i.e.

lim
m!1

Z +1

0

(Zi;m (y)� Zi (y))2 fi (y) dy = 0 implies that

lim
m!1

Pi (Zi;m) = Pi (Zi) :

We do not distinguish between functions Zi; Z 0i 2 Zi which di¤er only on a

set of zero probability with respect to the density fi.

The adjustment coe¢ cient of the aggregate retained portfolio of risks, for a

particular combination of reinsurance policies Z, is de�ned as the unique positive

solution, when such a root exists, of the equation

G (R;Z) = 1; (3)

where G : [0;+1[�Z 7! [0;+1] is the mapping

G (R;Z) = E
�
e�RLZ

�
; (4)

which under assumptions 1-5 is

G (R;Z) =

= e
R

 
kP
i=1

Pi(Zi)�c
!
�
�
E
h
eR(Y1�Z1)

i
; E
h
eR(Y2�Z2)

i
; :::; E

h
eR(Yk�Zk)

i�
: (5)
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Let Z+ = fZ 2 Z : (3) admits a positive solutiong : For each Z 2 Z+, we

denote by RZ the corresponding positive solution of (3). Our main objective is

to solve the problem

Problem 1 Find (R�;Z�) 2 (0;+1)�Z+ such that

R� = RZ� = max
�
RZ : Z 2 Z+

	
:

A policy bZ 2 Z+ is said to be optimal for the adjustment coe¢ cient
criterion if

�
RẐ; Ẑ

�
solves this problem.

Consider the exponential utility function with coe¢ cient of risk aversion

R > 0:

UR (w) = �e�Rw:

As for exponential utility functions the utility of wealth, after a period of time, is

proportional to the utility of the pro�t after the same period of time, maximizing

the expected utility of the pro�t is equivalent to maximizing the expected utility

of wealth. For any given coe¢ cient of risk aversion, R > 0, the expected utility

of the pro�t obtained by the insurance company in a given period of time is

E [UR (LZ)] = �G (R;Z) : (6)

Consider the maximization problem:

Problem 2 Find Z� 2 Z, such that

E [UR (LZ�)] = max fE [UR (LZ)] : Z 2 Zg ;

where R > 0 is a given constant (�xed).�

A policy Z 2 Z is said to be optimal for the expected utility criterion

with coe¢ cient of risk aversion R if it solves Problem 2 for that particular R.

The adjustment coe¢ cient problem is related to the expected utility prob-

lem, for an exponential utility function, in the sense of the following proposition

(see the proof in Centeno and Guerra (2008) for the case k = 1):
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Proposition 1 A pair (R�;Z�) 2 (0;+1)�Z solves the adjustment coe¢ cient

problem if and only if it satis�es the following conditions:

1. Z� is optimal for the expected utility criterion with coe¢ cient of risk aver-

sion R = R�;

2. G(R�;Z�) = 1:

Proposition 1 shows that, Problem 1 can be solved in two steps:

1. For each R 2 ]0;+1[ �nd ZR, the respective optimal policy for the ex-

pected utility criterion. Equivalently, �nd

ZR = argmin fG (R;Z) : Z 2 Zg ;

2. Solve the equation with one single real variable

G (R;ZR) = 1:

3 Existence and uniqueness of optimal policy

This relation between Problems 1 and 2 and the assumptions made, namely on

the convexity of the reinsurance premiums, which imply the convexity of the

functional G for each R, allow us to state the following theorem:

Theorem 1 For each R 2 (0;+1) there exists an optimal policy for the ex-

pected utility criterion.

There exists an optimal policy for the adjustment coe¢ cient criterion.

Given an optimal combination of policies Z� = (Z�1 ; Z
�
2 ; : : : ; Z

�
k) 2 Z, a combi-

nation of policies Z0 = (Z 01; Z
0
2; : : : ; Z

0
k) 2 Z is optimal for the same R 2 (0;+1)

if and only if

(a) PrfZ 0i(Yi) = Z�i (Yi)g = 1 holds for every i 2 f1; 2; : : : ; kg such that

PrfNi = mg < 1 8m 2 N;
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(b) Pr
n
Z 0i(Yi)� Z�i (Yi) =

Pi(Z
0
i)�Pi(Z

�
i )

m

o
= 1 holds for every i;m such that

PrfNi = mg = 1.

