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Abstract

We start by describing how, in some cases, we can use variance related premium principles in ratemak-

ing, when the claim numbers and individual claim amounts are independent. We use quasi-likelihood

generalized linear models, under the assumption that the variance function is a power function of the

mean of the underlying random variable.

We extend this approach to the cases where the claim numbers are correlated. Some alternatives

to deal with dependent risks are presented, taking explicitly into account overdispersion. We present

regression models covering the bivariate Poisson, the generalized bivariate negative binomial and the

bivariate Poisson-Laguerre polynomial, which nest the bivariate negative binomial. We apply these models

to a portfolio of the Portuguese insurance company Tranquilidade and compare the results obtained.
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1 Introduction

The aim of an actuary when de�ning a tari¤, is that the premiums match the risks as closely as possible.

This is achieved by di¤erentiating the risks on the basis of observable risk factors.

In the last decades, actuaries have used Generalized Linear Models (GLM) - see Nelder and Wed-

derburn (1972) or Denuit et al (2006) - to construct motor insurance tari¤ structures. Brockman et al

(1992) provides a survey of application of Generalized Linear Models to Motor Insurance ratemaking.

Implicitly, when doing so, the premium calculation principle used is the expected value principle. The

premium is calculated proportionally to the conditional expected value of the aggregate claims, given a

set of tari¤ variables. It is assumed, in most cases, independence between claim numbers and individual

claim amounts. The conditional expected value of these two variables is estimated separately and the two

estimates are multiplied. When the tari¤ structure is multiplicative the tari¤ can be interpreted in an

aggregated way. In the GLM framework the estimators are calculated by maximizing the log-likelihood

of the underlying distributions, which are assumed to belong to the exponential family. As it is well

known, this assumption can be relaxed and the parameters estimated consistently using quasi-likelihood,

in which case we only have to model the expected value and the variance function.

First, we show that, although in the GLM framework, most actuaries use the expected value principle

for ratemaking purposes, there is no reason for not using variance related premium principles as explained

in Section 2. Second, we discuss ratemaking when risks are correlated through claim numbers, which is

a situation that occurs very often in practice. There is some work already done on this topic, namely

Bermudez (2009). We introduce, in Section 3, other options to model bivariate counting data taking

overdispersion explicitly into account. We present four models, which include the bivariate Poisson and

the bivariate Negative Binomial.

In Section 4 we provide an example with data from the Portuguese insurance company Tranquilidade

and compare the results obtained with the four models, as well as with the corresponding independent

cases.

Finally Section 5 concludes.
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2 Variance related premium principles

Let Si be the aggregate claim amount of policy i; for a given period of time. We assume that Si is a

compound random variable, i.e. that

Si =

NiX
j=0

Yij ;

where Ni is the number of claims for the same period of time, Yi0 � 0 and fYijgj=1;2;::: are i.i.d. random

variable and independent of Ni; representing the individual claim amounts. Under these assumptions

E[Si] = E[Ni]E[Yi] = �Ni
�Yi

and

V ar[Si] = �Ni
V ar[Yi] + V ar[Ni]�

2
Yi ;

where Yi is identically distributed to Yij :

In most regression models it is assumed that V ar[Ni] and V ar[Yi] are functions of �Ni
and of �Yi

respectively, which implies that V ar[Si] can be expressed as a function of �Ni
and �Yi : For example if

V ar[Ni] =  �Ni
(1)

and

V ar[Yi] = ��2Yi ; (2)

we get the quasi-Poisson-Gamma model, for which

V ar[Si] = ( + �)�Ni
�2Yi : (3)

Given the row vectors of covariates Xi = (X1; X2; :::; Xp1) and Zi = (Z1; Z2; :::; Zp2) to explain the

conditional expected values of Ni and Yi respectively (all or some of the covariates can be the same), and

using a log-link function, the conditional expected values are given by

E[NijXi] = exp(Xi�) (4)

and

E[YijZi] = exp(Zi) (5)
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where � and  are two vectors with dimensions p1 and p2 respectively.

When using the expected value principle, the premium associated to policy i; given Xi and Zi; is of

the form

PEVi = (1 + �) exp(Xi� + Zi); � > 0; (6)

where � is the loading coe¢ cient, and when using a related variance premium principle for the quasi-

Poisson-Gamma model is

PRVi = exp(Xi� + Zi)+g (( + �) exp(Xi� + 2Zi)) ; (7)

where g(:) is an increasing and non-negative function. For the variance principle g(x) = �x; with � > 0;

and for the standard deviation principle g(x) = �
p
x; with � > 0: Note that, for a given �; for the variance

principle, and for � calculated in such a way that the global premiums are the same, the main di¤erence

between (6) and (7) is that the variance principle penalizes more the policies with higher expected claim

amount.

The parameter estimation is straightforward: � is obtained by quasi-likelihood of the claim number

observations and  is obtained by quasi-likelihood of the individual claim amounts. The parameters  

and �; are estimated in each model using, for instance, the moment estimator based on the chi-square

statistic (see McCullagh and Nelder (1989)).

