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Abstract

In this work the ruin probability of the Lundberg risk process is used as a criterion for determining the
optimal security loading of premia in the presence of price-sensitive demand for insurance. Both single and
aggregated claim processes are considered and the independent and the dependent cases are analyzed. For
the single-risk case, we show that the optimal loading does not depend on the initial reserve. In the multiple
risk case we account for arbitrary dependency structures between different risks and for dependencies between
the probabilities of a client acquiring policies for different risks. In this case, the optimal loadings depend
on the initial reserve. In all cases the loadings minimizing the ruin probability do not coincide with the
loadings maximizing the expected profit

1 Introduction

Insurance is based on the idea that society asks for protection against unforeseeable events which may cause
serious financial damage. Insurance companies offer a financial protection against these events. The general
idea is to build a community where everybody contributes a certain amount and those who are exposed to the
damage receive financial reimbursement [35] .

When (non-life) insurers set premium prices they usually start by finding the so-called pure premium, which is
the expected value of the total claims that will occur in one time unit. However, when pricing insurance policies,
insurers must take into account the risk associated with the policy as well as additional costs (e.g. operational
cost, capital cost, etc.). Therefore, a so-called security loading is added to cover the risk and additional costs.
The security loading is often calculated using some premium calculation principle, and the insurance premium
is obtained once the security loading has been determined and added to the pure premium. The main concerns
are usually whether the loading is an appropriate measure of the risk and which premium principle to choose.
The higher the loading the higher the premium and consequently, the underwriting risk will be lower. However,
if the premium price is too high then the exposure will be too low due to competition, and the operational
cost of the insurer will engulf the premium income resulting in financial instability. Therefore, insurers usually
require sophisticated premium calculations in order to secure stability.

Collective risk models are fundamental in actuarial science to model the aggregate claim amount of a line of
business in an insurance company. The collective risk model has two random components, the number of claims
and the severity of claims, and is usually modelled with a compound process [15, Chapter 3]. The classical
Lundberg risk process has been studied extensively and there exist many variations, for example including
reinsurance or investments [14]. It assumes that premia come in a continuous stream while claims happen at
discrete times according to a Poisson distribution.

Another common assumption is that the risk can be divided into groups of homogeneous risks such that the
pure premia and security loadings can be estimated separately for each risk group. The pure premia of these
individual groups are usually modelled with generalized linear models (GLM). GLM’s have been applied exten-
sively in actuarial work and a good overview is provided in [26, 36]. Traditional risk theory has usually assumed
independence between risks due to its convenience, but it is generally not very realistic. Claims in an insurer’s
risk portfolio are correlated as they are subject to the same event causes [7]. Completely homogeneous risk
groups are extremely rare and dependence among risks has become a flourishing topic in actuarial literature
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[2]. Dependence has mostly been measured through linear correlation coefficients [4]. The popularity of linear
coefficient is mainly due to the ease with which dependencies can be parameterized, in terms of correlation
matrices. Most random variables, however, are not jointly elliptically distributed and it could be very mislead-
ing to use linear coefficients [30]. This motivated the use of concordance measures. Two random variables are
concordant when large values of one go with large values of the other [25]. The Lundberg risk model is a Lévy
jump process, [8] which means that the dependency of two claim processes is best explained through their Lévy
measure [32]. This study will not go into details about Lévy processes, but both [8] and [27] provide a very good
introduction, and [2, 5, 28, 34, 1] are examples of applications of Lévy copulas to risk processes. For example,
van Velesen [34] showed how Lévy copulas can be used in operational modelling and discussed how dependence
is implied by the Lévy copula. In this work we consider bivariate claim processes, but the presented theory can
be straightforwardly extended to multiple claim processes.

Ruin probability is a classical measure of risk and has been extensively studied [15, 14, 18, 33]. Although there
is no absolute meaning to the probability of ruin, it still measures the stability of insurance companies. A high
ruin probability indicates instability, and risk mitigation techniques should be used, like reinsurance or raising
premia [15]. Most non-life insurance products have a term of one year and therefore it can be argued that the
one year ruin probability should be used. The one year ruin probability is the probability that the capital of
an insurance company will hit zero within one year. However, the appropriateness of risk measures defined
over fixed time horizons can be questioned, since ruin in a given time span can be minimized by increasing the
probability of ruin in the aftermath of that period. Lundberg concluded that the actual assumptions behind
the classical collective risk model are in fact less restrictive when time-invariant quantities like the infinite time
ruin probability are considered [33]. Therefore, we focus on the infinite time ruin probability in this paper.

In this work, the optimal loadings based on two strategies are derived, and compared. One strategy maximizes
the profit and the other minimizes the ruin probability. We show that the two loading strategies give different
results. Furthermore, we show how the optimal loading with respect to the ruin probability can be found and
compare it to the one obtained when the expected profit is maximized. We consider dependencies and illustrate
how Lévy copulas can be used to model claim process dependencies and how dependencies can affect the
riskiness of the insurance portfolio. We take this idea further and consider dependency between the acquisition
of insurance for different risks by policyholders. This is a realistic assumption as policyholders usually buy
multiple insurance products from the same insurance company. We also take into account the fact that the
market risk process and the company’s risk process are not the same, and how the company’s risk process
depends on its exposure to the market. This is, to our knowledge, the first analysis of the interplay of the ruin
probability, the dependency structure of claim, and the dependency structure of acquisition of insurance. We
demonstrate that even if there is a strong dependency between insurance products within the market, small
insurance companies have less dependency and therefore less risk than bigger insurance companies, provided
the dependency between acquisition of insurance for different risks is not too strong.

The paper is organized as follows: Section 2 contains some background material about ruin probabilities in the
Lundberg process and aggregation of compound Poisson processes. Section 3 deals with the single-risk case.
We characterize the optimal loading and compare it with the loading maximizing the expected profit. Section 4
handles the multiple risks case. We show how the dependency structure existing in the market (i.e. the general
population) translates into the risk exposure of the company through its market shares on different risks and
the likelihood that clients acquire insurance for more than one risk. Section 5 contains a numerical illustration.
A numerical scheme to compute the ruin probabilities is given in the appendix.

2 Preliminaries

2.1 Claim and Surplus Processes

The Lundberg risk model describes the evolution of the capital of an insurance company and assumes that
exposure is constant in time, losses follow a compound Poisson process, and premia arrive at a fixed continuous
rate:

Xt = u+ ct−
Nt∑
i=0

Yi = u+ ct− St, Y0 := 0,

where u is the initial surplus, c is the risk premium rate, Nt is a time homogeneous Poisson process with intensity
parameter λ, and Yi are i.i.d. random variables representing the severity of claim i, i = 0, . . . , Nt. Here it is
assumed that Yi are positive. In the following sections, Y denotes an arbitrary random variable with the same
distribution as any Yi. The severity distribution is denoted as F (x) and the severity survival distribution as
F (x). St is a compound Poisson process and thus Xt is a stochastic process (sometimes called the surplus
process) representing the insurance wealth at time t. Xt increases because of earned premia and decreases when
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claims occur. When the capital of an insurance company hits zero, the insurance company is said to be ruined.
Formally, the ruin probability is defined as follows.