Therefore, the optimal combination of policies is unique whenever PrfNi =

mg < 1; 8i 2 f1; 2; : : : ; kg;m 2 IN .

Notice that condition (b) in Theorem 1 means that the policies Z�i , Z
0
i dif-

fer by a constant equal to the di¤erence between the correspondent premiums

divided by the number of claims. Thus, multiple solutions occur only in cases

where the number of claims is a degenerate random variable. Further, since our

model does not take into account the di¤erent times of premium payment and

refund of claims, multiple solutions are always equivalent from the economical

point of view.

4 Necessary condition for optimality

Fix Z = (Z1; Z2; : : : ; Zk) 2 Z. We consider needle-like perturbations of Z, i.e.,

we consider reinsurance policies of type

Z�;�;"i (y) =

8><>:
Zi (y) ; if y =2 [�; � + "] ;

�; if y 2 [�; � + "] :

Zi;�;�;" = (Z1; :::; Zi�1; Z
�;�;"
i ; Zi+1; :::; Zk) :

We use the short-hand notation

� = (�; �; "); Z�i = Z
�;�;"
i ; Zi;� = Zi;�;�;";

and in what follows we assume that if Z is optimal for the expected utility

criterion, then the limits

�Pi;Zi (�) = lim
�!Zi(�)
0����

lim
"!0+

Pi
�
Z�i
�
� Pi (Zi)

" (�� Zi (�))
; i = 1; 2; :::; k
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are well de�ned functions, except possibly on some null (zero probability) sub-

sets of [0;+1).

In order to obtain some of the following results we also need to consider

compositions of needle-like perturbations. These are treaties of the type

Z�1�2i (y) =

8>>>>><>>>>>:
Zi(y); if y =2 [�1; �1 + "1] [ [�2; �2 + "2];

�1; if y 2 [�1; �1 + "1];

�2; if y 2 [�2; �2 + "2];

Zi;�1�2 =
�
Z1; : : : ; Zi�1; Z

�1�2
i ; Zi+1; : : : ; Zk

�
;

for arbitrary �1 6= �2 and su¢ ciently small "1; "2 > 0. We assume that the func-

tions �Pi;Zi suitably approximate the e¤ect of double needle-like perturbations,

in the sense that the approximation

Pi

�
Z�1�2i

�
=Pi(Zi) + "1(�1 � Zi(�1))�Pi;Zi(�1) + "2(�2 � Zi(�2))�Pi;Zi(�2)+

+ "1o(�1 � Zi(�1)) + "2o(�2 � Zi(�2)) + o("1 + "2) (7)

holds for every �1 6= �2 chosen in a set of probability equal to one with respect

to the density fi.

Theorem 2 Let Z 2 Z be optimal for the expected utility criterion. Then, there

exist constants Ci 2 (0;+1), i = 1; 2; : : : ; k such that the following conditions

hold with probability equal to one:8>>>>><>>>>>:
�Pi;Zi (y) � CieRyfi (y) ; whenever Zi(y) = 0;

�Pi;Zi (y) = Cie
R(y�Zi(y))fi (y) ; whenever 0 < Zi(y) < y;

�Pi;Zi (y) � Cifi (y) ; whenever Zi(y) = y:

(8)

The constants Ci satisfy

Ci �
@
@xi
�
�
E
�
eR(Y1�Z1)

�
; E
�
eR(Y2�Z2)

�
; : : : ; E

�
eR(Yk�Zk)

��
�
�
E
�
eR(Y1�Z1)

�
; E
�
eR(Y2�Z2)

�
; : : : ; E

�
eR(Yk�Zk)

�� ; (9)
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with equality holding in (9) whenever there exists some xi > E
�
eR(Yi�Zi)

�
such

that

�
�
E
h
eR(Y1�Z1)

i
; : : : ; xi; : : : ; E

h
eR(Yk�Zk)

i�
< +1: � (10)

Proof. We introduce the short notation

xi = E
h
eR(Yi�Zi)

i
; x = (x1; x2; : : : ; xk);

x�i = E
h
eR(Yi�Z

�
i )
i
; xi;� = (x1; : : : ; xi�1; x

�
i ; xi+1; : : : ; xk);

