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1 Introduction

The optimal sharing of risk between economic agents is a prominent topic in
economics and management sciences at least since the works of Arrow (1963),
Borch (1962), Bühlmann (1984) and Bühlmann and Jewell (1979).

A large corpus of publications dealing with this type of problems is set
in a game-theoretical framework – see, among others, Burgert and Rüschendorf
(2008), Burgert and Rüschendorf (2006), Filipović and Svindland (2008), Heath
and Ku (2004), Jouini et al. (2008), Kaina and Rüschendorf (2009), Kiesel and
Rüschendorf (2010), Ludkovski and Rüschendorf (2008), and references therein.
Most of these works use duality methods to characterize Pareto equilibria in
a market containing a number of agents possessing risky assets and seeking to
trade them with the other agents in order to improve individual risk measures.
These risk measures are usually assumed to satisfy some desirable properties
(e.g., coherence in the sense of Artzner et al. (1999)), but are otherwise generic.
Not surprisingly due to this level of generality, the characterizations obtained
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project PTDC/ECO/ 66693/2006 – through PIDDAC, partially funded by the Portuguese
State Budget.

1



by these authors are general necessary and sufficient conditions of optimality
that are not very informative about explicit forms for the optimal trade.

There is also a large number of publications dealing with the topic in an opti-
mization framework – see Balbás et al. (2009), Bernard and Tian (2009), Cai and
Tan (2007), Cai et al. (2008), Centeno and Guerra (2010), Gajek and Zagrodny
(2004a), Gajek and Zagrodny (2004b), Guerra and Centeno (2010), Guerra and
Centeno (2008), Kaluszka (2005a), Kaluszka (2005b), Kaluszka and Okolewski
(2008), Promislow and Young (2005) and Rockafellar and Uryasev (2000), and
references therein. Most of these publications are specifically concerned with
insurance/reinsurance problems. They assume that there is some mechanism
for pricing risk (i.e., a premium calculation principle), the agent owns some risk
and seeks to buy some insurance, in order to minimize some risk measure, net
of insurance premium. In most of these works, both the premium calculation
principle and the agent’s risk measure are specified within some more or less
narrow set and hence it is possible to obtain structural characterization of the
optimal insurance/reinsurance (e.g., stop-loss, stop-loss with ceiling, etc.).

In the present paper we assume an external pricing mechanism (a func-
tional) and consider an agent who owns a risk an seeks to trade in order to
maximize a risk measure. Thus, we are considering an optimization problem.
However, both the pricing functional and the agent’s risk measure are assumed
to be generic coherent comonotonic cash-invariant functionals. Also, the type of
transactions we consider is very general. We show how to narrow them down to
insurance contracts, but a priori they include many other types of contracts, in-
cluding financial derivatives like options. Kusuoka (2001) gave a representation
of coherent comonotonic cash-invariant functionals. It turns out that this rep-
resentation allows for direct optimization methods. Thus, we obtain an explicit
solution for the optimization problem. Further, this solution is quite intuitive
from the economic point of view.

This paper is organized as follows. In Section 2, we give a full definition of
the problem, presenting and discussing the underlying assumptions. We give
the solution in the form of Theorem 2. In Section 3, we apply the Theorem on
two simple examples (a problem of reinsurance and a problem of asset returns).
Section 4 contains the proof of Theorem 2.

2 Problem setting and solution

By a risk, we understand a real random variable X : Ω 7→ R, defined in some
probability space (Ω,F , P ). X represents some monetary quantity that will
materialize at a given time in the future, but is not possible to forecast exactly
from the present. For example, X may represent the value of a portfolio at
some given moment in the future, the sum of revenues and liabilities generated
in some future period by a contract or a set of contracts, the amount of claims
placed under an insurance policy during a certain period, etc..

Let X denote the set of all random variables, i.e., the space of all F-
measurable real functions with domain Ω. A risk measure is a real functional

2



with domain in some nonempty subset of X . Following the approach of Artzner
et al. (1999), we assume that an agent who rates risks by a measure ρA will ac-
cept to take a given risk X from other agent only if he receives a compensation
(premium) greater or equal than ρA(X), if this value is non-negative. If ρA(X)
is negative, then the agent is willing to purchase the risk X for any price not
exceeding −ρA(X). Thus, −ρA(X) is the agent’s biding price for risk X, while
ρA(−X) is the agent’s ask price. Conversely, consider a set of risks that are
“tradable” in the sense that each of them can be procured in a market for some
(positive or negative) price. The map assigning to each risk the corresponding
price can be equated to a risk measure X 7→ ρM (−X).

In this paper we consider an agent who owns a risk Y and wants to trade in
order to minimize a personal risk measure ρA. We call Y the “standing risk”.
The agent has access to a market where any risk Z lying in a certain class Z ⊂ X
can be traded for a price given by the market risk measure ρM (−Z).

We are not concerned with the mechanism by which this price is formed and
assume that the agent knows the ”princing rule”, i.e., he knows the functional
ρM , but has no influence over it. This means that our agent is small compared
to the size of the market or the size of his possible trading partner(s). For
example, he may be a small trader operating in a competitive market. In this
case ρM is not expected to coincide with any particular agent’s risk measure.
Instead, it will be a risk measure implicit in the collective behavior of all the
agents in the market. Another example is an individual trader facing a much
larger monopolistic partner. In this case ρM can be taken to represent the
monopolist’s own risk measure.

Artzner et al. (1999) introduced the concept of coherent risk measures:

Definition 1 A risk measure ρ defined in some suitable convex set of random
variables Z is said to be coherent if it satisfies the following conditions:

Translation invariance: for any risk X ∈ Z and any constant c ∈ R:
ρ(X − c) = ρ(X) + c;

Subadditivity: for any risks X1, X2 ∈ Z: ρ(X1 + X2) ≤ ρ(X1) + ρ(X2);

Positive homogeneity: for any risk X ∈ Z and any constant λ ≥ 0:
ρ(λX) = λρ(X);

Monotonicity: for any risks X1, X2 ∈ Z such that Pr{X1 ≥ X2} = 1:
ρ(X1) ≤ ρ(X2). ¤

We also need to introduce the notion of comonotonic risk measure:

Definition 2 Two random variables X1, X2 : Ω 7→ R are said to be comonotone
if

(P × P ){(ω1, ω2) ∈ Ω2 : (X1(ω1)−X1(ω2))(X2(ω1)−X2(ω2)) ≥ 0} = 1.