Definition 2.1 (Probability of Ruin). Let (Ω,F , {Ft}t≥0,P) be a filtered probability space and X = (Xt)t∈[0,∞[

a surplus process which is adapted and Markov with respect to the filtration. The state space is (R,B(R)). If X
is time homogeneous, the infinite time ruin probability is the function V : R 7→ [0, 1] such that

V (x) = P
(
∃s ∈ [0,+∞[: Xs ≤ 0

∣∣X0 = x
)
, x ∈ R.

Sometimes it is useful to use the survival (non-ruin) probability, defined as V (x) = 1−V (x). The ruin probability
can be calculated using the following integro-differential equation [11].

Proposition 2.1. Assume that Xt is defined as above and the premium rate satisfies c > λE[Y ]. If V ∈
C1(]0,∞[), then the probability of ruin with infinite time horizon satisfies the following equation:

0 = c
d

dx
V (x) + λ

(∫ x

0

V (x− y)dF (y)− V (x) + 1− F (x)

)
, x > 0, (2.1)

with the following boundary condition:{
V (x) = 1 x ≤ 0,

limx→0+ V (x) = λ
c E[Y ].

Furthermore, the probability of non-ruin satisfies the following equation:

V (x)− V (ε) =
λ

c

∫ x

ε

V (x− y)F (y)dy (2.2)

for 0 < ε ≤ x < +∞ with the following boundary condition:{
V (x) = 0 x ≤ 0,

limx→0+ V (x) = 1− λ
c E[Y ].

A numerical scheme solving equation (2.1) can be found in Appendix A.

2.2 Accounting for Claim Dependencies

Consider the surplus process X = (X
(1)
t , ..., X

(n)
t ) where

X
(1)
t = u(1) + c(1)t−

N
(1)
t∑
i=0

Y
(1)
i

...

X
(n)
t = u(n) + c(n)t−

N
(n)
t∑
i=0

Y
(n)
i

(2.3)

If these processes are independent, it is relatively easy to combine them into a single process using the aggregation
property of compound Poisson processes as described in Wütrich [35]. The aggregation property allows the
combination of multiple surplus processes into a single risk process as follows:

Xt =

n∑
j=1

u(j) +

n∑
j=1

c(j)t−
Nt∑
i=0

Yi,

where Nt is a Poisson r.v. with λ = λ1 + ... + λn and Yi are i.i.d. random variables, which follow the severity
distribution F (x) =

∑n
j=1

λj
λ Fj(x). This aggregation property allows us to use the integro-differential equation

(2.1) to calculate the ruin of multiple surplus processes.

If the risks are not independent, then we can use the fact that compound Poisson processes are characterized
by their Lévy measure to decompose the claim process into independent processes to which the aggregation
property can be applied. In particular, for n = 2 risks, we obtain the decomposition:

Xt = X
(1)
t +X

(2)
t = u+ ct− S1⊥

t − S2⊥
t − S

‖
t .

3



where S1⊥ and S2⊥ are compound Poisson processes accounting for events concerning only risk 1 and risk 2,
respectively. S‖ is a compound Poisson process accounting for events concerning both risks simultaneously.
Furthermore, S1⊥, S2⊥ and S‖ are mutually independent.

In this section, we briefly explain how this can be achieved. Further details can be found in [32]. We will use
the following definitions:

Definition 2.2. The tail integral of a Lévy measure ν on [0,∞]2 is given by a function U : [0,∞]2 7→ [0,∞]

U(x1, x2) = 0 if x1 =∞ or x2 =∞,
U(x1, x2) = ν

(
[x1,∞[×[x2,∞[

)
for (x1, x2) ∈]0,∞[2,

U(0, 0) =∞.
(2.4)

Definition 2.3 (Lévy Copula for Processes with Positive Jumps). A two-dimensional Lévy copula for Lévy
processes with positive jumps, or for short, a positive Lévy copula, is a 2-increasing grounded function C :
[0,∞]2 → [0,∞] with uniform margins, that is, C(x,∞) = C(∞, x) = x.

Similarly to Sklar’s theorem for ordinary copulas [25], it has been shown that the dependency structure of

(X
(1)
t , X

(2)
t ) can be characterized by a Levy copula C such that C(U1(x1), U2(x2)) where U1 and U2 are the

marginal tail integrals for X
(1)
t and X

(2)
t . If U1 and U2 are absolutely continuous, this Lévy copula is unique,

otherwise it is unique on Range(U1) × Range(U2), the product of ranges of one-dimensional tail integrals, [8,
Theorem 5.4]

Consider a two dimensional claim process:

St = (S
(1)
t , S

(2)
t ) =

Nt∑
i=0

(Y
(1)
i , Y

(2)
i ), (2.5)

where Nt is a Poisson process with intensity λ and Yi = (Y
(1)
i , Y

(2)
i ), i ∈ N are independent random variables

with common joint distribution FY . The components of S, S(1) and S(2), are one-dimensional compound Poisson
processes with intensities λ1 and λ2 and severity distributions FY (1) and FY (2) , respectively. We wish to obtain
a decomposition:

(S
(1)
t , S

(2)
t ) =

N1⊥
t∑
i=0

(Y
(1⊥)
i , 0) +

N2⊥
t∑
i=0

(0, Y
(2⊥)
i ) +

N
‖
t∑

i=0

(Y
(1‖)
i , Y

(2‖)
i ), (2.6)

where
∑N1⊥

t
i=0 Y

(1⊥)
i ,

∑N2⊥
t

i=0 Y
(2⊥)
i and

∑N
‖
t

i=0(Y
(1‖)
i , Y

(2‖)
i ) are independent compound Poisson processes with

intensities λ⊥1 , λ⊥2 , λ‖ and severity distributions FY 1⊥ ,FY 2⊥ ,FY ‖ , respectively. In the above setting, we consider

FY (0, 0) = FY ‖(0, 0) = 0, FY (1)(0) = FY 1⊥(0) = FY (2)(0) = FY 2⊥(0) (2.7)

A compound Poisson process, S, is a Lévy process with Lévy measure ν(dx) = λdF (x), with tail integral

U(x1, x2) =

{
λP
(
Y (1) ≥ x1, Y

(2) ≥ x2

)
if x1 > 0 or x2 > 0

+∞ if x1 = x2 = 0.

The components S(1) and S(2) are independent if and only if U(x1, x2) = 0 for every (x1, x2) ∈]0,+∞[, i.e., if
and only if limx1→0+,x2→0+ U(x1, x2) = 0.

The Lévy measure of the processes S(i), i = 1, 2, have tail integrals

U1(x1) = λ1 P
(
Y (1) ≥ x1

)
= U(x1, 0)

U2(x2) = λ2 P
(
Y (2) ≥ x2

)
= U(0, x2)

Taking equation (2.7) into account, one obtains

λi = lim
xi→0+

Ui(xi), i = 1, 2

λ = lim
x1,x2→0+

(
U1(x1) + U2(x2)− U(x1, x2)

)
= λ1 + λ2 − λ‖

λ‖ = lim
x1,x2→0+

U(x1, x2)

λ⊥i = λi − λ‖, i = 1, 2.
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The severity distributions FY 1⊥ , FY 2⊥ , and FY ‖ can be recovered from the tail integrals:

P
(
Y 1⊥ ≥ x1

)
=

1

λ⊥1
lim

x2→0+

(
U1(x1)− U(x1, x2)

)
P
(
Y 2⊥ ≥ x2

)
=

1

λ⊥2
lim

x1→0+

(
U2(x2)− U(x1, x2)

)
P
(
Y 1⊥ ≥ x1, Y

2⊥ ≥ x2

)
=

1

λ‖
U(x1, x2).