Pi = Pi(Zi); P �i = Pi
�
Z�i
�
:

Fix i 2 f1; 2; :::; kg. Optimality of Z means that for any perturbation Zi;�, we

must have

G
�
R;Zi;�

�
�G (R;Z) � 0: (11)

But we have the �rst order Taylor expansion:

G
�
R;Zi;�

�
�G (R;Z) = e

R

 
kP

j=1

Pj�c+P �
i �Pi

!
�
�
xi;�
�
� e

R

 
kP

j=1

Pj�c
!
� (x) =

= e
R

 
kP

j=1

Pj�c
!
�(x)R

�
P �i � Pi

�
+ e

R

 
kP

j=1

Pj�c
!
@�(x)

@xi

�
x�i � xi

�
+

+ o
���P �i � Pi��+ ��x�i � xi��� =

= e
R

 
kP

j=1
Pj�c

! �
�(x)R

�
P �i � Pi

�
+
@�(x)

@xi

�
x�i � xi

��
+

+ o
���P �i � Pi��+ ��x�i � xi��� : (12)

It can easily be checked that

x�i � xi =
Z �+"

�

�
eR(y��) � eR(y�Zi(y)

�
fi(y)dy:

Provided � is a Lebesgue point of the functions y 7! fi(y) and y 7! eR(y�Zi(y))fi(y),

this further reduces to

x�i � xi = �"ReR(��Zi(�))(�� Zi(�))fi(�) + "o(�� Zi(�)) + o("):
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In this case, equality (12) reduces to

G
�
R;Zi;�

�
�G (R;Z) =

= Re
R

 
kP

j=1

Pj�c
!�

�(x)
�
P �i � Pi

�
� "@�(x)

@xi
eR(��Zi(�))(�� Zi(�))fi(�)

�
+

+ "o(�� Zi(�)) + o (") :

Using (11) and dividing by ", this implies

�(x) lim
"!0+

P �i � Pi
"

� @�(x)
@xi

eR(��Zi(�))(�� Zi(�))fi(�) + o(�� Zi(�)) � 0:

Provided Zi(�) < �, we can make �! Zi(�)
+ to obtain

�(x)�Pi;Zi(�)�
@�(x)

@xi
eR(��Zi(�))fi(�) � 0: (13)

If (10) holds and Zi(�) > 0, we can also make � ! Zi(�)
� and obtain the

converse inequality

�(x)�Pi;Zi(�)�
@�(x)

@xi
eR(��Zi(�))fi(�) � 0: (14)

This proves the Theorem in the case when (10) holds.

If (10) fails, then G
�
R;Zi;�

�
= +1 holds whenever � < Zi(�) and � is a

Lebesgue point such that fi(�) > 0. Therefore, the argument above can not be

used to deduce (14). In this case, we require double perturbations to prove the

Theorem.

Notice that

x�1�2i � xi =
Z �1+"1

�1

�
eR(y��1) � eR(y�Zi(y))

�
fi(y)dy+

+

Z �2+"2

�2

�
eR(y��2) � eR(y�Zi(y))

�
fi(y)dy =

="1Re
R(�1�Zi(�1))(�1 � Zi(�1))fi(�1) + "2ReR(�2�Zi(�2))(�2 � Zi(�2))fi(�2)+

+ "1o(�1 � Zi(�1)) + "2o(�2 � Zi(�2)) + o("1 + "2)

holds provided �1; �2 are Lebesgue points of the functions y 7! fi(y) and

y 7! eR(y�Zi(y))fi(y).
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Using an implicit-function type argument it can be shown that for each

�1 � Zi(�1) > 0, �2 � Zi(�2) < 0 and every su¢ ciently small " > 0 there exist

"1; "2 > 0 such that

"1 = �"
�
eR(�2�Zi(�2))(�2 � Zi(�2)) + o(�2 � Zi(�2))

�
+ o("); (15)

"2 = "
�
eR(�1�Zi(�1))(�1 � Zi(�1)) + o(�1 � Zi(�1))

�
+ o("); (16)

x�1�2i = xi: (17)

>From (17) it follows that G(R;Zi;�1�2) � G(R;Z) holds if and only if P �1�2i �

Pi � 0 holds. Due to (7), this is

"1 ((�1 � Zi(�1))�Pi;Zi(�1) + o(�1 � Zi(�1)))+

"2 ((�2 � Zi(�2))�Pi;Zi(�2) + o(�2 � Zi(�2))) + o("1 + "2) � 0:

Setting �2 � Z(�2) = � (�1 � Z(�1)) and using (15),(16), we obtain

eR(�2�Zi(�2))(�1 � Zi(�1))2�Pi;Zi(�1)fi(�2)�

� eR(�1�Zi(�1))(�1 � Zi(�1))2�Pi;Zi(�2)fi(�1) + o(�1 � Zi(�1))2 � 0:

Dividing by (�1 � Zi(�1))2 and making �1 ! Zi(�1)
+, we show that the in-

equality
�Pi;Zi(�1)

eR(�1�Zi(�1))fi(�1)
� �Pi;Zi(�2)

eR(�2�Zi(�2))fi(�2)

holds for every pair of Lebesgue points of y 7! fi(y), y 7! eR(y�Zi(y))fi(y) such

that fi(�1) > 0, fi(�2) > 0, Zi(�1) < �1, Zi(�2) > 0.

This proves that (8) must hold for some constant Ci 2 R. Inequality (13)

shows that Ci must satisfy (9).

Theorem 2 presents an optimality condition which is suitable for compu-

tations. However, it is useful to make some remarks concerning its economic

meaning.
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It can be proved (see Appendix) that under the Assumptions 1�4, the fol-

lowing equalities hold:

E

24eR kP
j=1

(Ŷj�Ẑj)
35 = � �E heR(Y1�Z1)i ; : : : ; E heR(Yk�Zk)i� ;

lim
"!0+

E

24eR kP
j=1

(Ŷj�Ẑj)
�f9m2f1;2;:::;Nig:Yi;m2[y�";y+"]g

35
Pr f9m 2 f1; 2; : : : ; Nig : Yi;m 2 [y � "; y + "]g

=

=
@�

@xi

�
E
h
eR(Y1�Z1)

i
; : : : ; E

h
eR(Yk�Zk)

i� eR(y�Zi(y))
E[Ni]

; (18)

the last equality holding with probability equal to one with respect to the density

fi. Recalling that

E[UR(LZ)] = e
R(

kP
j=1

Pj�c)
E

24eR kP
j=1

(Ŷj�Ẑj)
35 ;

equality (18) can be interpreted as

E [UR(LZ)j 9m 2 f1; 2; : : : ; Nig : Yi;m = y] =

= e
R(

kP
j=1

Pj�c) @�

@xi

�
E
h
eR(Y1�Z1)

i
; : : : ; E

h
eR(Yk�Zk)

i� eR(y�Zi(y))
E[Ni]

:

Therefore,

@
@xi
�
�
E
�
eR(Y1�Z1)

�
; : : : ; E

�
eR(Yk�Zk)

��
�
�
E
�
eR(Y1�Z1)

�
; : : : ; E

�
eR(Yk�Zk)

�� eR(y�Zi(y)) =

= E[Ni]
E [UR(LZ)j 9m 2 f1; 2; : : : ; Nig : Yi;m = y]

E [UR(LZ)]

and condition (10) means that it is possible to decrease slightly the reinsurance

cover of risk i without causing the expected utility of the portfolio�s wealth

to become �1. Thus, Theorem 2 implies the following more economically

meaningful corollary:

Corollary 1 Let Z 2 Z be optimal for the expected utility criterion, and sup-
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pose there exists ~Zi 2 Zi such that:

Pr
n
~Zi � Zi

o
= 1; Pr

n
~Zi < Zi

o
> 0;

E
h
UR(L(Z1;:::;Zi�1; ~Zi;Zi+1;:::;Zk))

i
> �1:

Then, the following holds with probability equal to one:8>>>>><>>>>>:

�Pi;Zi (y)

E[Ni]
� E[UR(LZ)j 9m2f1;:::;Nig:Yi;m=y]

E[UR(LZ)]
fi (y) ; whenever Zi(y) = 0;

�Pi;Zi (y)

E[Ni]
=

E[UR(LZ)j 9m2f1;:::;Nig:Yi;m=y]
E[UR(LZ)]

fi (y) ; whenever 0 < Zi(y) < y;

�Pi;Zi (y)

E[Ni]
� E[UR(LZ)j 9m2f1;:::;Nig:Yi;m=y]

E[UR(LZ)]
fi (y) ; whenever Zi(y) = y: �

Thus, the marginal cost of reinsurance of a claim of amount y on risk i is

balanced against the ratio between the expected utility of the portfolio given

that a claim o value y is placed on risk i and the a priori expected utility of the

portfolio.