3 Bivariate Regression Models

In this section we consider, for each policy, a model involving two risks, dependent through the number

of claims. For policy i; let
n
Y
(k)
ij

o
j=1;2;:::

be the claim size random variables for risk k, k = 1; 2. We

assume that, for k = 1; 2;
n
Y
(k)
ij

o
j=1;2;:::

are i.i.d. random variables: Let S(1)i and S(2)i be the aggregate

claim amounts for the �rst and second risks respectively, with

S
(k)
i =

N
(k)
iX
j=0

Y
(k)
ij ; (8)

where N (k)
i is the number of claims of policy i and risk k in a given period of time. We consider that

Y
(1)
i0 � Y

(2)
i0 � 0; that

n
Y
(1)
ij

o
j=1;2;:::

are independent of
n
Y
(2)
ij

o
j=1;2;:::

and that both are independent of
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N
(1)
i and N (2)

i : The aggregate claim amount for policy i is

Si = S
(1)
i + S

(2)
i ; (9)

with expected value

E[Si] = �
N
(1)
i
�
Y
(1)
i
+ �

N
(2)
i
�
Y
(2)
i
; (10)

and variance

V ar[Si] = �
N
(1)
i
V ar[Y

(1)
i ] + V ar[N

(1)
i ]

�
�
Y
(1)
i

�2
+�

N
(2)
i
V ar[Y

(2)
i ] + V ar[N

(2)
i ]

�
�
Y
(2)
i

�2
(11)

+2�
Y
(1)
i
�
Y
(2)
i
Cov(N

(1)
i ; N

(2)
i ):

As the main purpose of the paper is to analyse dependency on claim frequencies our focus will be

on the claim numbers behaviour. We begin by presenting two models based on the bivariate Poisson

distribution and then we consider two generalizations of the bivariate negative binomial distribution to

deal with overdispersion, which is a phenomenon that is present in many insurance data sets. For sake of

simplicity we present the results using the gamma distribution for the claim severity but these results are

easily extended to all distributions where the variance is given by V ar[Yi] = ��kYi ; for a given constant k:

3.1 Bivariate Poisson Models

Let

N
(1)
i = K

(1)
i +Ki and N

(2)
i = K

(2)
i +Ki (12)

where K(1)
i ; K

(2)
i and Ki are independent Poisson random variables with parameters �(1)i , �(2)i and �i

respectively, i.e.
�
N
(1)
i ; N

(2)
i

�
is the bivariate Poisson distribution, studied by Holgate (1964) (see also

Johnson et al (1997)). Hence S(1)i and S(2)i are correlated through Ki: This model was, among others,

considered in the context of actuarial science by Wang (1998), Walhin (2001), Cossete and Marceau

(2000), and Centeno (2005). In this model

Cov(N
(1)
i ; N

(2)
i ) = �i:
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In the Poisson-Gamma framework (11) is equivalent to

V ar[Si] =
�
1 + �(1)

�
�
N
(1)
i

�
�
Y
(1)
i

�2
+
�
1 + �(2)

�
�
N
(2)
i

�
�
Y
(2)
i

�2
+ 2�

Y
(1)
i
�
Y
(2)
i
�i; (13)

where �(1) and �(2) are the dispersion parameters of risks 1 and 2 respectively (see (2)).

Note that under these models the covariance between the two risks is always assumed positive, since

it is equal to the mean of the common Poisson random variable, which is not a real problem for most

insurance applications. Note also that in the Poisson regression models the heterogeneity of the portfolio

is only considered through the means of the endogenous random variables which can be quite di¤erent.

The main di¤erence between the next two models lies on the way the covariates are introduced. While

the Kocherlakota and Kocherlakota (2001) model explains the means of the observed variables N (1)
i and

N
(2)
i ; the Karlis and Ntzoufras (2005) model explains the means of the latent variables K(1)

i ; K
(2)
i and

Ki: These di¤erent approaches lead to di¤erent result interpretations and as it will be seen in our example

to quite di¤erent estimates for the premiums.

3.1.1 K-K Bivariate Poisson Regression Model (KKBIP)

Kocherlakota and Kocherlakota (2001) considered that the common random variable Ki has mean �,

independent of i; i.e. that �i = �, i = 1; 2; ::: The bivariate Poisson distribution is

f(n
(1)
i ; n

(2)
i ) = exp(��(1)i � �(2)i � �)h(n(1)i ; n

(2)
i ); (14)

where

h(n
(1)
i ; n

(2)
i ) =

min(n
(1)
i ;n

(2)
i )X

j=0

(�
(1)
i )n

(1)
i �j(�

(2)
i )n

(2)
i �j�j

(n
(1)
i � j)!(n(2)i � j)!j!