A risk measure ρ : Z 7→ R is said to be comonotonic if

ρ(X1 + X2) = ρ(X1) + ρ(X2)
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for every comonotone pair X1, X2 ∈ Z. ¤

Kusuoka (2001) proved the following result (here presented in a slightly
different but equivalent formulation):

Theorem 1 Suppose (Ω,F , P ) is atom-less and consider a functional
ρ : L∞(Ω,F , P ) 7→ R. The following assertions are equivalent:

(i) ρ is a law invariant comonotonic coherent risk measure with the Fatou
property;

(ii) There is a continuous nondecreasing concave function w : [0, 1] 7→ [0, 1],
with w(0) = 0, such that

ρ(X) =(1− w(1)) (esssup(X)− essinf(X))+

+
∫ 0

−∞
w(Pr{X < t}) dt +

∫ esssup(X)

0

(w(Pr{X < t})− 1) dt, (1)

For every X ∈ L∞(Ω,F , P ). ¤

Jouini et al. (2006) proved that, provided (Ω,F , P ) is atom-less, all law in-
variant coherent risk measures have the Fatou property, and hence this condition
can be omitted from Theorem 1.

Our result is formulated in terms of Kusuoka representations (1) for the risk
measures ρA, ρM . Thus, the following is a natural technical assumption:

Assumption 1 The space (Ω,F , P ) is atom-less. ¤

We wish to consider risks that are not essentially bounded. For example,
in many branches of insurance it is usually assumed that the amount of claims
received during a given time period has a heavy-tail distribution (e.g., a Pareto
distribution). If w(1) < 1, then the functional (1) satisfies ρ(X) = +∞ for any
risk X bounded above but unbounded from below, no matter how thin is the
negative tail of the distribution. This is questionable from the economic point of
view: the fact that a risk can have catastrophic consequences does not make it
automatically unacceptable. It may be perfectly acceptable provided the prob-
ability of a catastrophic event is suitably small and is balanced by sufficiently
large and plausible positive events. This leads us to the next assumption:

Assumption 2 The measures ρA, ρM are functionals of type (1) specified by
functions wA, wM respectively, with wA(1) = wM (1) = 1. ¤

Notice that if w(1) = 1, then expression (1) reduces to

ρ(X) =
∫ 0

−∞
w(FX(t)) dt +

∫ +∞

0

(w(FX(t))− 1) dt, (2)

where FX is the distribution function of X.
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The agent rates any possible trade Z ∈ Z by comparing the standing risk
with the sum of standing risk and traded risk, net of the transaction’s price. In
other words, he compares ρA(Y ) with the value

φY (Z) = ρA(Y + Z − ρM (−Z)) = ρA(Y + Z) + ρM (−Z).

Thus, we consider the following optimization problem

Problem 1 Find Ẑ ∈ Z such that

ρA(Y + Ẑ) + ρM (−Ẑ) = min{ρA(Y + Z) + ρM (−Z) : Z ∈ Z}. ¤

Obviously, the problem is not fully specified until a definition of the set Z
of tradable risks is provided, and various sets Z make meaningful versions of
Problem 1. For example, consider the following two cases:

Case 1: (insurance)

Suppose Y represents the loss resulting from some insurable event. To
simplify, we assume that Pr{Y ≤ 0} = 1 (i.e., no gain can be made
from the insurable event). Considering the agent is seeking to purchase
insurance against the loss Y , we set

Z = {X ∈ X : Pr{0 ≤ X ≤ −Y } = 1},
i.e., we assume that no insurer will refund in excess of the loss incurred
and no other payment besides the premium will be requested from the
insured.

Case 2: (unconstrained trade)

Suppose Y represents the value at some future time of the portfolio cur-
rently detained by a trader. Assuming the trader is free to buy or sell any
type of asset, Z is the set of all risks Z ∈ X that can be rated, i.e., such
that ρA(Y + Z) + ρM (−Z) is well defined.

From the examples above we see that in general, there is some relationship
between the definition of Z and the standing risk Y .

The next assumption is quite natural:

Assumption 3 The standing risk can be rated by both the agent and the market,
and none of them rates it as infinitely valuable. Put in other way:

ρA(max(0, Y )) > −∞, and ρM (max(0, Y )) > −∞. ¤

This assumption does not exclude the cases ρA(Y ) = +∞ or ρM (Y ) = +∞.
The situation ρA(Y ) = +∞ means that the agent is forced to trade in order
to escape a totally unacceptable situation, while the situation ρM (Y ) = +∞
means that it is not possible for the agent to transfer all the standing risk to
the market.

Our last assumption concerns the set of tradable risks:
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Assumption 4 The set Z contains all the random variables Z ∈ X satisfying

Pr {min(0,−Y ) ≤ Z ≤ max(0,−Y )} = 1. ¤

This means that no regulation or technical obstacle forbids or forces the agent
to cede any part of the standing risk. Of course, this does not mean that
the agent might be interested in every such transaction. For example, the case
ρM (Y ) = +∞ guarantees the agent will not cede the totality of the standing risk
because that would require payment of an infinite premium, though −Y ∈ Z.

The purpose of this paper is to present and prove the following result:

Theorem 2 (Under assumptions 1 to 4)
Let θ : R 7→ [0, 1] denote a Lebesgue-measurable function satisfying

θ(t) = 1, if wA (FY (t)) > wM (FY (t)) ;
θ(t) = 0, if wA (FY (t)) < wM (FY (t)) ,

and let

Z(t) = −
∫ t

0

θ(τ) dτ.