5 The expected value principle

In this section we consider the case when the reinsurance premium for one of

the risks in the portfolio is computed by the expected value principle:

Pi (Zi) = (1 + �)E[Ẑi] = (1 + �)E [Ni]E [Zi] ;

where � is a positive constant.

For this case the necessary conditions of Theorem 2 reduce to the following

Corollary 2 Suppose the reinsurance premium for the risk i is computed by an

expected value principle. The optimal treaty for the risk i is a stop-loss contract:

Zi(y) =

8><>:
0; if y �M ;

y �M; if y �M:

If (10) holds, then

M =
1

R
ln
(1 + �)E[Ni]�

�
E
�
eR(Y1�Z1)

�
; : : : ; E

�
eR(Yk�Zk)

��
@�
@xi

�
E
�
eR(Y1�Z1)

�
; : : : ; E

�
eR(Yk�Zk)

�� :

14



If (10) fails, then

M � 1

R
ln
(1 + �)E[Ni]�

�
E
�
eR(Y1�Z1)

�
; : : : ; E

�
eR(Yk�Zk)

��
@�
@xi

�
E
�
eR(Y1�Z1)

�
; : : : ; E

�
eR(Yk�Zk)

�� : �

Proof. A simple computation shows that

�Pi;Zi (�) = (1 + �)E[Ni]fi (�) :

Substituting in (8), one obtains8>>>>><>>>>>:
(1 + �)E[Ni] � CieRy; whenever Zi(y) = 0;

(1 + �)E[Ni] = Cie
R(y�Zi(y)); whenever 0 < Zi(y) < y;

(1 + �)E[Ni] � Ci; whenever Zi(y) = y;

i.e., 8>>>>><>>>>>:
y � 1

R ln
(1+�)E[Ni]

Ci
; whenever Zi(y) = 0;

Zi(y) = y � 1
R ln

(1+�)E[Ni]
Ci

; whenever 0 < Zi(y) < y;

(1+�)E[Ni]
Ci

� 1; whenever Zi(y) = y:

The proof is complete by taking (9) into account.

Notice that Corollary 2 does not rule out the possibility that Zi � Yi, i.e.,

the totality of risk i should be ceded.

6 Variance-related principles

In this section we consider the case when the reinsurance premium for one of

the risks in the portfolio is computed by a variance-related principle:

Pi (Zi) =E[Ẑi] + g
�
V ar[Ẑi]

�
=

=E[Ni]E[Zi] + g
�
E[Ni]V ar[Zi] + V ar[Ni]E[Zi]

2
�
; (19)

15



where g : [0;+1) 7! [0;+1) is a continuous function, smooth in (0;+1) such

that

g(0) = 0; g0(t) > 0; 8t > 0; (20)

and
g00(t)

g0(t)
� � 1

2t
; 8t 2 (0; B); (21)

with B = sup
n
V ar[Ẑi] : Zi 2 Zi

o
. Following Guerra and Centeno (2008b), we

can say that if g satis�es (20) then the premium (19) is convex if and only if

(21) is ful�lled.

For this case the necessary conditions of Theorem 2 reduce to the following

Corollary 3 Suppose that the reinsurance premium for the risk i is computed

by a variance-related principle (19). If g0 is bounded in a neighbourhood of

zero, then the following set of conditions holds with probability equal to one with

respect to the density fi.

y � 1

R
ln
��2
�1

; when Zi(y) = 0; (22)

y = Zi(y) +
1

R
ln
Zi(y)� �2

�1
; when 0 < Zi(y) < y; (23)

y � �1 + �2; when Zi(y) = y: (24)

�1, �2 are constants satisfying

�1 =
@�
@xi

�
E
�
eR(Y1�Z1)

�
; : : : ; E

�
eR(Yk�Zk)

��
E[Ni]�

�
E
�
eR(Y1�Z1)

�
; : : : ; E

�
eR(Yk�Zk)