: (15)

For this distribution �
N
(1)
i
= �

(1)
i +�; �

N
(2)
i
= �

(2)
i +� and Cov

�
N
(1)
i ; N

(2)
i

�
= �: The response variables�

N
(1)
i ; N

(2)
i

�
are related with the covariates X(1)

i and X(2)
i through

E[N
(k)
i jX(k)

i ] = exp(X
(k)
i �(k)); k = 1; 2: (16)

The maximum likelihood estimators of �(1) =
�
�
(1)
1 ; :::;�(1)p1

�
, �(2) =

�
�
(2)
1 ; :::;�(2)p1

�
and � were derived

in Kocherlakota and Kocherlakota (2001), as well as the second order derivatives of the likelihood function.

In this model the parameter � is a nuisance parameter, used only for estimation purposes.
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The related variance premium principle for a policy i is

PRVi =
X
k=1;2

exp(X
(k)
i �(k)+Z

(k)
i (k))+g (V ar[Si]) ; (17)

where for the Bivariate Poisson-Gamma model

V ar[SijX(1)
i ;X

(2)
i ;Z

(1)
i ;Z

(2)
i ] =

�
1 + �(1)

�
exp(X

(1)
i �(1) + 2Z

(1)
i (1)) +

+
�
1 + �(2)

�
exp(X

(2)
i �(2) + 2Z

(2)
i (2))

+2� exp(Z
(1)
i (1) + Z

(2)
i (2)): (18)

The parameters �(k), (k), k = 1; 2; and � are estimated by the maximum likelihood function of the

bivariate random variable.

The bivariate Poisson model has a limitation on its applicability. As pointed out by Holgate (1964)

the correlation coe¢ cient between N (1)
i and N (2)

i ; equals to �=p�
N
(1)
i
�
N
(2)
i
; cannot exceed the square

root of the ratio of the smaller to the larger of the means of the two marginal distributions, i.e.

corr(N
(1)
i ; N

(2)
i ) =

�p
�
N
(1)
i
�
N
(2)
i

< min

 s
�
N
(1)
i

�
N
(2)
i

;

s
�
N
(2)
i

�
N
(1)
i

!
; (19)

which is equivalent to

� < min(�
N
(1)
i
; �
N
(2)
i
): (20)

This condition is obviously implicit in the model, due to (12). In Kocherlakota and Kocherlakota (2001),

as �
N
(1)
i
and �

N
(2)
i
are explained by the covariates X(1)

i and X(2)
i and � needs to be estimated (depending

indirectly on the covariates) the test to the appropriateness of the model can not be done a priori. This

may be a reason why Kocherlakota and Kocherlakota (2001) model, although highly cited, is rarely used.

3.1.2 K-N Bivariate Poisson Regression Model (KNBIP)

In the model considered by Karlis and Ntzoufras (2005) and applied by Bermudez (2009) in the context

of motor insurance, the random variable Ki has mean �i; not necessarily constant for all i: The regression

model considered is

�
(1)
i = exp

�
X
(1)
i w(1)

�
;

�
(2)
i = exp(X

(2)
i w(2));

�i = exp(Xiw): (21)
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where X(1)
i ; X

(2)
i and Xi are now the set of covariates used to model the parameters �

(1)
i ; �

(2)
i and �i

respectively. In this model

E[N
(k)
i jX(k)

i ] = exp
�
X
(k)
i w(k)

�
+ exp(Xiw); k = 1; 2:

So, if an e¤ect is present in w(1) and w; its e¤ect is no longer multiplicative. Even in the case where �i is

assumed constant (no covariates) and the covariates used to estimate �(1)i and �(2)i are the same used in

regression (16) this model is di¤erent from the model described earlier. Karlis and Ntzoufras (2005) have

also considered a generalization of the model by in�ating the diagonal. In their article they implemented

the model in R using an EM algorithm to maximize the log-likelihood function of the claim numbers.

In this model we have

E[SijX(1)
i ;X

(2)
i ;Xi;Z

(1)
i ;Z

(2)
i ] = exp

�
X
(1)
i w(1) + Z

(1)
i (1)

�
+ exp(Xiw + Z

(1)
i (1)) +

+exp
�
X
(2)
i w(2) + Z

(2)
i (2)

�
+ exp(Xiw + Z

(2)
i (2)); (22)

and in the Bivariate Poisson - Gamma framework we have

V ar[SijX(1)
i ;X

(2)
i ;Xi;Z

(1)
i ;Z

(2)
i ] =

�
1 + �(1)

��
exp

�
X
(1)
i w(1)

�
+ exp(Xiw)

�
exp

�
2Z

(1)
i (1)

�
+

+
�
1 + �(2)

��
exp

�
X
(2)
i w(2)

�
+ exp(Xiw)

�
exp

�
2Z

(2)
i (2)

�
+

+2 exp(Xiw + Z
(1)
i (1) + Z

(2)
i (2)): (23)

Karlis and Ntzoufras (2005) model is forcing condition (19) to be satis�ed, so one should be careful

about the appropriateness of the model in a speci�c situation.