Z(Y ) is a solution for Problem 1. ¤

Notice that the solution is not unique. Indeed, if Z is a solution, then translation
invariance of the risk measures implies that Z + c is also optimal, provided it
is an element of Z. Further, if the set {t ∈ R : wA (FY (t)) = wM (FY (t))} is
a set of positive Lebesgue measure, then there are infinitely many solutions of
the form indicated in the Theorem.

The solutions given in Theorem 2 are non-negative for events where the
standing risk takes positive values and are non-positive when Y is negative.
Thus, they always consist of ceding some risk to the market. The risk is split
into infinitesimal layers and the decision on wether to cede a given layer is taken
by comparing the values of wA and wM , with indifference when they are equal.

3 Example

For example, suppose that

wA(t) =
{

4t, for t ∈ [0, 1
10 );

1+2t
3 , for t ∈ ( 1

10 , 1], wM (t) =
√

t.

Then, we have

wA(t) < wM (t) if t <
1
16

or t >
1
4
,

wA(t) > wM (t) if
1
16

< t <
1
4
.

Hence, the agent’s optimal strategy is to cede all the risk layers between quan-
tiles 1

16 and 1
4 . To be more concrete, consider the following cases:
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Insurable losses

If the random variable Y represents the amount of some insurable loss, then
the solution above means that the agent should buy an insurance policy of the
type “stop-loss with ceiling”. More precisely, a policy that refunds the losses
according to the formula

Z(y) =





0, if y ≥ VaRY (1
4 );

VaRY ( 1
4 )− y, if VaRY ( 1

16 ) < y < VaRY ( 1
4 );

VaRY ( 1
4 )−VaRY ( 1

16 ), if y ≤ VaRY ( 1
16 ),

where VaRY (α) = sup{v : Pr{Y < v} ≤ α} is the Value at Risk for the loss Y .

Asset return

Suppose that Y represents the return of some asset S at a future time T

Y =
ST − S0

S0
.

Then, the solution above means the owner should write an european put and
buy an european call on that asset. The strike of the put should be

sup
{

v : Pr{ST < v} ≤ 1
16

}
,

and the strike of the call should be

sup
{

v : Pr{ST < v} ≤ 1
4

}
.

The example above is easy to generalize. Provided the graphs of wA and
wM cross only a finite number of times, the optimal strategy in the asset return
problem is always a finite combination of put and call options. In the insurance
problem, the solution is a combination of stop-loss treaties with ceiling, possibly
with an infinite-ceiling stop-loss.

4 Proof of Theorem 2

The remaining of this paper consists of the proof of Theorem 2.
Notice that, in the case wA = wM = Id, the theorem is trivial. Also, if

wA 6= Id = wM , then the optimal strategy for the agent is to sell the standing
risk for its expected value, while for wA = Id 6= wM , Z ≡ 0 (no trade) is
optimal. Thus, we can take the additional assumption:

Assumption 5 wA 6= Id and wM 6= Id. ¤

7



All the proofs and results below are conditional on Assumptions 1 to 5, but
we will not mention these any more to avoid repetition.

In order to prove Theorem 2, we will proceed by steps. Thus, this Section
is organized into subsections as follows:

In Section 4.1, we reformulate the problem as the minimization of a func-
tional with domain in a space of probability laws. We discuss some properties
of such functionals and prove existence of a solution for certain sets of tradable
risks.

In Section 4.2, we introduce a discretized version of Problem 1 and show
that it approximates the original problem when the mesh size goes to zero.

Section 4.3 contains a solution for the discretized problem, under some ad-
ditional assumptions.

Sections 4.4 and 4.5 contain some technical results about Kusuoka repre-
sentations of risk measures and absolutely continuous functions, respectively.
These results are used in Section 4.6 to show that the solution for the discretized
problem approximates a solution of the Problem 1 and the supplementary as-
sumptions introduced in Section 4.3 can be lifted.

4.1 Spaces of joint probabilities

Since the measures ρA, ρM are law invariant, we are only concerned with joint
distributions of pairs (Y,Z), of standing and traded risks.

Since (Ω,F , P ) is atom-less, the space of all joint probability laws of pairs
(X1, X2) ∈ X × X coincides with the set M of all Borel probability measures
η : BR2 7→ [0, 1]. Given two random variables X1, X2 ∈ X , we have X2 = g(X1)
for some function g : R 7→ R if and only if Pr{(X1, X2) ∈ Graph(g)} = 1.

For any η ∈M, we set

ρA(η) = ρA(X1 + X2), ρM (η) = ρM (−X2),

where X1, X2 ∈ X are any random variables with joint probability law η.
Given a standing risk Y and a set of tradable risks Z, we denote by M(Y,Z)

the set of all measures η ∈M that are joint probability laws of (Y, Z) for some
Z ∈ Z. With this notation, the Problem 1 can be reformulated as

Problem 2 Find η̂ ∈M(Y,Z) such that

ρA(η̂) + ρM (η̂) = min
{
ρA(η) + ρM (η) : η ∈M(Y,Z)

}
. ¤

For each k ∈ [0, +∞), consider the set

Zk = {Z ∈ X : Pr{min(0,−Y )− k ≤ Z ≤ max(0,−Y ) + k} = 1} ,

and denote the set M(Y,Zk) by MY,k. Using this notation, the Assumption 4 is
equivalent to any of the two inclusions

Z0 ⊂ Z, or MY,0 ⊂M(Y,Z).
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We provide the set M with the topology of weak convergence over the space
Cc, of all continuous functions g : R2 7→ R with compact support. This means
that a sequence {ηn ∈M}n∈N is said to converge to η ∈M if and only if

lim
∫

R2
gdηn =

∫

R2
gdη

For every g ∈ Cc.
The following propositions state important properties of MY,k

Proposition 1 MY,k is a compact convex subset of M. ¤

Proof. Convexity follows immediately from the fact that convex combinations
of probability measures are again probability measures with support contained
in the union of the supports of the original measures.

To prove that MY,k is compact, we introduce the short notation

〈η, g〉 =
∫

R2
gdη, η ∈M, g ∈ Cc.