��
2g0
�
V ar[Ẑi]

� if (10) holds;

�1 �
@�
@xi

�
E
�
eR(Y1�Z1)

�
; : : : ; E

�
eR(Yk�Zk)

��
E[Ni]�

�
E
�
eR(Y1�Z1)

�
; : : : ; E

�
eR(Yk�Zk)

��
2g0
�
V ar[Ẑi]

� if (10) fails;

�2 =
E[Ni]� V ar[Zi]

E[Ni]
E[Zi]�

1

2g0
�
V ar[Ẑi]

� :
If g0 is unbounded in any neighbourhood of zero, then the optimal treaty must be

either a function of type (22)-(24) or Zi � 0 (no reinsurance at all). �

16



Proof. Follows the same argument as the proof found in Centeno and Guerra

(2008) for the analogous single risk case.

7 A numerical example

We consider an insurance company dealing with two risks. The value of indi-

vidual claims in each risk is a Pareto random variable, i.e., the densities of Yi

are functions

fi(y) = aib
ai
i (bi + y)

�ai�1; i = 1; 2;

with parameters ai > 2, bi > 0. The claim events are Poisson processes with

random intensities driven by a common Gamma random variable:

PrfNi = nj� = �g = e���i
(��i)

n

n!
; i = 1; 2;

PrfN1 = n1; N2 = n2g =
Z +1

0

e��(�1+�2)
(��1)

n1(��2)
n2

n1!n2!

��

�(�)
���1e���d�;

with parameters � > 0, � > 0, �1 > 0, �2 > 0. The probability generating

function for the number of claims in this model is

�(x1; x2) =

�
�

� � �1(x1 � 1)� �2(x2 � 1)

��
:

We chose the parameters of �; �; �i; ai; bi in order to model a situation where

the risks have di¤erent properties. One risk (say, risk 1) has a smaller number of

expected claims but its claim size has a larger average and heavier tail compared

to risk 2. However, the aggregate claim amount of risk 2 is larger than risk 11 .

1This is the interesting case: If the risk with the heaviest tail is also "large" in aggregate

terms, then one can expect that the best reinsurance strategy is to reinsure heavily the �rst

risk, irrespective of dependency.

17



Thus, we set the following parameter values2 :

a1 = 3; a2 = 4;

E[N1] = 1; E[N2] = 5; Corr(N1; N2) = 0:5;

E[Ŷ1] =
1

4
; E[Ŷ2] =

3

4

>From this choice, the remaining parameters of the model follow:

b1 =
1

2
; b2 =

9

20
; �1 = 1; �2 = 5; � = � = 1:89898:

This gives the statistics

V ar[N1] = 1:52660; V ar[N2] = 18:165;

E[Y1] = 0:25; E[Y2] = 0:15; Var[Y1] = 0:1875; Var[Y2] = 0:045;

Var[Ŷ1] = 0:282912; Var[Ŷ2] = 0:633712:

We assume reinsurance policies for both risks are priced using the standard

deviation principle with loading coe¢ cient equal to 0:3, i.e.,

Pi(Z) = E[Ẑ] + 0:3

q
Var[Ẑ]; i = 1; 2:

The direct insurer prices its own policies by the same principle but with a smaller

loading equal to 0:15. This means the total income of the insurer by time unit

is c = 1:19919.

We compare the optimal treaties for the adjustment coe¢ cient criterion in

two situations, which we will call the "dependent" and "independent" cases,

respectively. the �rst is the model described above, while the independent case

is identical, except that the number of claims N1, N2 are independent but have

the same marginal distributions as in the dependent case. In each of these

models we also compare the optimal treaty with the best excess�of�loss treaty.

The solutions and some key indicators are presented in Table 1.