If the dependency between S(1) and S(2) is characterized by a Lévy copula, C, i.e. U(x1, x2) = C(U1(x1), U2(x2))
for (x1, x2) ∈ [0,+∞[2, then the relations above can be written using the Lévy copula and one-dimensional tail
integrals:

λ‖ = lim
u1→λ+

1 ,u2→λ+
2

C(u1, u2)

P
(
Y 1⊥ ≥ x1

)
=

1

λ⊥1
lim

u2→λ+
2

(
U1(x1)− C(U1(x1), u2)

)
P
(
Y 2⊥ ≥ x2

)
=

1

λ⊥2
lim

u1→λ+
1

(
U2(x2)− C(u1, U2(x2))

)
P
(
Y 1⊥ ≥ x1, Y

2⊥ ≥ x2

)
=

1

λ‖
C(U1(x1), U2(x2)).

Using the above methodology, the surplus process can be represented as:

Xt = u+ ct−
N1⊥
t∑
i=0

Y 1⊥
i −

N2⊥
t∑
i=0

Y 2⊥
i −

N
‖
t∑

i=0

(Y
1‖
i + Y

2‖
i ) = u+ ct−

N∗t∑
i=1

Y ∗i ,

where u = u1 + u2, c = c1 + c2, N∗ is a Poisson process with intensity λ = λ⊥1 + λ⊥2 + λ‖ and Y ∗i are i.i.d.
random variables with distribution:

F ∗ =
λ⊥1
λ
FY 1⊥ +

λ⊥2
λ
FY 2⊥ +

λ‖

λ
FY 1‖+Y 2‖ ,

where

FY 1‖+Y 2‖(x) =

∫
x1+x2≤x

dFY ‖(x1, x2).

3 The Optimal Loading for a Single Risk

An insurer can control the volume of its business through the premium loading θ. A reasonable assumption is
that the higher the loading, the smaller the number of contracts in its portfolio, which means that the claim
intensity (or business volume) will decrease. Therefore, both the claim intensity Eθ[N1], and the premium rate
c(θ), will depend on θ. It is reasonable to assume that E∞[N1] = 0, as abnormal premium rates will not attract
customers [13]. To capture these concepts let Eθ[N1] = λp(θ). Here λ is the average number of claims per unit
of time for the whole market, and p(θ) is the probability that a potential claim is filed as an actual claim to the
particular insurer under consideration. In other words, p(θ) reflects the demand or the market share sensitivity
to the loading parameter θ. p(θ) can be interpreted as a probability that a customer buys an insurance product.
For example, we may assume that demand of insurance contracts is described by a logit glm model as in Hardin
and Tabari [12]. Thus, p(θ), will be :

p(θ) =
1

1 + eβ0+β1θ
, (3.1)

where β0 and β1 are determined from the glm and θ is the loading parameter. β1 will be a positive number so
p→ 0 when θ →∞ and p→ 1 when θ → −∞. Assuming that the company has some fixed costs, independent
of the risk exposure, denoted by r > 0, the expression for the net premium income becomes:

c(θ) = (1 + θ)Eθ[N1]E[Y ]− r.

The following proposition characterizes the behaviour of the solution of equation (2.1) with respect to the
loading θ.

Proposition 3.1. If V (x, θ) satisfies equation (2.1) then V (x, θ) is strictly increasing with respect to the pa-

rameter α = Eθ[N1]
c(θ) .
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Proof. It is possible to integrate Equation (2.1) on the interval ]0, x] to obtain:

V (x, θ) =
Eθ[N1]

c(θ)

(
E[Y ] +

∫ x

0

(
V (z, θ)−

∫ z

0

V (z − y)dF (y) + F (z)− 1
)
dz

)
. (3.2)

To prove the proposition, we will study equations of the general form:

u(x) = α

(
g(x) +

∫ x

0

(
u(z)−

∫ z

0

u(z − y)dF (y)
)
dz

)
. (3.3)

We introduce the operator Ψ, acting on measurable locally bounded functions h : [0,+∞] 7→ R, as:

(Ψh)(x) =

∫ x

0

(
h(z)−

∫ z

0

h(z − y)dF (y)
)
dz, x ≥ 0 (3.4)

Notice that the transformation h 7→ Ψh is linear and for every h, Ψh : [0,+∞[7→ R is continuous, hence
measurable and locally bounded. Thus, powers of the operator Ψ are defined in the usual way.

Ψ0h = h, Ψnh = Ψ(Ψn−1h), n ∈ N.

Let, ‖h‖[0,x] = supz∈[0,x] |h(z)|. Then:

|(Ψh)(x)| ≤
∫ x

0

(
|h(z)|+

∫ z

0

|h(z − y)|dF (y)
)
dz ≤ 2x ‖h‖[0,x] .

If the inequality

‖(Ψnh)‖[0,x] ≤
2nxn

n!
‖h‖[0,x] (3.5)

holds, for some n ∈ N, then

|(Ψn+1h)(x)| ≤
∫ x

0

(
|(Ψnh)(z)|+

∫ z

0

|(Ψnh)(z − y)|dF (y)
)
dz

≤
∫ x

0

2
2nzn

n!
‖h‖[0,x] dz =

2n+1xn+1

(n+ 1)!
‖h‖[0,x] .

Thus, by induction, (3.5) holds for every n ∈ N. Therefore, for every x ∈ [0,∞[, fixed, there is some n ∈ N such
that Ψn is a contraction in the space of measureable and bounded functions h : [0, x] 7→ R. It follows from the
contraction principle that equation (3.2) has one unique solution. Further, limn→∞(αnΨn)h = 0, uniformly in
[0, x] for any given h and any fixed x ∈ [0,+∞[.
Let uα,g be the solution of equation (3.3) for given g and α. Then,

uα,g = α(g + Ψuα,g) = αg + αΨ(α(g + Ψuα,g)) = αg + α2Ψg + α2Ψuα,g

= αg + α2Ψg + · · ·+ αn+1Ψng + αn+2Ψn+1uα,g.

Since limn→∞ αnΨnuα,g(x) = 0, this shows that uα,g admits the series representation:

uα,g =

∞∑
n=0

αn+1Ψng,

which converges uniformly with respect to α on compact intervals. Thus, we can differentiate term by term and
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obtain

d

dα
uα,g(x) =

∞∑
n=0

(n+ 1)αn(Ψng)(x)

=

∞∑
n=0

αn(Ψng)(x) +

∞∑
n=1

nαn(Ψng)(x)

=
1

α
uα,g +

∞∑
n=1

αn(Ψng)(x) +

∞∑
n=2

(n− 1)αn(Ψng)(x)

=
1

α
uα,g +

∞∑
n=0

αn+1(Ψn+1g)(x) +

∞∑
n=1

nαn+1(Ψn+1g)(x)

=
1

α
uα,g + (Ψuα,g)(x) +

∞∑
n=1

αn+1(Ψn+1g)(x) +

∞∑
n=2

(n− 1)αn+1(Ψn+1g)(x)

=
1

α
uα, g + (Ψuα,g)(x) +

∞∑
n=0

αn+2(Ψn+2g)(x) +

∞∑
n=1

nαn+2(Ψn+2g)(x)

=
1

α
uα,g + (Ψuα,g)(x) + (αΨ2uα,g)(x) + · · ·+ (αk−1Ψkuα,g)(x) +

∞∑
n=1

nαn+k(Ψn+kg)(x)

=

∞∑
n=0

αn−1(Ψnuα,g)(x) =
1

α2
uα,uα,g .