The set Cc provided with the topology of uniform convergence admits a count-
able dense subset {gn}n∈N. Since |〈η, g〉| ≤ max

x∈R2
|g(x)| < +∞ holds for every

η ∈ M, g ∈ Cc, it follows that every sequence {〈ηn, g〉}n∈N is a real bounded
sequence and therefore contains a convergent subsequence. Thus, we can pick{

ηn1
i

}
i∈N

, a subsequence of {ηn ∈ MY,k}n∈N such that
{〈

ηn1
i
, g1

〉}
i∈N

is con-

vergent. Repeating the same argument, for each j ∈ N we can pick
{

ηnj+1
i

}
i∈N

,

a subsequence of
{

ηnj
i

}
i∈N

such that
{〈

ηnj+1
i

, gj+1

〉}
i∈N

converges. It follows

that
{

ηni
i

}
i∈N

is a subsequence of {ηn}n∈N such that all the sequences

{〈
ηni

i
, gj

〉}
i∈N

, j ∈ N

converge. To see that all the sequences
{〈

ηni
i
, g

〉}
i∈N

, g ∈ Cc

converge, notice that
∣∣∣
〈
ηni

i
, g

〉
− 〈

ηnm
m

, g
〉∣∣∣ ≤

≤
∣∣∣
〈
ηni

i
, gj

〉
− 〈

ηnm
m

, gj

〉∣∣∣ +
∣∣∣
〈
ηni

i
, g − gj

〉∣∣∣ +
∣∣〈ηnm

m
, g − gj

〉∣∣ ≤

≤
∣∣∣
〈
ηni

i
, gj

〉
− 〈

ηnm
m

, gj

〉∣∣∣ + 2 max
x∈R2

|g(x)− gj(x)| .

Since {gj}j∈N is dense in Cc, we see that
{〈

ηni
i
, g

〉}
i∈N

is a Cauchy sequence

and therefore it is convergent.
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This shows that the map g 7→ lim
〈
ηni

i
, g

〉
is a well defined positive bounded

linear functional in Cc. Thus, the Riesz representation theorem (see, e.g. Rudin
(1987)) states that there is one unique regular positive measure η satisfying

〈η, g〉 = lim
〈
ηni

i
, g

〉
, ∀g ∈ Cc.

Let K = {(y, z) : min(0,−y) − k ≤ z ≤ max(0,−y) + k}. Since
〈
ηni

i
, g

〉
= 0

holds whenever Supp(g)∩K = ∅, it is clear that η
(
R2 \K

)
= 0. Thus, in order

to show that η ∈ MY,k, we only need to show that η(A × R) = Pr{Y ∈ A}
holds for every open set A ⊂ R.

Fix an open set A ⊂ R, a small ε > 0, and pick a compact set B ⊂ A such
that Pr{Y ∈ A \B} < ε. There is a function g ∈ Cc such that

χ{(y,z):y∈B,0≤z≤y} ≤ g ≤ χ
A×R.

Then,
lim ηni

i
(A× R) ≥ lim

〈
ηni

i
, g

〉
= 〈η, g〉.

By taking a sequence gj converging monotonically from below to χ
A×R, we see

that lim ηni
i
(A×R) ≥ η(A×R). Also, lim ηni

i
(A×R) ≤ lim

〈
ηni

i
, g

〉
+ε = 〈η, g〉+

ε ≤ η(A×R) + ε. Making ε go to zero, we see that lim ηni
i
(A×R) ≤ η(A×R).

Proposition 2 (For fixed but arbitrary k ∈ [0,+∞))
ρA(η) + ρM (η) is well defined for every η ∈ MY,k. The map η 7→ ρA(η) +

ρM (η) is lower semicontinuous in MY,k. ¤

Proof. Let (Y,Z) have joint probability law η ∈MY,k. Then,

FY +Z(t) ≥ FY (t− k), F−Z(t) ≥ FY (t− k), ∀t ≥ k. (3)

Therefore,
∫ +∞

0

(wA(FY +Z(t))− 1) dt ≥− k +
∫ +∞

0

(wA(FY (t))− 1) dt =

=ρA(max(0, Y ))− k;
∫ +∞

0

(wM (F−Z(t))− 1) dt ≥− k +
∫ +∞

0

(wM (FY (t))− 1) dt =

=ρM (max(0, Y ))− k.

Hence, Assumption 3 guarantees that ρA(η) + ρM (η) is a well defined number
in (−∞, +∞].

Pick a sequence {ηn ∈MY,k}n∈N, converging to η ∈ MY,k. The sequences
FY +Zn(t), F−Zn(t) converge pointwise to FY +Z(t), F−Z(t), respectively.
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The inequalities (3) and Lebesgue’s dominated convergence theorem guar-
antee that

lim
∫ +∞

0

(wA(FY +Zn
(t))− 1) dt =

∫ +∞

0

(wA(FY +Z(t))− 1) dt,

lim
∫ +∞

0

(wA(F−Zn(t))− 1) dt =
∫ +∞

0

(wA(F−Z(t))− 1) dt,

while Fatou’s Lemma guarantees that

lim inf
∫ 0

−∞
wA(FY +Zn

(t))dt ≥
∫ 0

−∞
wA(FY +Z(t))dt,

lim inf
∫ 0

−∞
wA(F−Zn(t))dt ≥

∫ 0

−∞
wA(F−Z(t))dt.

This proves lower semicontinuity of η 7→ ρA(η) + ρM (η).

Propositions 1 and 2 have the following obvious corollary:

Corollary 1 The functional η 7→ ρA(η) + ρM (η) admits a minimum in MY,k,
i.e., the Problem 1 admits a solution in Zk. ¤

4.2 Discretization

Problem 1 is easy to approximate by discrete problems of the same type, and
we use this feature to characterize its solutions.

First, consider a discretization of the standing risk, i.e., for each n ∈ N we
consider the discrete random variable Yn defined as

Yn =
i

2n
, if and only if Y ∈

(
i− 1
2n

,
i

2n

]
, i ∈ Z.