2The total aggregate claim is normalized: E[Ŷ1] + E[Ŷ2] = 1. It is clear that this can

always be made by a suitable choice of the account unit.
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Figure 1: Best treaties. Grey lines � the independent case; black lines � the

dependent case; solid lines - treaties for risk 1; dashed lines �treaties for risk 2.
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Table 1: Optimal treaties in the independent case vs the dependent

case (adjustment coe¢ cient criterion)

Independent N1, N2 Corr(N1; N2) = 0:5

best treaties best e. loss best treaties best e. loss

�1 = 0:487313 M1 = 8:94428 �1 = 0:711130 M1 = 11:7585

�2 = 0:342036 M2 = 15:8155 �2 = 0:263398 M2 = 21:0894

R 0:311772 0:284421 0:260465 0:238882

E[Ẑ1] 0:037230 0:000701 0:042914 0:000416

E[Ẑ2] 0:015349 3:176� 10�6 0:010168 1:368� 10�6

E[Ẑ1]

E[Ŷ1]
0:148920 0:002803 0:171655 0:001664

E[Ẑ2]

E[Ŷ2]
0:102326 0:000021 0:067786 9:12� 10�6

P1(Z1) 0:079324 0:035215 0:086105 0:030710

P2(Z2) 0:103890 0:004838 0:069060 0:003648

Similar to what we observed for the single risk aggregate claims case in

Guerra and Centeno (2008a) and Guerra and Centeno (2008b), the optimal

treaties cede a larger proprotion of risk (measured by E[Z])compared with the

best excess of loss treaties (stop-loss in the aggregate case).

In order to compare the risk ceded on each risk, one should have in mind

that they have di¤erent expected aggregate claims amounts and di¤erent ex-

pected claim sizes. Therefore, it is more meaningfull to compare amounts ceded

normalized by the expected value of the respective risk. Thus, in Table 1 we

present the normalized aggregated ceded risks, E[Ẑi]=E[Ŷi] and in �gures 2 and

4 we present normalized ceded risks Zi=E[Yi] as functions of normalized claim

size Yi=E[Yi].

As expected, the amount of the �rst risk that should be ceded is larger

for risk 1 than for risk 2, which has a comparatively lighter tail thought its

aggregate variance is larger. This holds for the dependent and independent case,
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Figure 2: The same as Figure 1, with the values for each treaty scaled by the

expected claim size of the respective risk.

for the optimal treaties and for the best excess�of�loss, thought the di¤erence

is atenuated when the comparison is made through normalized values.

When we compare the optimal treaties for the independent and the depend

cases, the amount of risk 1 ceded increases, compensating a decrease of the

amount ceded on risk 2. However, we see that the amount ceded in the tail

of the claim size distribution decreases for both risks (see Figures 1,2). This

contrasts with the best excess�of�loss, where the amount of risk ceded decreases

for both risks when we pass from the independent to the dependent case (see

Figures 3,4). Of course, excess�of�loss treaties don�t provide for any modulation

of retention in tails.

21



Z

Y
5 10 15 20 25

5

10

15

20

25

Figure 3: Best expect of loss treaties. Grey lines �the independent case; black

lines �the dependent case; solid lines - treaties for risk 1; dashed lines �treaties

for risk 2.
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Figure 4: The same as Figure 3, with the values for each treaty scaled by the

expected claim size of the respective risk.
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Figure 5: dashed line �Performance of best treaties for independent risks when

the risks are dependent.

Now, suppose the direct insurer choses the treaties assuming that the risks

are independent but that in fact they are not. One interesting question is

what are the consequences of this mistake. To see this, let Zi1; Z
i
2 be the op-

timal treaties assuming the independent case and Zd1 ; Z
d
2 the optimal treaties

in the dependent case. We wish to compute the adjustment coe¢ cient of the

retained risk under treaties Zi1; Z
i
2 when the risks are dependent and compare

it to the maximal adjustment coe¢ cient (i.e., the adjustment coe¢ cient of the

retained risk under Zd1 ; Z
d
2 ). It turns out that in the present case the answer is

RZi1;Zi2 = 0:258863. This suggests that the most serious consequence of neglect-

ing dependencies (at least of the type considered in this paper) is a substancial

underestimated of the risk being undertaken, while the treaties chosen in the

assumption of independence do not perform much worse than the best treaty

one can chose taking dependence into account. This seems to be a quite robust

feature at least for this type of model, persisting under quite di¤erent choices

24



of parameters and distributions of claim sizes. However, in the absence of theo-

retical results caution is fundamental. One possibility is that this phenomenon

might be linked to the particular structure of the Gamma-Poisson structure of

dependency. We leave this as an open problem.