For any h : [0, x] 7→ R locally absolutely continuous function:

(Ψh)(x) =

∫ x

0

(
h(z)−

∫ z

0

h(z − y)dF (y)
)
dz

=

∫ x

0

(
h(z)− [h(z − y)F (y)]y=z

y=0 −
∫ z

0

h′(z − y)F (y)dy
)
dz

=

∫ x

0

(h(z)− h(0)F (z))dz −
∫ x

0

∫ x

y

h′(z − y)F (y)dzdy

=

∫ x

0

(h(z)− h(0)F (z))dz −
∫ x

0

(
h(x− y)− h(0)

)
F (y)dy

=

∫ x

0

h(z)dz −
∫ x

0

h(x− y)F (y)dy =

∫ x

0

h(z)(1 + F (x− z))dz.

Thus, h > 0 implies (Ψh) > 0, which implies (Ψnh) > 0, ∀n ∈ N, and therefore uα,h > 0 for any α > 0. This
argument shows that d

dαV = 1
α2uα,V > 0 as V > 0. Therefore V is strictly increasing with α.

According to Proposition 3.1, in order to find θ minimizing the probability of ruin, it is sufficient to find θ

minimizing Eθ[N1]
c(θ) . For example, using the logit demand model (3.1), the optimal loading is found with direct

differentiation of α and is given by:

θruin =
1

β1

(
ln
(λE[Y ]

rβ1

)
− β0

)
. (3.6)

However, the loading that maximizes the expected profit is:

θprofit = arg max
θ

Eθ[X1 |X0 = x] = arg max
θ
{θEθ[N1]E[Y ]− r},

which is, in the case of logit demand (3.1), the unique solution of:

1 + eβ0+β1θ − β1θe
β0+β1θ = 0. (3.7)

Thus, in general, θruin does not coincide with θprofit.

4 The Multiple Risk Case

In this section, we explore how dependencies between risks available in an insurance market translate into risk
exposure for a company through its market shares on the different risks. It turns out that this mechanism is non
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trivial when the risks are dependent. For the sake of simplicity, we assume that the company offers insurance
for two risks in a market constituted by identical individuals, all of them exposed to both risks. Using the

notation in equations (2.5) and (2.6) to denote the market claim process, St = (S
(1)
t , S

(2)
t ) is the vector of the

total (accumulated) amount of claims of each risk that occurred in the market, up to time t. The marginal
distributions of S(1) and S(2) are characterized by claim intensities λ1 and λ2 and the severity distributions
FY (1) , FY (2) and their dependency structure is characterized by a parameter λ‖ ∈ [0,min(λ1, λ2)] and a joint
distribution F(Y 1‖,Y 2‖), as explained in Section 2.

4.1 Risk Exposure as a Function of Market Shares

To extend the demand model outlined in Section 3 to a market with multiple risks where the acquisition of
insurance for different risks may not be independent, we propose the following interpretation for the function
p.

Let (θ1, θ2) be the loadings charged by the company for each risk. We assume that every individual in the
market (a potential client) is provided with a vector of bid prices (b1, b2). The client acquires the insurance for
risk i if bi ≥ θi (for convenience, we consider prices net of the pure premium). The distribution of the price
vectors in the market is modelled by a random vector B = (B1, B2). Thus, pi(θ) = pi(θi) = P

(
Bi ≥ θi

)
is the

company’s market share for the insurance of risk i at equilibrium, given the loadings θ = (θ1, θ2). Let p(1,0)

be the proportion of individuals in the market holding a policy for risk 1 and no policy for risk 2. Similarly,
p(0,1)(θ) and p(1,1)(θ) denote the proportion of individuals holding a policy only for risk 2 and for both risks,
respectively. If the acquisition of polices for different risks is independent, then:

p(1,1)(θ) = p1(θ1)p2(θ2), p(1,0)(θ) = p1(θ1)(1− p2(θ2)), p(0,1)(θ) = p2(θ2)(1− p1(θ1)). (4.1)

Dependency between the acquisition of different risks can be introduced by considering dependent bid prices
B = (B1, B2). In particular, if the joint distribution of B is characterized by an ordinary copula C : [0, 1]2 7→
[0, 1], then, according to Sklar’s theorem FB(θ1, θ2) = C(FB1(θ1), FB2(θ2)) [25]. This gives:

p(1,0) = FB2
(θ−2 )− C(FB1

(θ−1 ), FB2
(θ−2 )),

p(0,1) = FB1(θ−1 )− C(FB1(θ−1 ), FB2(θ−2 )),

p(1,1) = 1− FB1
(θ−1 )− FB2

(θ−2 ) + C(FB1
(θ−1 ), FB2

(θ−2 )).

Under this model, the company’s surplus process is:

X̃t = u(1) + u(2) +
(
c(1)(θ1) + c(2)(θ2)

)
t−

Ñ1⊥
t∑
i=0

Ỹ 1⊥
i −

Ñ2⊥
t∑
i=0

Ỹ 2⊥
i −

Ñ
‖
t∑

i=0

(
Y

1‖
i + Y

2‖
i

)
, (4.2)

where Ñ1⊥
t , Ñ2⊥

t , and Ñ
‖
t count the number of claims received by the company concerning only risk 1, only

risk 2, and both risks, respectively. Their intensities are, respectively,

λ̃⊥1 = p(1,0)(θ)
(
λ⊥1 + λ‖

)
+ p(1,1)(θ)λ⊥1 = p1(θ1)λ⊥1 + p(1,0)(θ)λ‖,

λ̃⊥2 = p2(θ2)λ⊥2 + p(0,1)(θ)λ‖,

λ̃‖ = p(1,1)(θ)λ‖.

The distribution of the single risk claim amounts Ỹ 1⊥ (resp., Ỹ 2⊥) is a mixture of the distributions Y 1⊥ and
Y 1‖ (resp., Y 2⊥ and Y 2‖):

FỸ 1⊥ =
p1λ
⊥
1

p1λ⊥1 + p(1,0)λ‖
FY 1⊥ +

p(1,0)λ‖

p1λ⊥1 + p(1,0)λ‖
FY 1‖

FỸ 2⊥ =
p2λ
⊥
2

p2λ⊥2 + p(0,1)λ‖
FY 2⊥ +

p(0,1)λ‖

p2λ⊥2 + p(0,1)λ‖
FY 2‖

This is because some customers insure risk 1, but not risk 2 and vice-versa. Therefore, the aggregate process
for the insurer is

X̃t = u(1) + u(2) +
(
c(1)(θ1) + c(2)(θ2)

)
t−

Ñt∑
i=0

Ỹi, (4.3)

where Ñt is a Poisson process with intensity

λ̃ = p1λ
⊥
1 + p2λ

⊥
2 +

(
p(1,0) + p(0,1) + p(1,1)

)
λ‖ = p1λ1 + p2λ2 − p(1,1)λ‖, (4.4)
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and Ỹi, i ∈ N are i.i.d random variables with distribution

FỸ =
p1λ
⊥
1

λ̃
FY 1⊥ +

p2λ
⊥
2

λ̃
FY 2⊥ +

p(1,0)λ‖

λ̃
FY 1‖ +

p(0,1)λ‖

λ̃
FY 2‖ +

p(1,1)λ‖

λ̃
FY 1‖+Y 2‖

=
1

p1λ1 + p2λ2 − p(1,1)λ‖

(
p1λ1FY 1 + p2λ2FY 2 + p(1,1)λ‖

(
FY 1‖+Y 2‖ − FY 1‖ − FY 2‖

))
.