The set X has the obvious discretization X (n), consisting of all F-measurable
random variables taking values in the set

{
i

2n , i ∈ Z}
. This introduces the dis-

cretization of Zk

Z(n)
k =

{
Z ∈ X (n) : Pr{min(0,−Yn)− k ≤ Z ≤ max(0,−Yn) + k} = 1

}
,

corresponding to the discretization of MY,k, M(n)
Y,k = M

(Yn,Z(n)
k )

. Notice that

M(n)
Y,k is the set of all η ∈M satisfying the following conditions:

(i) η is concentrated in the set
{(

i

2n
,

j

2n

)
: i, j ∈ Z, min(0,−i)− k2n ≤ j ≤ max(0,−i) + k2n

}
;

(ii)
∑

−∞<i≤t

∑
j∈Z

η
{(

i
2n , j

2n

)}
= FY

(
t

2n

)
, ∀t ∈ Z.
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The following proposition guarantees that M(n)
Y,k is a “good” discretization of

MY,k.

Proposition 3 ρA(η) + ρM (η) is well defined for every η ∈M(n)
Y,k. Further:

(i) If
{

ρn ∈M(n)
Y,k

}
n∈N

is a sequence converging to η ∈MY,k, then

lim inf (ρA(ηn) + ρM (ηn)) ≥ ρA(η) + ρM (η);

(ii) For every η ∈ MY,k there exists a sequence
{

ρn ∈M(n)
Y,k

}
n∈N

converging

to η such that lim (ρA(ηn) + ρM (ηn)) = ρA(η) + ρM (η). ¤

Proof. For every η ∈ M(n)
Y,k, we have FYn

(t) ≥ FY

(
t− 1

2n

)
. Hence, the argu-

ment used to prove Proposition 2 also proves that ρA(η)+ρM (η) is well defined
and (i) holds.

Fix η ∈ MY,k. In order to prove (ii), we only need to find a sequence{
ρn ∈M(n)

Y,k

}
n∈N

converging to η such that

lim
∫ 0

−∞
wA (FYn+Zn(t)) dt ≤

∫ 0

−∞
wA (FY +Z(t)) dt,

lim
∫ 0

−∞
wM (F−Zn(t)) dt ≤

∫ 0

−∞
wM (F−Z(t)) dt.

Pick the sequence defined as

ηn

{(
i

2n
,

j

2n

)}
= η

((
i− 1
2n

,
i

2n

]
×

(
j − 1
2n

,
j

2n

])
, i, j ∈ Z.

It can be checked that

FYn+Zn(t) ≤ FY +Z(t), F−Zn(t) ≤ F−Z

(
t +

1
2n

)
, ∀t ∈ R.

Hence
∫ 0

−∞
wA (FYn+Zn(t)) dt ≤

∫ 0

−∞
wA (FY +Z(t)) dt,

∫ 0

−∞
wM (F−Zn(t)) dt ≤ 1

2n
+

∫ 0

−∞
wM (F−Z(t)) dt

for every n ∈ N, and the result follows.
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4.3 Solutions for the discretized problem

In this section we solve the discretized problem

Problem 3 Find Zn ∈ Z(n)
k such that

ρA(Yn + Zn) + ρM (Zn) = min
{

ρA(Yn + Z) + ρM (Z) : Z ∈ Z(n)
k

}
.

Equivalently, find ηn ∈M(n)
Y,k such that

ρA(ηn) + ρM (ηn) = min
{

ρA(η) + ρM (η) : η ∈M(n)
Y,k

}
. ¤

Proposition 4 For each n ∈ N, let Jn denote a function such that

Jn(0) = 0;

Jn

(
i + 1
2n

)
= Jn

(
i

2n

)
− 1

2n
, if wA

(
FY (

i

2n
)
)

> wM

(
FY (

i

2n
)
)

;

Jn

(
i + 1
2n

)
= Jn

(
i

2n

)
, if wA

(
FY (

i

2n
)
)

< wM

(
FY (

i

2n
)
)

.

If wA and wM are strictly concave, then Zn = Jn (Yn) is a solution for Problem
3. ¤

In order to prove Proposition 4, we use some intermediate Lemmas. First,
we introduce some notation.

Fix Zn ∈ Z(n)
k , a solution of Problem 3, and let η ∈ M(n)

Y,k denote the joint
probability law of (Yn, Zn). For i ∈ Z, and sufficiently small ε ∈ R, let

∆A(i, ε) = wA

(
FYn+Zn(

i

2n
) + ε

)
− wA

(
FYn+Zn(

i

2n
)
)

,

∆M (i, ε) = wM

(
F−Zn(

i

2n
) + ε

)
− wM

(
F−Zn(

i

2n
)
)

.

Let

pi,j = η

{(
i

2n
,

j

2n

)}
, i, j ∈ Z.

Fix (i1, j1) ∈ Z2 such that pi1,j1 > 0. For j2 6= j1, ε ∈ (0, pi1,j1 ], let η̃ denote
the measure corresponding to

p̃i,j =





pi,j , for (i, j) /∈ {(i1, j1), (i1, j2)},
pi1,j1 − ε, for (i, j) = (i1, j1),
pi1,j2 + ε, for (i, j) = (i1, j2).

Lemma 1 For j1 < j2:

ρA(η̃)− ρA(η) =
j2−1∑

s=j1

∆A(i1 + s,−ε)
2n

, ρM (η̃)− ρM (η) =
−j1−1∑

s=−j2

∆M (s, ε)
2n

;
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For j1 > j2:

ρA(η̃)− ρA(η) =
j1−1∑

s=j2

∆A(i1 + s, ε)
2n

, ρM (η̃)− ρM (η) =
−j2−1∑

s=−j1

∆M (s,−ε)
2n

. ¤

Proof. Let (Yn, Z̃) have joint probability law η̃.
For j1 < j2, we have:

FYn+Z̃(t) =

{
FYn+Zn(t)− ε, for i1+j1

2n ≤ t < i1+j2
2n ,

FYn+Zn
(t), otherwise.