3.2 Generalized bivariate negative binomial models

For many insurance data sets the Poisson regression model does not capture all the heterogeneity of the

portfolio. A mixed Poisson regression model appears as a natural alternative. Among these models the

negative binomial model (considering the gamma as the mixing distribution) is the most popular. In the

�rst model Gurmu and Elder propose a generalization of the gamma for the mixing distribution, which

is the same for both risks. In the second model each risk is in�uenced by its own mixing distribution,

which is a generalization of the gamma distribution, and the two mixing distributions may be correlated.
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3.2.1 Generalized bivariate negative binomial regression model (GBINB)

In this subsection we consider the model proposed by Gurmu and Elder (2000) to describe
�
N
(1)
i ; N

(2)
i

�
to allow for overdispersion. In this model Vi is an unobserved heterogeneity component with density g(vi)

given by

g(vi) =
v��1i ��

�(�)(1 + c2)
e��vi

�
1 + c

�� �vip
�

�2
; vi > 0: (24)

It is also assumed that (V1; V2; :::) are i.i.d. random variables and that given Vi = vi the variables N
(k)
i ;

k = 1; 2 are independent Poisson random variables with mean �
N
(k)
i
vi; k = 1; 2: This model, referred as

generalized bivariate negative binomial, nests when c = 0 a bivariate negative binomial:

As it is usual, the mean of the unobserved heterogeneity is set equal to unity, which is to say,

� =
1

1 + c2
�
�� 2c

p
�+ c2(�+ 2)

�
: (25)

The conditional expected values are

E
h
N
(k)
i jX(k)

i

i
= exp(X

(k)
i �(k)); k = 1; 2 (26)

and Gurmu and Elder (2000) show that the probability function of
�
N
(1)
i ; N

(2)
i

�
can be written as

f(n
(1)
i ; n

(2)
i ) =

2664 2Y
k=1

�
�
N
(k)
i

�n(k)i

n
(k)
i !

3775 �(n(1)i + n
(2)
i + �)

�(�)
��n

(1)
i �n(2)i

 
1 +

�
N
(1)
i
+ �

N
(2)
i

�

!�(�+n(1)i +n
(2)
i )

	i;

(27)

where

	i =
1

1 + c2
�
1 + 2c

p
�(1� �i) + c2�(1� 2�i + �i�i)

�
; (28)

with �i =
�+n

(1)
i +n

(2)
i

�

�
1 +

�
N
(1)
i

+�
N
(2)
i

�

��1
and �i =

�+1+n
(1)
i +n

(2)
i

�

�
1 +

�
N
(1)
i

+�
N
(2)
i

�

��1
:

As, given Vi = vi; S
(1)
i and S(2)i are independent compound Poisson random variables, we have that

V ar[Si] = E[V ar[SijVi]] + V ar[E[SijVi]] =

= �
N
(1)
i

�
V ar

h
Y
(1)
i

i
+
�
�
Y
(1)
i

�2�
+ �

N
(2)
i

�
V ar

h
Y
(2)
i

i
+
�
�
Y
(2)
i

�2�
+

+
�
�
N
(1)
i
�
Y
(1)
i
+ �

N
(2)
i
�
Y
(2)
i

�2
V ar[Vi]; (29)
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with

V ar[Vi] =
1

1 + c2
(�+ 1)

�2
�
�� 4c

p
�+ c2(�+ 6)

�
� 1; (30)

which is easily expressed in terms of the parameters to be estimated, when the individual claim amounts

are Gamma distributed by

V ar[SijX(1)
i ;X

(2)
i ;Z

(1)
i ;Z

(2)
i ] =

�
1 + �(1)

�
exp

�
X
(1)
i �(1) + 2Z

(1)
i (1)

�
+

+
�
1 + �(2)

�
exp

�
X
(2)
i �(2) + 2Z

(2)
i (2)

�
+ (31)

+
h
exp

�
X
(1)
i �(1) + Z

(1)
i (1)

�
+ exp

�
X
(2)
i �(2) + Z

(2)
i (2)

�i2
V ar[Vi]:

3.2.2 Bivariate Poisson-Laguerre polynomial regression model (BIPL)

This model, proposed by Gurmu and Elder (2007), di¤ers from the previous one, in the sense that

the dependence between, N (1)
i and N (2)

i is modelled by means of correlated unobserved heterogeneity

components V (1)i and V
(2)
i : Each component a¤ects only the respective event count, but Si will be

a¤ected by both. Let the mixing distribution be g(v(1)i ; v
(2)
i ), so that

f(n
(1)
i ; n

(2)
i ) =

Z 1

0

Z 1

0

2Y
k=1

exp(��
N
(k)
i
v
(k)
i ) (�

N
(k)
i
v
(k)
i )n

(k)
i

n
(k)
i !

g(v
(1)
i ; v

(2)
i )dv

(1)
i dv

(2)
i : (32)

Denoting byM(��
N
(1)
i
;��

N
(2)
i
) = E[exp(��

N
(1)
i
v
(1)
i ��

N
(2)
i
v
(2)
i )] the bivariate moment generating func-

tion of (v(1)i ; v
(2)
i ) evaluated at (��

N
(1)
i
� �

N
(2)
i
); (32) can be written as

f(n
(1)
i ; n

(2)
i ) =

2664 2Y
k=1

�
�
N
(k)
i

�n(k)i

n
(k)
i !