(4.5)

Thus, if the risks in the market are independent (i.e. if λ‖ = 0), then the risk in the company’s portfolio is
just a sum of the risks S(1) and S(2), weighted by the respective market shares, p1 and p2, irrespective of any
dependency between sales of policies for different risks. However, if the risks in the market are dependent (
λ‖ 6= 0), then the company’s risk is not, in general, a weighted sum of S(1) and S(2). Further, this effect persists
even in the case where sales of different policies are independent (i.e., p(1,1,) = p1p2). On the other hand,
equalities (4.4) and (4.5) show that in the (unlikely) situation where clients always buy insurance for only one
risk, the risk exposure of the insurer is accurately computed using only the marginal distributions of each risk
(i.e. assuming that the risks are independent). This is due to the static nature of our model. For example,
it does not take into account the possibility of external factors changing the frequency of claim events in both
risks simultaneously.

4.2 The Impact of Dependencies on Ruin Probability

From the discussion above and Proposition 3.1, it follows that the ruin probability of a company with market
shares (p1, p2, p(1,1)) solves the equation

dV (x)

dx
=

λ̃

c(1) + c(2)

(
V (x)−

∫ x

0

V (x− y)dFỸ (y) + FỸ (x)− 1
)
, (4.6)

V (0+) =
λ̃

c(1) + c(2)
E[Ỹ ], (4.7)

with λ̃ and FỸ given by equations (4.4) and (4.5).

Since estimating the dependency structure may pose substantial difficulties, we may wish to have an a-priori
bound for the error introduced by neglecting dependencies, that is, by substituting the probability Vind(x) for
V (x), where Vind(x) solves the equation.

dV (x)

dx
=

λ̂

c(1) + c(2)

(
V (x)−

∫ x

0

V (x− y)dFŶ (y) + FŶ (x)− 1
)
, (4.8)

where λ̂ = λ1p1+λ2p2 and FŶ (x) =
λ1p1FY (1)+λ2p2FY (2)

λ̂
. Notice that λ̂E[Ŷ ] = λ̃E[λ̃] and therefore the boundary

condition for (4.8) is again (4.7).

The discussion in Subsection 4.1 shows that the difference V (x)− Vind(x) is expected to be small when p(1,1) is
small compared to p1 + p2. The following proposition gives a precise meaning for this statement.

Proposition 4.1. With the notation above:

|V (x)− Vind(x)| ≤ p(1,1)λ‖
e

2λ̃x

c(1)+c(2) − 1

λ̃

for every amount of initial reserve x ≥ 0.

Proof. From equalities (4.6), (4.7) and (4.8), straightforward computations yield:

V (x)− Vind(x) =
p(1,1)λ‖

c(1) + c(1)

(∫ x

0

Vind(z)−
∫ z

0

Vind(z − y)dFY 1‖+Y 2‖(y) + FY 1‖+Y 2‖(z)− 1dz−∫ x

0

Vind(z)−
∫ z

0

Vind(z − y)dFY 1‖(y) + FY 1‖(z)− 1dz−∫ x

0

Vind(z)−
∫ z

0

Vind(z − y)dFY 2‖(y) + FY 2‖(z)− 1dz −

)

+
λ̃

c(1) + c(2)

∫ x

0

(V − Vind)(z)−
∫ z

0

(V − Vind)(z − y)dFỸ (y)dz

(4.9)
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It can be checked that for every distribution function G : [0,+∞[7→ [0, 1],

−x ≤
∫ x

0

Vind(z)−
∫ z

0

Vind(z − y)dG(y) +G(z)− 1dz ≤ 0

Therefore, (4.9) implies:

max
y∈[0,x]

|V (x)− Vind(x)| ≤ p(1,1)λ‖

c(1) + c(2)
2x+

λ̃

c(1) + c(2)

∫ x

0

2 max
y∈[0,z]

|V (x)− Vind(y)|dz

Thus, the result follows by Grönwall’s inequality [10].

4.3 The Impact of Dependencies on Small Companies

Now, we proceed with the argument above to explore how dependencies affect companies of different size.
We measure the size of the company by it’s expected total value of claims, λ̃E[Ỹ ] and, to make comparisons
meaningful, we consider that the total revenue is proportional to the company’s size, i.e.

c(1) + c(2) = (1 + θ)λ̃E[Ỹ ], with θ > 0 constant.

Similarly, we consider the initial reserve to be proportional to size, i.e.:

x = xoλ̃E[Ỹ ], with x0 > 0 constant.

Notice that, due to equations (4.6), (4.7) and (4.8), the effect of dependencies must be bounded in the sense
that

|V (x0λ̃E[Ỹ ])− Vind(x0λ̃E[Ỹ ])| ≤ K1x0λ̃E[Ỹ ] ≤ K2(p1 + p2),

for some constants K1,K2 < +∞. However, we can use Proposition 4.1 to obtain a better estimate:

|V (x0λ̃E[Ỹ ])− Vind(x0λ̃E[Ỹ ])| ≤ p(1,1)λ‖
e

2λ̃
x0
1+θ

c(1)+c(2) − 1

λ̃
. (4.10)

Notice that the right-hand side of (4.10) has the same asymptotic behaviour as

p(1,1)λ‖
x0

1 + θ
, when p1 + p2 → 0.

Further, if the sales of policies for different risks to the same individual are independent, then p(1,1) = p1p2

goes to zero faster than λ̃E[Ỹ ] = p1λ1 E[Y (1)] + p2λ2 E[Y (2)], when p1 + p2 → 0. Thus, a small company selling
policies for different risks independently is relatively immune to the effects of dependencies between the risks,
contrary to a large company (it is obvious that a monopolistic company is fully exposed to the dependencies
between risks). This immunity to risk’s dependencies may persist even when sales of policies for different risks

are not independent, provided the dependency in sales is sufficiently mild. For example, limp1+p2→0
p(1,1)

p1+p2
= 0

if the dependency between sales is modelled by a Clayton or a Frank copula in (4.1). However, small companies
are not specially protected from risk dependencies if the dependency between sales is modelled by a Pareto or
a Gumbel copula.

4.4 Optimal Loadings and Market Shares

Since the right-hand sides of equalities (4.6) and (4.7) depend on the loadings through both E[Ñ1

c(1)+c(2)
and FỸ ,

Proposition 3.1 can not be generalized to models with multiple risks. However, it is possible to provide optimality
conditions for the loadings θ = (θ1, θ2) minimizing the ruin probability.