F−Z̃(t) =

{
F−Zn

(t) + ε, for − j2
2n ≤ t < − j1

2n ,

F−Zn(t), otherwise.

For j1 > j2, we have:

FYn+Z̃(t) =

{
FYn+Zn(t) + ε, for i1+j2

2n ≤ t < i1+j1
2n ,

FYn+Zn(t), otherwise.

F−Z̃(t) =

{
F−Zn(t)− ε, for − j1

2n ≤ t < − j2
2n ,

F−Zn(t), otherwise.

Since

ρA(η) =
∑

−∞<i<0

wA

(
FYn+Zn( i

2n )
)

2n
+

∑

0≤i<+∞

wA

(
FYn+Zn( i

2n )
)− 1

2n
,

ρM (η) =
∑

−∞<i<0

wM

(
F−Zn( i

2n )
)

2n
+

∑

0≤i<+∞

wM

(
F−Zn( i

2n )
)− 1

2n
,

the Lemma follows by simple computation.

Lemma 2 For each i ∈ Z there exists at most one j such that pi,j > 0. ¤

Proof. Fix i1 ∈ Z and suppose there are j1 6= j2 such that pi1,j1 > 0, pi1,j2 > 0.
Without loss of generality, we may assume that j1 < j2. Optimality of Zn,

together with Lemma 1 implies that, for every sufficiently small ε > 0:

j2−1∑

s=j1

∆M (−s− 1, ε) ≥
j2−1∑

s=j1

−∆A(i1 + s,−ε),

j2−1∑

s=j1

∆A(i1 + s, ε) ≥
j2−1∑

s=j1

−∆M (−s− 1,−ε).
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But, strict concavity of wA, wM implies

j2−1∑

s=j1

∆M (−s− 1, ε) <

j2−1∑

s=j1

−∆M (−s− 1,−ε),

j2−1∑

s=j1

∆A(i1 + s, ε) <

j2−1∑

s=j1

−∆A(i1 + s,−ε).

Since this is a contradiction, we see that j1 must be equal to j2.

Lemma 3 For any (i1, j1), (i2, j2) ∈ Z2 such that i1 < i2, pi1,j1 > 0, pi2,j2 > 0,
we have:

j2 ≤ j1 ≤ j2 + i2 − i1. ¤

Proof. Fix (i1, j1), (i2, j2) as above and suppose that j1 < j2. For ε ∈
(0, min(pi1,j1 , pi2,j2)], let η̃ ∈M(n)

Y,k denote the measure corresponding to

p̃i,j =





pi,j , for (i, j) /∈ {(i1, j1), (i1, j2), (i2, j1), (i2, j2)},
pi1,j1 − ε, for (i, j) = (i1, j1),
pi1,j2 + ε, for (i, j) = (i1, j2),
pi2,j1 + ε, for (i, j) = (i2, j1),
pi2,j2 − ε, for (i, j) = (i2, j2).

It is clear that F−Z̃ ≡ F−Zn . Hence,

ρA(η̃) + ρM (η̃)− (ρA(η) + ρM (η)) = ρA(η̃)− ρA(η).

Using Lemma 1, one obtains

ρA(η̃)− ρA(η) =
j2−1∑

s=j1

∆A(i2 + s, ε) + ∆A(i1 + s,−ε)
2n

.

Therefore, strict concavity of wA implies ρA(η̃)− ρA(η) < 0, a contradiction to
the optimality of Zn.

Now, suppose that i1 + j1 > i2 + j2. Let d = i1 + j1 − (i2 + j2), and let
η̃ ∈M(n)

Y,k denote the measure corresponding to

p̃i,j =





pi,j , for (i, j) /∈ {(i1, j1), (i1, j2), (i2, j1 − d), (i2, j2 + d)},
pi1,j1 − ε, for (i, j) = (i1, j1),
pi1,j1−d + ε, for (i, j) = (i1, j1 − d),
pi2,j2 − ε, for (i, j) = (i2, j2),
pi2,j2+d + ε, for (i, j) = (i2, j2 + d).
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In this case, one obtains

ρA(η̃) + ρM (η̃)− (ρA(η) + ρM (η)) = ρM (η̃)− ρM (η) =

=
d∑

s=1

∆M (1− j1 − s,−ε) + ∆M (−j2 − s, ε)
2n

,

and strict concavity of wM implies that this sum is again strictly negative.

Proof of Proposition 4. Lemmas 2 and 3 show that there is a sequence
{ji,∈ Z}i∈Z such that

pi,j > 0 only if j = ji,

and this sequence satisfies ji+1 ∈ {ji, ji − 1}, ∀i ∈ Z.
Fix i1 ∈ Z, and assume that ji1+1 = ji1 − 1. Consider the sequence

j̃i =

{
ji, if i ≤ i1,

ji + 1, if i > i1,

and let η̃ ∈M(n)
Y,k denote the measure corresponding to

p̃i,j =

{
pi,j , if i ≤ i1,

pi,j+1, if i > i1.

In other words, we consider the risk

Z̃(Yn) =

{
Zn(Yn), for Yn ≤ i1

2n ;

Zn(Yn) + 1
2n , for Yn > i1

2n .

It can be checked that

FYn+Z̃(
i

2n
) =





FYn+Zn( i
2n ), for i < i1 + ji1 ,

FY ( i1
2n ), for i = i1 + ji1 ,

FYn+Zn( i−1
2n ), for i > i1 + ji1 ;

F−Z̃(
i

2n
) =

{
F−Zn( i

2n ), for i < −ji1 ,

F−Zn( i+1
2n ), for i ≥ −ji1 .

Then, a simple but tedious computation leads to

wA(η̃)− wA(η) =
wA

(
FY ( i1

2n )
)− 1

2n
,

wM (η̃)− wM (η) =
1− wM

(
F−Zn(−ji1

2n )
)

2n
.
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But, due to Lemma 3 and ji1+1 = ji1 − 1, we have

F−Zn
(
−ji1

2n
) = Pr{Zn ≥ ji1

2n
} = FY (

i1
2n

).