3775M (n
(1)
i ;n

(2)
i )(��

N
(1)
i
;��

N
(2)
i
); (33)

where M (n
(1)
i ;n

(2)
i )(��

N
(1)
i
;��

N
(2)
i
) denotes the derivative of M(��

N
(1)
i
;��

N
(2)
i
) of order r = n

(1)
i +

n
(2)
i ; i.e. M (n

(1)
i ;n

(2)
i )(��

N
(1)
i
;��

N
(2)
i
) = @rM(��

N
(1)
i
;��

N
(2)
i
)=@(��

N
(1)
i
)n

(1)
i @(��

N
(2)
i
)n

(2)
i : The authors

propose the mixing density

g(v
(1)
i ; v

(2)
i ) =

w(v
(1)
i )w(v

(2)
i )

(1 + �2)

h
1 + �P

(1)
1 (v

(1)
i )P

(2)
1 (v

(2)
i )
i2

(34)

where w(v(k)i ) is a gamma density with parameters (�(k); �(k)) and

P
(k)
1 (v

(k)
i ) =

p
�(k) � �(k)p

�(k)
v
(k)
i (35)

10



is the �rst order polynomial with unit variance and � = corr(P
(1)
1 (V (1)); P

(2)
1 (V (2))) is an unknown

correlation parameter. g(v(1)i ; v
(2)
i ) can be regarded as a variant of a bivariate gamma distribution (� =

0 leads to two independent negative binomials). The bivariate probability density function of the claim

numbers are in this case

f(n
(1)
i ; n

(2)
i ) =

24 2Y
k=1

�(n
(k)
i + �(k))

�(�(k))n
(k)
i !

��
N
(k)
i

�(k)

�n(k)i
�
1 +

�
N
(k)
i

�(k)

��(�(k)+n(k)i )
35	�i (36)

with

�(k) =
1

1 + �2

h
�(k) + �2(�(k) + 2)

i
; k = 1; 2; (37)

and

	�i =
1

1 + �2

h
1 + 2�

p
�(1)�(2)(1� �(1)i )(1� �(2)i ) + �2�(1)�(2)(1� 2�(1)i + �

(1)
i �

(1)
i )(1� 2�(2)i + �

(2)
i �

(2)
i )
i

(38)

where

�
(k)
i =

n
(k)
i + �(k)

�(k)

�
1 +

�
N
(k)
i

�(k)

��1
and �(k)i =

n
(k)
i + 1 + �(k)

�(k)

�
1 +

�
N
(k)
i

�(k)

��1
; k = 1; 2:

The p.d.f. (36) in the form (33) with

M (n
(1)
i ;n

(2)
i )(��

N
(1)
i
;��

N
(2)
i
) =

"
2Y

k=1

�(n
(k)
i + �(k))

�(�(k))

�
�(k)

��(k) �
�(k) + �

N
(k)
i

��(�(k)+n(k)i )
#
	�i : (39)

We can derive V ar[Si] obtaining

V ar[Si] = �
N
(1)
i

�
V ar

h
Y
(1)
i

i
+
�
�
Y
(1)
i

�2�
+ �

N
(2)
i

�
V ar

h
Y
(2)
i

i
+
�
�
Y
(2)
i

�2�
+

+
�
�
N
(1)
i

�2 �
�
Y
(1)
i

�2
V ar[V

(1)
i ] +

�
�
N
(2)
i

�2 �
�
Y
(2)
i

�2
V ar[V

(2)
i ] + (40)

+2�
N
(1)
i
�
N
(2)
i
�
Y
(1)
i
�
Y
(2)
i
Cov(V

(1)
i ; V

(2)
i )

with

V ar[V
(1)
i ] =M (2;0)(0; 0)� 1 =

�
�(1) + 1

� �
�(1) + �2(�(1) + 6)

��
�(1)

�2
(1 + �2)

� 1; (41)

V ar[V
(2)
i ] =M (0;2)(0; 0)� 1 =

�
�(2) + 1

� �
�(2) + �2(�(2) + 6)

��
�(2)

�2
(1 + �2)

� 1; (42)
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and

Cov(V
(1)
i ; V

(2)
i ) =M (1;1)(0; 0)� 1 = �(1)�(2) + 2�

p
�(1)�(2) + �2(�(1) + 2)(�(2) + 2)

�(1)�(2)
� 1 (43)

We can express (40) in terms of the regressors, when the individual claim amounts are Gamma distributed,

obtaining

V ar[SijX(1)
i ;X

(2)
i ;Z

(1)
i ;Z

(2)
i ] =

�
1 + �(1)