To do this, we extend the notation introduced in the proof of Proposition 3.1. For any distribution function
G : [0,+∞[7→ [0, 1], we consider the compounding operator of type (3.4)

(ΨGh)(x) =

∫ x

0

(
h(z)−

∫ z

0

h(z − y)dθ(y)
)
dz, x ≥ 0.

Thus, the 2-risk version of equation (3.2) can be written as

Vθ(x) =
λ̃θ
c(θ)

(∫ ∞
x

1− Fθ(z)dz +
(

ΨFθVθ

)
(x)

)
, (4.11)
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where

Fθ =
λ⊥1

λ̃θ
p1(θ)FY 1⊥ +

λ⊥2

λ̃θ
p1(θ)FY 2⊥ +

λ‖

λ̃θ
p(1,0)(θ)FY 1‖ +

λ‖

λ̃θ
p(0,1)(θ)FY 2‖ +

λ‖

λ̃θ
p(1,1)(θ)FY 1‖+Y 2‖ .

Since
λ⊥1
λ̃θ
p1(θ) +

λ⊥2
λ̃θ
p2(θ) + λ‖

λ̃θ
p(1,0)(θ) + λ‖

λ̃θ
p(0,1)(θ) + λ‖

λ̃θ
p(1,1)(θ) = 1, (4.11) becomes

Vθ(x) =
λ⊥1 p1(θ)

c(θ)

(∫ ∞
x

1− FY 1⊥(z)dz + (ΨF
Y 1⊥Vθ)(x)

)
+
λ⊥2 p2(θ)

c(θ)

(∫ ∞
x

1− FY 2⊥(z)dz + (ΨF
Y 2⊥Vθ)(x)

)
+
λ‖p(1,0)(θ)

c(θ)

(∫ ∞
x

1− FY 1‖(z)dz + (ΨF
Y 1‖Vθ)(x)

)
+
λ‖p(0,1)(θ)

c(θ)

(∫ ∞
x

1− FY 2‖(z)dz + (ΨF
Y 2‖Vθ)(x)

)
+
λ‖p(1,1)(θ)

c(θ)

(∫ ∞
x

1− FY 1‖+Y 2‖(z)dz + (ΨF
Y 1‖+Y 2‖Vθ)(x)

)
.

We write this in abbreviated form:

Vθ(x) =< α(θ),Γ(x) > +(< α(θ),Ψ > Vθ)(x),

where α(θ) is the vector

α(θ) =
1

c(θ)

(
λ⊥1 p1(θ), λ⊥2 p2(θ), λ‖p(1,0), λ‖p(0,1), λ‖p(1,1)

)
,

Γ(x) is the vector function

Γ(x) =
(∫ ∞

x

1−FY 1⊥(z)dz,

∫ ∞
x

1−FY 2⊥(z)dz,

∫ ∞
x

1−FY 1‖(z)dz,

∫ ∞
x

1−FY 2‖(z)dz,

∫ ∞
x

1−FY 1‖+Y 2‖(z)dz
)
,

Ψ is the vector of operators

Ψ =
(

ΨF
Y 1⊥ ,ΨF

Y 2⊥ ,ΨF
Y 1‖ ,ΨF

Y 2‖ ,ΨF
Y 1‖+Y 2‖

)
,

and < ·, · > is the usual inner product in R5.

Using the argument in the proof of Proposition 3.1, we see that Vθ admits the series representation

Vθ(x) =

∞∑
n=0

(
< α(θ),Ψ >n< α(θ),Γ >

)
(x).

Similarly, any vector γ ∈ R5 and any bounded measurable function g : [0,+∞[7→ R define one unique function

uγ,g(x) =

∞∑
n=0

(
< γ,Ψ >n g

)
(x).

This function is analytic with respect to γ, with partial derivatives

∂uγ,g
∂γi

=

∞∑
n=0

< γ,Ψ >n
(
Ψiuγ,g

)
= uγ,Ψiuγ,g , i = 1, . . . , 5.

Taking into account the chain rule for derivatives, this proves the following proposition.

Proposition 4.2. If θ 7→ α(θ) is differentiable, then θ 7→ Vθ(x) is differentiable for every x ≥ 0 and

∂

∂θi
Vθ(x) =

5∑
j=1

uα(θ),(Γj+ΨjVθ)
∂αj(θ)

∂θi
, i = 1, 2.
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By Proposition 4.2, the optimal loadings satisfy the equation

5∑
j=1

uα(θ),(Γj+ΨjVθ)
∂αj(θ)

∂θi
= 0, i = 1, 2 (4.12)

Contrary to the single-risk case, the odds of finding explicit solutions for this equation seem very low, even
in simple cases. However, (4.12) can be numerically solved by Newton’s algorithm, the second-order partial
derivatives being

∂2

∂θi∂θj
Vθ(x) =

5∑
k=1

uα(θ),(Γk+ΨkVθ)
∂2αk(θ)

∂θi∂θj
+

5∑
k=1

5∑
l=1

uα(θ),Ψkuα(θ),(Γl+ΨlVθ)
∂αk(θ)

∂θi

∂αl(θ)

∂θj
.

Notice that the expected profit is

c(1)(θ) + c(2)(θ)− λ̃E[Ỹ ] = θ1p1(θ1)λ1 E[Y (1)] + θ2p2(θ2)λ2 E[Y (2)].

Thus, it depends only on the marginal distribution of the claim processes S(1), S(2), being independent of
the dependency structure. It follows that the loadings minimizing the joint profit coincide with the loadings
minimizing the profit on each risk, separately. That is, a pricing strategy that completely focus on expected
profit completely fails to take both dependencies between risks and dependencies between sales of policies into
account.

5 Numerical Results

Throughout this section, Y
(i)
i are assumed to be i.i.d gamma distributed random variables with shape param-

eter, a(i), and scale parameters, k(i), which means that the mean is, E[Y (i)] = a(i)k(i), for i = 1, 2. In the

following numerical analysis let a(1) = a(2) = 2, k(1) = k(2) = 500, λ(1) = λ(2) = 800, β
(1)
0 = β

(2)
0 = −0.5,

β
(2)
1 = 4 and β

(1)
1 = 4.5. That is, the difference stems from surplus process 2 being more sensitive to the

loading via the parameter β
(2)
1 . r(i) is taken to be 20% of the pure premium if the exposure was 40%, that is

r(i) = 0.4 ∗ 0.2k(i)a(i)N (i). The operational cost is therefore 8% of the expected total amount of claims in the
market. The Clayton Lévy copula is considered for positive dependence and the parameter is set to ω = 1.
Finally, let θ∗ruin and θ∗profit denote the optimal loading when the ruin probability and expected profit criterion
is used, respectively. The programming language R was used for every calculation.

5.1 Single Surplus Process

The surplus processes are first considered separately. The ruin probability and the expected profit is plotted as
a function of θ for the two processes in Figures 1 and 2. θ∗ruin was found by minimizing α.

Figure 1: Surplus process 1. The blue lines show the ruin probability as a function of θ for a given surplus x. The black line shows the
expected profit per time unit as a function of θ. The blue dots show the minimum ruin probability for each surplus. θ∗profit and θ∗ruin
denote the optimal security loading parameter for the expected profit and for the probability of ruin, respectively.