Hence,

wA(η̃) + wM (η̃)− (wA(η) + wM (η)) =
wA

(
FY ( i1

2n )
)− wM

(
FY ( i1

2n )
)

2n
.

Hence, optimality of Zn requires wA

(
FY ( i1

2n )
) ≥ wM

(
FY ( i1

2n )
)
, and in the case

wA

(
FY ( i1

2n )
)

= wM

(
FY ( i1

2n )
)
, both Zn and Z̃ are optimal.

Assuming that ji1+1 = ji1 , and considering the risk

Z̃(Yn) =

{
Zn(Yn), for Yn ≤ i1

2n ;

Zn(Yn)− 1
2n , for Yn > i1

2n ,

then, the same argument shows that optimality of Zn requires wA

(
FY ( i1

2n )
) ≤

wM

(
FY ( i1

2n )
)
, and Zn and Z̃ are both optimal if wA

(
FY ( i1

2n )
)

= wM

(
FY ( i1

2n )
)
.

4.4 Concave functions

Definition 3 Let WY denote the set of all continuous concave functions w :
[0, 1] 7→ [0, 1] such that

w(0) = 0, w(1) = 1,

∫ +∞

0

(1− w(FY (t))) dt < +∞,

and let W+
Y denote the set of all w ∈ WY that are strictly concave. ¤

Notice that Assumption 3 is equivalent to

wA, wM ∈ WY .

Lemma 4 There is a continuous strictly convex strictly decreasing function
α : [0, 1] 7→ [0, 1] such that

α(1) = 0,

∫ +∞

0

α(FY (t))dt < +∞. ¤

Proof. Let G denote a concave continuous strictly increasing function such
that

G(0) = 0, G(t) ≤ FY (t), ∀t ≥ 0, lim
t→+∞

G(t) = 1

(for example, G may be piecewise linear), and let

α(t) =
1

(1 + G−1(t))2
, t ∈ [0, 1).

α can be extended by continuity to t = 1 and it satisfies the conditions in the
Lemma

17



Lemma 5 For any w ∈ WY \ {Id}, there is u ∈ W+
Y such that

u(t) < w(t), ∀t ∈ (0, 1). ¤

Proof. Since w is concave and is not the identity, there exists t1 ∈ (0, 1) such
that w(t1) > t1. Therefore, the graph of w lies above the graph of

w1(t) =

{
w(t1)

t1
t, for t ∈ [0, t1];

w(t1) + 1−w(t1)
1−t1

(t− t1), for t ∈ (t1, 1].

For any ε ∈ (0, 1), the function uε(t) = t + εt(1 − t) is continuous, strictly
concave, strictly increasing in [0, 1], with uε(0) = 0, uε(1) = 1. For sufficiently
small ε > 0, its graph lies below the graph of w1 and hence uε(t) < w(t),
∀t ∈ (0, 1). If E(Y ) < +∞, then uε ∈ W+

Y .
In order to prove the Lemma for the case E(Y ) = +∞, fix a function α

satisfying Lemma 4. The function w1 = w−α is continuous and strictly concave.
Therefore, it admits left-derivative at every point of (0, 1], and w′1(t) < w1(t)

t
for every t ∈ (0, 1). Hence, for θ < 1 sufficiently close to 1 and ε > 0 sufficiently
small, the function

u(t) =

{
w1(θ)

θ t + εt(θ − t), if t ∈ [0, θ];
w1(t), if t ∈ (θ, 1],

satisfies the Lemma.

Lemma 6 For any w ∈ WY \ {Id} and any open set A ⊂ [0, 1], there are
w1, w2 ∈ W+

Y such that w1 ≤ w2 ≤ w and w1(t) < w2(t) if and only if t ∈ A. ¤

Proof. Due to Lemma 5, we can pick u1, u2 ∈ W+
Y such that

u1(t) < u2(t) < w(t), ∀t ∈ (0, 1).

First, consider the case A = (a, b), for some 0 ≤ a < b ≤ 1, such that
the graph of u1 lies below the straight line interpolating the points (a, u2(a)),
(b, u2(b). Let

u(a,b)(t) =

{
u2(t), for t ∈ [0, 1] \ (a, b);

u2(a) + u2(b)−u2(a)
b−a (t− a), for t ∈ (a, b).

Since u2 is strictly concave and u(a,b) ≥ u1, we see the Lemma holds with
w1 = (1− 2λ)w + λu(a,b) + λu2, w2 = (1− 2λ)w + 2λu2, for any λ ∈ (0, 1).

Now, consider an arbitrary open set A ⊂ (0, 1), and pick u1, u2 as above.
For any t ∈ (0, 1) there are a < t, b > t such that the graph of u1 lies below the
straight line interpolating the points (a, u2(a)), (b, u2(b). Hence, A is the union
of countably many intervals {(ai, bi)}i∈N with this property. For each of these
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intervals, pick the function u(ai,bi) as above. Then, we see the Lemma holds
with

w1 = (1− 2λ)w + λ

∞∑

i=1

1
2i

u(ai,bi) + λu2, w2 = (1− 2λ)w + 2λu2,

with λ ∈ (0, 1).

4.5 Approximation of absolutely continuous functions

Lemma 7 Fix θ : R 7→ R, a measurable function such that

0 ≤ θ(t) ≤ 1, a.e. t ∈ R.

There exists a sequence {θn : R 7→ R}n∈N such that:

(i) For every n ∈ N, θn(R) = {0, 1}, and the support of θn is contained in the
support of θ;

(ii) The sequence Zn(t) =
∫ t

0
θn(τ)dτ, t ∈ R converges uniformly towards

Z(t) =
∫ t

0
θ(τ)dτ. ¤

Proof. Consider the function

u(t) =

{
1, if θ(t) > 0;
0, if θ(t) = 0.