�
exp

�
X
(1)
i �(1) + 2Z

(1)
i (1)

�
+
�
1 + �(2)

�
exp

�
X
(2)
i �(2) + 2Z

(2)
i (2)

�
(44)

+exp
�
2X

(1)
i �(1) + 2Z

(1)
i (1)

�
V ar[V

(1)
i ] + exp

�
2X

(2)
i �(2) + 2Z

(2)
i (2)

�2
V ar[V

(2)
i ]

+2 exp
�
X
(1)
i �(1) + Z

(1)
i (1) +X

(2)
i �(2) + Z

(2)
i (2)

�
Cov(V

(1)
i ; V

(2)
i ):

4 Application of the models

Our database consists of the full sample of the Ambulatory Health Insurance portfolio of the Portuguese

insurance company Tranquilidade. We have the data of all policies of the year 2007 and each policy

can have several persons insured. The total number of persons insured (for the full year) is 19457. Our

unit risk is the person insured and our database includes for each person: age (at the date of the policy

renewal), policy age (at the date of the policy renewal), region, gender and information on the number of

doctor visits, N (1), and its costs, Y (1), as well as the number and severity of other treatments, N (2) and

Y (2), respectively. From Table 1, which gives the conditional frequency of N (2) given N (1) (for example

0:0471 is the frequency that N (2) = 1 given that N (1) = 0), we can conclude that these variables are

strongly dependent, since the values are completely di¤erent from one row to another. The observed

correlation coe¢ cient is 0:5761. As it is expected we have a large dispersion for each of the counting

variables (xN(1) = 1:900 while s2N(1) = 6:771 and xN(2) = 1:186 while s2N(2) = 4:639) which is expected to

be, at least partially, kept by the Poisson regression model.
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Table 1: Conditional frequency of N(2) given N(1)

N (1)nN (2) 0 1 2 3 4 5 6 7 > 7

0 0:9131 0:0471 0:0195 0:0098 0:0055 0:0021 0:0015 0:0007 0:0007

1 0:5653 0:2653 0:0830 0:0456 0:0219 0:0102 0:0038 0:0012 0:0038

2 0:3712 0:2696 0:1608 0:0994 0:0529 0:0252 0:0098 0:0047 0:0064

3 0:2871 0:2245 0:1739 0:1316 0:0893 0:0381 0:0292 0:0131 0:0131

4 0:2379 0:1990 0:1651 0:1499 0:1050 0:0584 0:0364 0:0220 0:0262

5 0:2202 0:1619 0:1476 0:1345 0:1202 0:0774 0:0512 0:0357 0:0512

6 0:1594 0:1449 0:1576 0:1087 0:1250 0:1033 0:0851 0:0471 0:0688

7 0:1733 0:1570 0:1270 0:1109 0:0878 0:0785 0:0808 0:0647 0:1201

Table:2: Explanatory variables

Variable De�nition

Xi1 Equals 1 for women

Xi2 Equals 1 when age 2 [2; 6)

Xi3 Equals 1 when age 2 [6; 11)

Xi4 Equals 1 when age 2 [11; 16)

Xi5 Equals 1 when age 2 [16; 21)

Xi6 Equals 1 when age 2 [21; 31)

Xi7 Equals 1 when age 2 [31; 41)

Xi8 Equals 1 when age 2 [41; 51)

Xi9 Equals 1 when age 2 [51; 61)

Xi10 Equals 1 when age � 61

Xi11 Equals 1 when policy age 2 [1; 4)

Xi12 Equals 1 when policy age � 4

Xi13 Equals 1 when the region 2 Interior districts

We classi�ed the data, using only dummy variables in the models and, for the sake of simplicity of

presentation, we used the same explanatory variables for all the models (X(1)
i = X

(2)
i = Z

(1)
i = Z

(2)
i = Xi).
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The explanatory variables are summarized in Table 2. It is worth mentioning that, in our study, a

change on the region variables, can induce problems on the application of Kocherlakota and Kocherlakota

(2001) model. The estimate for � would be too high, violating for a couple of groups the constraint

� < min(�
N
(1)
i
; �
N
(2)
i
):

The reference group (intercept) is considered to be a male, less than 2 years old, policy age less

than 1 year and from one of the coastal districts of Aveiro, Braga, Coimbra, Faro, Leiria, Lisboa, Porto,

Santarém and Setúbal.

All the results are based on the maximum likelihood estimates and the standard errors are calculated

using the asymptotic distribution of the maximum likelihood estimators.

Table 3, shows for each model and the respective independent cases (Double Poisson -DP- for the

Poisson model and PBIPL with � = 0 for the negative binomial model) the estimated parameters, the

log-likelihood and the AIC. The results obtained with the KNBIP model are not presented, since they

are not comparable with the others. The log-likelihood and the AIC of the KNBIP is -71085.11 and

142248.22 respectively which are similar to the values obtained by the KKBIP model.