Finaly, we consider the expected utility for the optimal treaties as a function

of the coe¢ cient of risk aversion. The results are shown in Figure 5. Again we

see that dependency decreases the expected utility for the best treaties but the

di¤erence between E
h
UR(LZi1;Zi2)

i
and E

h
UR(LZd1 ;Zd2 )

i
(both expected utilities

computed in the dependent case) is substantially smaller than the diference with

E
h
UR(LZi1;Zi2)

i
computed in the independent case, specially for coe¢ cients of

risk aversion similar or smaller that the maximal adjustment coe¢ cient.

Appendix: proof of equality (18)

Without loss of generality, we prove the equality for i = 1.

For any measurable set A � [0;+1), we have:

E
h
eR
Pk

j=1(Ŷj�Ẑj)�f9m2f1;2;:::N1g:Y1;m2Ag

i
=

=
X
n2Nk0

E
h
eR
Pk

j=1(Ŷj�Ẑj)�f9m2f1;2;:::N1g:Y1;m2Ag

���N = n
i
p(n) =

=
1X

n1=1

1X
n2=0

� � �
1X

nk=0

E
h
eR(Ŷ1�Ẑ1)�f9m2f1;2;:::N1g:Y1;m2Ag

���N1 = n1i�
�

kY
j=2

E[eR(Yj�Zj)]njp(n): (25)

Now,

E
h
eR(Ŷ1�Ẑ1)�f9m2f1;2;:::N1g:Y1;m2Ag

���N1 = n1i =
=E

h
eR(Ŷ1�Ẑ1)

���N1 = n1i� E heR(Ŷ1�Ẑ1�f8m;Y1;m =2Ag

���N1 = n1i =
=

�Z
A[Ac

eR(y�Z1(y))dF1(y)

�n1
�
�Z

Ac

eR(y�Z1(y))dF1(y)

�n1
:
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Thus, the mean value theorem states that there is �n1 2 [0; 1] such that

E
h
eR(Ŷ1�Ẑ1)�f9m2f1;2;:::N1g:Y1;m2Ag

���N1 = n1i =
=n1

�Z
Ac

eR(y�Z1(y))dF1(y) + �n1

Z
A

eR(y�Z1(y))dF1(y)

�n1�1
�

�
Z
A

eR(y�Z1(y))dF1(y) =

=n1

�
E[eR(Y1�Z1)] +O(PrfY1 2 Ag)

�n1�1 Z
A

eR(y�Z1(y))dF1(y);

where the error term O(PrfY1 2 Ag) is always negative. Substituting in (25),

one obtains

E
h
eR
Pk

j=1(Ŷj�Ẑj)�f9m2f1;2;:::N1g:Y1;m2Ag

i
=

=
1X

n1=1

1X
n2=0

� � �
1X

nk=0

n1

�
E
h
eR(Y1�Z1)

i
+ "n1

�n1�1 kY
j=2

E[eR(Yj�Zj)]njp(n)�

�
Z
A

eR(y�Z1(y))dF1(y);

with
1P

n1=1

1P
n2=0

� � �
1P

nk=0
n1
�
E
�
eR(Y1�Z1)

�
+ "n1

�n1�1Qk
j=2E[e

R(Yj�Zj)]njp(n)!
@�
@x1

�
E
�
eR(Y1�Z1)

�
; E
�
eR(Y2�Z2)

�
; : : : ; E

�
eR(Yk�Zk)

��
when PrfY1 2 Ag ! 0.

A similar argument shows that

Pr f9m 2 f1; 2; : : : ; N1g : Y1;m 2 Ag =

=
1X

n1=1

1X
n2=0

� � �
1X

nk=0

n1
�
1 + �n1

�n1�1
p(n) PrfY1 2 Ag;

and
P1

n1=1

P1
n2=0

� � �
P1

nk=0
n1
�
1 + �n1

�n1�1
p(n) ! E[N1] when PrfY1 2

Ag ! 0. Fix v 2 [0;+1), a Lebesgue point of the functions y 7! f1(y),

y 7! eR(y�Z1(y))f1(y) such that f1(v) > 0, and let A = [v � "; v + "]. Then,Z
A

eR(y�Z1(y))dF1(y) = 2"e
R(v�Z1(v))f1(v) + o(");

PrfY1 2 Ag = 2"f1(v) + o(");

and equality (18) follows imediately.
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