We define θn recursively for each interval
(

i
n , i+1

n

]
:

θn(t) =

{
u(t) ∀t ∈ (

i
n , i+1

n

]
, if Z( i

n ) > Zn( i
n );

0 ∀t ∈ (
i
n , i+1

n

]
, if Z( i

n ) ≤ Zn( i
n )

for i ≥ 0;

θn(t) =

{
u(t) ∀t ∈ (

i
n , i+1

n

]
, if Z( i+1

n ) < Zn( i+1
n );

0 ∀t ∈ (
i
n , i+1

n

]
, if Z( i+1

n ) ≥ Zn( i+1
n )

for i < 0.

Then, |Zn(t)− Z(t)| ≤ 1
n for every t ∈ R.

4.6 The continuous problem

In this section we use the results in Sections 4.1 to 4.5 to prove Theorem 2 in
its full generality.

We start with the following particular case

Proposition 5 Suppose Z = Zk and let

θ(t) =

{
1, if wA(FY (t)) > wM (FY (t)),
0, if wA(FY (t)) ≤ wM (FY (t)),

Z(t) = −
∫ t

0

θ(τ)dτ.

If wA, wM ∈ W+
Y , then Z(Y ) is a solution for the Problem 1. ¤
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Proof. Let
{

Zn ∈ Z(n)
k

}
n∈N

denote the sequence of solutions for the discretized

problems, described in Proposition 4 with

Jn

(
i + 1
2n

)
= Jn

(
i

2n

)
− 1

2n
, if wA

(
FY (

i

2n
)
)

> wM

(
FY (

i

2n
)
)

,

Jn

(
i + 1
2n

)
= Jn

(
i

2n

)
, if wA

(
FY (

i

2n
)
)
≤ wM

(
FY (

i

2n
)
)

.

We identify the function i 7→ Jn

(
i

2n

)
with the piecewise linear function y 7→

Zn(y) that interpolates the points
(

i
2n , Jn

(
i

2n

))
, i ∈ Z.

The sequence of functions y 7→ Zn(y) converges to the function y 7→ Z(y),
uniformly over compact intervals. Therefore, Proposition 3 guarantees optimal-
ity of Z.

To extend Proposition 5 to the case when wA, wM are concave but not
strictly concave, we use the following Lemma:

Lemma 8 Fix w ∈ WY and sequences {w(n)
A ∈ WY }n∈N, {w(n)

M ∈ WY }n∈N
such that

w ≤ w
(n)
A ≤ w

(n+1)
A ≤ wA, w ≤ w

(n)
M ≤ w

(n+1)
M ≤ wM , ∀n ∈ N,

lim w
(n)
A (t) = wA(t), lim w

(n)
M (t) = wM (t), ∀t ∈ [0, 1].

Let ρ
(n)
A , ρ

(n)
M denote the risk measures corresponding to the functions w

(n)
A , w

(n)
M ,

respectively. Consider a sequence {ηn ∈MY,k}n∈N such that

ρ
(n)
A (ηn) + ρ

(n)
M (ηn) = min

{
ρ
(n)
A (η) + ρ

(n)
M (η) : η ∈MY,k

}
.

If ηn converges to η ∈MY,k, then η is a solution for Problem 2. ¤

Proof. Fix η̂ ∈ MY,k, a solution for Problem 2. Using Lebesgue’s monotone
convergence and dominated convergence theorems, one obtains

ρA(η̂) + ρM (η̂) = lim ρ
(n)
A (η̂) + ρ

(n)
M (η̂).

Thus, optimality of ηn implies

ρA(η̂) + ρM (η̂) ≥ lim sup ρ
(n)
A (ηn) + ρ

(n)
M (ηn).

Using again Lebesgue’s monotone convergence and dominated convergence the-
orems, one obtains

ρA(η̂) + ρM (η̂) ≥ ρA(η) + ρM (η),

hence η is optimal.

Now, consider the case wA, wM ∈ WY .
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Proposition 6 Fix an open set V ⊂ (0, 1) and consider the functions

θ(t) =





1, if wA(FY (t)) > wM (FY (t))or
(wA(FY (t)) = wM (FY (t)) and FY (t) ∈ V ),

0, otherwise,

Z(t) = −
∫ t

0

θ(τ)dτ.

Z(Y ) is a solution for the Problem 1. ¤

Proof. Using Lemma 6, pick w1, w2 ∈ W+
Y such that w1 ≤ w2 ≤ min(wA, wM )

and w1(t) < w2(t) if and only if t ∈ V . Let {w(n)
A ∈ W+

Y }n∈N, {w(n)
M ∈ W+

Y }n∈N
be the sequences:

w
(n)
A =

n− 2
n

wA +
1
n

w1 +
1
n

w2,

w
(n)
M =

n− 2
n

wM +
2
n

w1.

Consider the functions

θn(t) =

{
1, if w

(n)
A (FY (t)) > w

(n)
M (FY (t)),

0, if w
(n)
A (FY (t)) ≤ w

(n)
M (FY (t)),

Zn(t) = −
∫ t

0

θn(τ)dτ.

Proposition 5 guarantees that each Zn(Y ) is a solution for the Problem 1 with
risk measures ρ

(n)
A , ρ

(n)
M , corresponding to the functions w

(n)
A , w

(n)
M , respectively.

Since Zn converges to Z uniformly on compact intervals, the result follows
from Lemma 8.

Due to Lemma 7, every function Z of the type described in the Theorem
2 can be approximated by a sequence of functions of the type described in
Proposition 6. Taking into account lower semicontinuity of η 7→ ρA(η)+ ρM (η),
this concludes the proof of Theorem 2 for the case Z = Zk.

To conclude the proof of Theorem 2, consider an arbitrary Z such that
Z0 ⊂ Z. The argument used to prove Lemma 2 shows that for any Z ∈ Z there
exists a Z̃ lying in some Zk (k large enough) such that ρA(Y + Z̃)+ ρM (−Z̃) <
ρA(Y + Z) + ρM (−Z). Due to translation-invariance, ρA(Y + Z̃ − Z̃(0)) +
ρM (−Z̃ + Z̃(0)) = ρA(Y + Z̃) + ρM (−Z̃). Hence, Problem 1 always admits a
particular solution lying in Z0.
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