From the Akaike�s Information Criterion (AIC) or the Likelihood Criterion the worst �t is given

by the Double Poisson. This model does not capture neither the heterogeneity nor the dependence of

the data. Even, introducing dependence using the bivariate Poisson as in the KKBIP model the �t is

poor. The independent Negative Binomial model (given by BIPL with � = 0) improves the �t, but the

Generalized Bivariate Negative Binomial regression model GBINB is the best of the models, followed by

the same model with c = 0 (bivariate negative binomial):Note that, even when c = 0 there is some kind

of dependence in the GBINB.

We can conclude that the models assuming independence are strongly rejected using any statistical

criteria as expected. Moreover the Poisson regression structure was unable to capture the heterogeneity

of the data and consequently the negative binomial models and its generalizations present a much better

�t. Finally it is interesting to observe that although the BIPL model has more parameters than the

GBINB the latter presents a better �t.

In Table 4 we detailed the output obtained for the GBINB model, presenting the estimated coe¢ cients

as well as their standard error to illustrate the statistical signi�cance of the results.
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Table 5 shows the parameter estimates of the severity for both variables, considered independent and

Gamma distributed. The signi�cance of some of the parameters indicates that we could merge some of

the policy age groups and not to discriminate according to geographical zone the severity of the Doctor�s

Visits. With respect to the severity of the Other Treatments a merger of the youngest age groups could

be considered. As the main purpose of the paper is to discuss dependency through the claim numbers

we do not pursue this analysis and keep the covariates unchanged.

Table 3: Parameter estimates for claim numbers

DP KKBIP GBINB c = 0 GBINB BIPL � = 0 BIPL

k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2

Intercept 1.3330 -0.7991 1.4286 -0.2797 1.3390 -0.7299 1.3153 -0.7535 1.3339 -0.7294 1.3073 -0.8030

�
(k)
1 0.3176 0.5397 0.2189 0.2991 0.3738 0.4988 0.3693 0.4949 0.3654 0.5036 0.2740 0.3854

�
(k)
2 -0.4412 0.0709 -0.4387 -0.0478 -0.4372 0.0720 -0.4122 0.0973 -0.4405 0.0756 -0.3876 0.1751

�
(k)
3 -1.0206 -0.2144 -0.9136 -0.0457 -1.0233 -0.2192 -0.9821 -0.1779 -1.0288 -0.2163 -0.9123 -0.0354

�
(k)
4 -1.3575 -0.1963 -1.1798 -0.0393 -1.3637 -0.2013 -1.3488 -0.1866 -1.3658 -0.2053 -1.2350 0.0020

�
(k)
5 -1.2509 0.3990 -1.2099 0.2114 -1.2961 0.3436 -1.3047 0.3358 -1.2964 0.3651 -1.1426 0.5881

�
(k)
6 -1.1136 0.5626 -1.1753 0.1672 -1.1607 0.4943 -1.1224 0.5327 -1.1527 0.4947 -1.0987 0.6311

�
(k)
7 -1.0567 0.7156 -1.1444 0.3014 -1.0983 0.6535 -1.0630 0.6891 -1.0914 0.6548 -1.0541 0.7764

�
(k)
8 -1.0036 0.8919 -1.1257 0.4493 -1.0366 0.8478 -1.0014 0.8831 -1.0282 0.8417 -1.0151 0.9470

�
(k)
9 -0.7854 1.0811 -0.9307 0.6207 -0.7935 1.0614 -0.7620 1.0931 -0.7932 1.0574 -0.8206 1.1181

�
(k)
10 -0.4065 1.3411 -0.4852 0.9663 -0.3964 1.3380 -0.3835 1.3511 -0.3992 1.3398 -0.5698 1.2151

�
(k)
11 0.1351 0.1546 0.1023 0.0438 0.1254 0.1562 0.1171 0.1470 0.1324 0.1503 0.1109 0.1328

�
(k)
12 0.2089 0.2437 0.1613 0.1018 0.1961 0.2393 0.1833 0.2259 0.2033 0.2284 0.1633 0.1894

�
(k)
13 -0.5447 -0.5563 -0.2958 -0.0728 -0.5480 -0.5937 -0.5291 -0.5746 -0.5437 -0.5706 -0.3986 -0.4165

Other b� =0.5908 b� =0.5673 b�1 =0.7872 b�1 = 0:8385b�2 = 0:3944

Parameters c�3 =0.6639 bc =0.2157 b�2 =0.4634 b� =0.697422413
Log-Likelihood -78202.92 -71381.13 -57726.35 -57697.79 -62531.53 -58441.28

AIC 156348.84 142819.26 115509.70 115453.58 125120.06 116939.56
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Table 4: Parameter estimates and standard errors for GBINB

N (1) N (2)