From Figure 1 it can be seen that the optimal security loading parameter for the ruin probability is, θ∗ruin =
0.435, while the θ that maximizes the expected profit is lower, θ∗profit = 0.359. Moreover, in this example, the
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maximum expected profit is 22.843 units and is given at θ∗profit. The expected profit taken at the point θ∗ruin
is lower, close to 20.000 units.

Figure 2: Surplus process 2. The blue lines show the ruin probability as a function of θ for a given surplus x. The black line shows the
expected profit per time unit as a function of θ. The blue dots show the minimum ruin probability for each surplus. θ∗profit and θ∗ruin
denote the optimal security loading parameter for the expected profit and for the probability of ruin, respectively.

From Figure 2 it can be seen that the optimal security loading parameter for the ruin probability is θ∗ruin = 0.358,
while the θ that maximizes the expected profit is again lower or θ∗profit = 0.319.

Obviously, for both processes, the ruin probability decreases with increasing surplus. Moreover, it can be seen
that surplus process X2 has higher probability of ruin than surplus process X1 for the same amount of surplus.
The sensitivity of the demand curve affects the ruin probability and θ∗ruin greatly. The more sensitive to the
exposure the demand curve is, the closer the θ∗profit and θ∗ruin are. This more sensitive curve also has higher
probability of ruin for a given surplus, which indicates that more competitive insurance products are riskier.
These effects can be seen if the two Figures (1 and 2) are compared. Conversely, if the demand curve is not
sensitive to the price, then the gap between θ∗profit and θ∗ruin can become quite large. Additionally, it can be
seen from the curve at surplus = 100 that the ruin probability for θ∗profit and θ∗ruin are similar but as the surplus
grows the values start to differ and once the surplus is great enough the two values θ∗profit and θ∗ruin result in
similar ruin probabilities again. This means that if the insurance firm has high enough surplus then they can
choose arbitrary θ without risking the chance of ruin. If the surplus is great enough then the value of θ does not
matter as much. However, having too much reserves can be bad for insurance companies as it can be seen as a
negative leverage. The bowl shape of the blue curves in the two Figures (1 and 2) is because of the interplay
between the fixed cost and the demand curve.

θ∗ruin should give the minimum ruin probability at all surplus values. This can be tested by graphing multiple
ruin probability curves and compare it with the one obtained by θ∗ruin. Figure 3 shows that θ∗ruin gives the
minimum ruin probability indeed.

Figure 3: The figure compares the optimal value function of surplus process, X1 (blue line) to other cost functions (grey lines). The blue
line is achieved by setting θ = θ∗ruin. All the cost functions lie above the optimal value function, as is expected.
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5.2 Two Aggregated Surplus Processes with Common Loading

Next, the two surplus processes, X1 and X2 are aggregated, both when the claims are independent and depen-
dent. The acquisition is independent in this subsection.

Figure 4: Ruin probability when X1 and X2 are aggregated as a function of the security loading parameter, θ, both when they are
independent and dependent via Clayton Lévy copula with ω = 0.5. The blue curves show the ruin probability when the two processes are
independent for different values of the surplus and the red curves show the same for the dependent case. The curves have similar shapes, but
the ruin probability is higher in the case of dependence, for the same surplus. The values in the legend show the minimum ruin probability
for a given surplus (surplus → probability).

Figure 4 shows the ruin probability of the aggregated surplus process as a function of the security loading pa-
rameter, θ, both when they are independent and dependent via Clayton Lévy copula. The red curves represent
dependence while the blue curves represent independence.

Firstly, it can be seen that the expected profit is the same for dependence and independence and from the figure,
θ∗profit ≈ 0.34. The reason is that the claim mean and the claim frequency is almost the same (numerically) for
dependence and independence.

Secondly, the dependent case has a higher probability of ruin than the independent case for the same amount of
surplus. However, the ruin probability is almost the same for small surplus values as can be seen from the figure.
Interestingly, the optimal loading for dependence and independence seem to be the same and numerically the
values are θ∗ruin,dep = 0.4 = θ∗ruin,indp. The surplus value does not change the optimal loading θ∗, as expected.
The reason why the ruin probability difference between the dependent and independent cases is relatively small
is because of the probability p(0,1)(θ). The fact that the insurance company does not always have the both
claims Y 1‖ and Y 1‖ when a common jump occurs reduces the risk.

Finally, the difference of the two ruin probability curves (red and blue) for a given surplus seems to be increasing
with increasing surplus, meaning that the ruin probability in the independent case decreases more rapidly with
increasing surplus then for the dependent case. Therefore, it is clear that the positive dependent case is riskier.

Note that θ∗ruin ≈ 0.4, which is very close to the weighted average of the optimal loading parameter of the
isolated surplus processes where the weight is the exposure ratio of each surplus process, that is

θweighted =
0.435 1

1+exp(−0.6+4∗0.4) + 0.358 1
1+exp(−0.6+4.5∗0.4)

1
1+exp(−0.6+4∗0.4) + 1

1+exp(−0.6+4.5∗0.4)

≈ 0.4,

which strongly indicates that the optimal value, θ∗ruin, is simply the weighted average.

5.2.1 Two Aggregated Surplus Processes with Separate Loadings

It is more realistic to consider θ as a vector so that the loading parameter can be different for each surplus
process separately, to spread the total premium over the policies in an optimal way. The two surplus processes,
X1 and X2, are aggregated as before and the constants are the same, but let θ = (θ(1), θ(2)).
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Figure 5: Expected profit (left) and the ruin probability (right) when X1 and X2 are aggregated, as a function of the security loading

parameters, θ(1) and θ(2). The processes are assumed to be independent and the surplus is fixed at x = 5000. The parenthesis in the right

figure shows the optimal values of θ(1) and θ(2) with the ruin probability as a criterion. The arrow indicates which values θ(1) and θ(2) are
mapped into, thus showing the minimum ruin probability. The parenthesis in the left figure shows the same for the expected profit. The
shape of the contour plot is due to the fact that the θ grid considered is sparser for values that give high ruin probability.

Figure 5 shows the expected profit (left) and the ruin probability (right), when X1 and X2 are assumed to
be independent and aggregated, as a function of the security loading parameters, θ(1) and θ(2). The surplus
is fixed at x = 5000 and the optimal values are shown. It should be noted that many surplus values were

tested and they all gave the same value for θ
∗(1)
ruin, θ

∗(2)
ruin, θ

∗(2)
profit, and θ

∗(2)
profit as shown, only the ruin probability

level changed. Note that the optimal loading parameters for the expected profit are the same as those for the
individual surplus processes. However, the optimal loading parameters for the ruin probability change when
compared to the individual one (compare it with Figures 1 and 2). When compared to the optimal loading
parameter for the individual surplus process, θ(1) decreases from 0.435 to 0.42 and θ(2) increases from 0.358
to 0.38. Therefore, the optimal security loading parameter decision is to decrease the loading parameter of
the less sensitive surplus process while increasing the loading parameter of the more sensitive surplus process.
Additionally, when compared to Figure 4, the minimum ruin probability for one shared loading is 0.57 while
the ruin for two loadings is 0.56, showing only a marginal difference. When the same is done for other surplus
values a similar difference is found. The expected profit is marginally higher.

Lastly, consider the case when the surplus processes are assumed to be dependent via Lévy Clayton copula and
the loadings can be different for each surplus process separately. Figure 6 shows the ruin probability when X1

and X2 are aggregated as a function of the security loading parameters, θ(1) and θ(2). The shape of the contour
plots is due to the fact that the θ grid considered is sparser for values that give high ruin probability. The
surplus is fixed at x = 5000.

Figure 6: Expected profit (left) and the ruin probability (right) when X1 and X2 are aggregated, as a function of the security loading

parameters, θ(1) and θ(2). The processes are assumed to be dependent via Clayton Lévy copula and the surplus is fixed at x = 5000. The

parenthesis in the right figure shows the optimal values of θ(1) and θ(2) with the ruin probability as a criterion. The arrow shows which

values θ(1) and θ(2) are mapped into, thus showing the minimum ruin probability. The parenthesis in the left figure shows the same except
for the expected profit. The shape of the contour plot is due to the fact that the θ grid considered is sparser for values that give high ruin
probability.

It can be seen that the optimal loadings θ(1) and θ(2) are the same as the ones in the case of independence and
the minimum ruin probability is higher (compared to the case in Figure 5). Both the values and the optimal

15



loadings of the expected profit are the same as the independent case. Again, the optimal security loading
parameter decision is to decrease the loading parameter of the less sensitive surplus process while increasing the
loading parameter of the more sensitive surplus process. The difference between the ruin probability in Figure
6 vs Figure 5 is only 0.03 but in this case the surplus is low compared to the expected profit. If the surplus
would be increased to ≈ 20.000 the difference would become greater. The difference would then decrease again
if the surplus were increased to ≈ 40.000.

Additionally, when compared to Figure 4, the minimum ruin probability for one common loading is 0.59, which
is the same as the ruin probability for separate loading selections, therefore the difference is only marginal.

5.3 Dependent Claims and Dependent Acquisition

It is time to look at the case when we have dependent claims and dependent acquisition. Note that the case
when we have independent claims and dependent acquisition is the same as the total independence case. We
will look both at the case when the acquisition is modelled with a Gumbel and Clayton dependency structure.
To compare these two structures we use Kendell’s tau. The following equations relate the copula parameters,
ωclayton and ωgumbel to kendell’s tau, τ .

ωclayton =
2τ

1− τ
, ωgumbel =

1

1− τ
.

We know that the expected profit is the same as before for all values of τ . Therefore, we analyze the ruin
probability.

Figure 7: The ruin probability when the acquisition is modelled with a Clayton (left) and a Gumbel (right) dependency structure. The
surplus is constant. In both cases, the ruin probability is higher for higher kendell’s tau. The Gumbel case is more riskier. The surplus is
fixed at 5000 units.

In Figure 7 we can see the ruin probability for different dependency values when the surplus is fixed at 5000
units. We can see that the ruin probability is higher for more dependent acquisition, as we expected. Also, we
can see that the Gumbel acquisition model gives higher ruin probabilities than the Clayton model for the same
Kendell’s tau value. They give the same optimal loading parameter. It can also be seen that when kendell’s
tau is 0.05 (close to 0) the ruin probability is close to the case of independent acquisition, as expected. The
optimal loading parameter is the same for all dependency levels.

A Numerical scheme for equation 2.2, using linear approximation

Consider the process

Xt = u+ ct−
Nt∑
i=0

Yi

where Yi are iid continuous random variables and Nt is a Poisson(λt). To approximate equation 2.2, take a
grid of points ε = x0 < x1 < ...xn, xi ∈ R,∀i ∈ N, ε > 0, with equal interval lengths, h = xi − xi−1. A linear
approximation is used to approximate V̄ (x)
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V̄ (z) = V̄ (xj−1) +
V̄ (xj)− V̄ (xj−1)

h
(z − xj−1), z ∈ [xj−1, xj ], j ≤ i

where
V̄ (xj)−V̄ (xj−1)

h is an approximation of the derivative, V̄ ′(xj−1), using the so-called forward difference

Let V̄i denote the approximation of V̄ (xi). Let S̄(x) =
∫ x

0
F̄ (y)dy and ¯̄S(x) =

∫ x
0
S̄(y)dy. For each xi, i > 0

solve the following equation

V̄ (xi)− V̄ (0+) =
λ

c

∫ x

0

V̄ (xi − y)F̄ (y)dy.

The goal is to develop a recursive method from x0 as the value of V̄0 is known.

if i = 0

Set V̄0 = 1− λ
c E[Y ]

if i = 1

Calculate

V̄1 = V̄0 +
λ

c

∫ xi

o

((V̄0 +
V̄1 − V̄0

h
)(x1 − y − x0))F̄ (y)dy

= V̄0 +
λ

c

(
V̄0(S̄(x1)− S̄(x0))+

V̄1 − V̄0

h

(
[x1 − y − x0]x1

x0
+ ¯̄S(x1)− ¯̄S(x0)

))
= V̄0 +

λ

c
(a1,1 +

V̄1 − V̄0

h
a2,1)

⇔

(1− λa2,1

ch
)V̄1 = V̄0 +

λ

c
V̄0(a1,1 −

a2,1

h
)

if i > 1

Calculate

V̄ (xi)− V̄ (0) =
λ

c

( i∑
j=2

∫ xj

xj−1

V̄ (xi − y)S(y)dy +

∫ xi

xi−1

V̄ (xi − y)S(y)dy
)

=
λ

c

( i∑
j=2

(
V̄i−j(S̄(xj)− S̄(xj−1)) +

V̄i−j+1 − V̄i−j
h

(
[xi − y − xi−j ]xjxj−1

+ ¯̄S(xj)− ¯̄S(xj−1)
))

+

V̄i−j(S̄(xi)− S̄(xi−1)) +
V̄i − V̄i−j

h

(
[xi − y − xi−j ]xixi−1

+ ¯̄S(xi)− ¯̄S(xi−1)
))

=
λ

c

( i∑
j=2

(
V̄i−j(S̄(xj)− S̄(xj−1)) +

V̄i−j+1 − V̄i−j
h

(
[xi − y − xi−j ]xjxj−1

+ ¯̄S(xj)− ¯̄S(xj−1)
))

+

V̄i−ja1,i +
V̄i − V̄i−j

h
a2,i

)
⇔

(1− λa2,i

ch
)V̄i = V̄0+

λ

c

( i∑
j=2

(
V̄i−j(S̄(xj)− S̄(xj−1)) +

V̄i−j+1 − V̄i−j
h

(
[xi − y − xi−j ]xjxj−1

+ ¯̄S(xj)− ¯̄S(xj−1)
))

+

V̄i−ja1,i −
V̄i−j
h

a2,i

)
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: Estimation of V̄ (x)

Let the symbol~denote a vector.

Initialize
~x for some x0, ..., xn
~̄V with length equal to the length of ~x
Nx ← length of ~x

# loop to estimate each value in ~̄V
for i in 0, ..., (Nx − 1) do

if i = 0 then
V̄0 ← 1− λ

c E[Y ]
else if i = 1 then

V̄1 ← take case i = 1 from above and isolate V̄1

else
V̄i ← take case i > 1 from above and isolate V̄i

end

end

Return ~̄V , ~x
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