Coef. St. Errors Coef. St. Errors

Intercept 1.3153 0.0543 -0.7535 0.0713

�
(k)
1 0.3693 0.0215 0.4949 0.0231

�
(k)
2 -0.4122 0.0629 0.0973 0.0819

�
(k)
3 -0.9821 0.0650 -0.1779 0.0845

�
(k)
4 -1.3488 0.0745 -0.1866 0.0934

�
(k)
5 -1.3047 0.0736 0.3358 0.0886

�
(k)
6 -1.1224 0.0577 0.5327 0.0740

�
(k)
7 -1.0630 0.0578 0.6891 0.0740

�
(k)
8 -1.0014 0.0606 0.8831 0.0761

�
(k)
9 -0.7620 0.0653 1.0931 0.0801

�
(k)
10 -0.3835 0.0974 1.3511 0.1091

�
(k)
11 0.1171 0.0279 0.1470 0.0303

�
(k)
12 0.1833 0.0324 0.2259 0.0347

�
(k)
13 -0.5291 0.0320 -0.5746 0.0349

We have calculated the premium associated to S using both the expected value and the standard

deviation principle for all the models. To compare the results obtained by the di¤erent models we

started by setting the total premium of the portfolio to a value, such that the loading is 25% of the

expected aggregate claim amount, for the Double Poisson. Then the loading coe¢ cient for each of the

premiums/models was calculated, to get the set premium.
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Table 5: Parameter estimates for claim severity

Y (1) Y (2)

Coef. St. Errors Coef. St. Errors

Intercept 3.8103 0.0072 3.8841 0.0522


(k)
1 0.0174 0.0038 -0.0347 0.0141


(k)
2 -0.0286 0.0085 -0.0374 0.0594


(k)
3 -0.0485 0.0097 -0.0365 0.0622


(k)
4 -0.0932 0.0126 0.1413 0.0682


(k)
5 -0.1374 0.0125 0.2572 0.0622


(k)
6 -0.1260 0.0081 0.3752 0.0533


(k)
7 -0.1052 0.0080 0.4106 0.0530


(k)
8 -0.1175 0.0086 0.4802 0.0536


(k)
9 -0.1321 0.0093 0.5523 0.0548


(k)
10 -0.0998 0.0137 0.5212 0.0640


(k)
11 -0.0040 0.0050 -0.0313 0.0187


(k)
12 0.0347 0.0058 -0.0538 0.0207


(k)
13 -0.0058 0.0067 0.0480 0.0237

Other Parameters �(1) = 0:1331 �(2) = 1:0820

Log-Likelihood -148303 -120877

AIC 296633 241781

Although, apparently similar, the two dependent Poisson models, KKBIP and KNBIP, can lead to

di¤erent results, as can be seen on Figure 1, where the box-plot of the ratio between the premiums is

presented, for both the expected value principle and the standard deviation principle.

The premiums calculated according to the standard deviation principle tend to originate a narrower

band of premiums than the ones obtained with the expected value principle for our data set. The

exception is the results obtained for the BIPL model. Figure 2 shows for each model the ratio between

the standard deviation and the expected value premium principles as a function of the latter premium.
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Figure 1: KNBIB versus KKBIP models
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Figure 2: Standard Deviation Principle versus Expected Value Principle
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To have a closer look at the impact of the di¤erent models, at the individual level, we de�ned �ve

pro�les corresponding to the 5, 25, 50, 75 and 95 percentiles of the rank of the premiums obtained for

the double Poisson using the expected value principle. Pro�le 1 is a male, between 31 and 40 years old,

new policy and from the coast. Pro�le 2 is a male, between 21 and 30 years old, policy age between

1 and 3 years and from the interior. Pro�le 3 di¤ers from pro�le 2 only on the age, which is between

2 and 5 years old. The same happens for Pro�le 4 which age is between 51 and 60 years old. Finally

pro�le 5 is a Female, between 51 and 60 years old, new policy and from the interior. Tables 6 and 7 show

the premiums for these pro�les, when the di¤erent models are used, and when using the expected value

and the standard deviation principles, respectively. Information about the highest and the lowest of the

premiums for each model is also given.

Table 6: Premiums for the di¤erent models, according to the expected value principle

Prof. N.risks DP KKBIP KNBIP GBINB GBINB BIPL BIPL

c = 0 � = 0

1 82 89.34 142.76 133.73 86.24 89.13 87.82 109.88

2 1100 149.65 152.33 157.25 146.16 147.36 146.63 157.04

3 564 184.57 207.76 204.10 186.77 185.87 186.73 195.70

4 372 255.87 242.67 229.30 262.72 263.06 261.71 260.29

5 90 351.54 299.62 291.45 359.76 361.94 358.87 326.45

Highest Premium 582.73 485.13 551.45 603.52 588.19 600.74 443.64

Lowest Premium 44.5 99.45 104.76 44.77 45.32 45.06 61.12

Ratio 13.09 4.88 5.26 13.48 12.98 13.33 7.26

Table 7: Premiums for the di¤erent models according to the standard deviation principle

Prof. N.risks DP KKBIP KNBIP GBINB GBINB BIPL BIPL

c = 0 � = 0

1 82 101.12 154.14 145.15 92.01 116.74 93.30 111.12

2 1100 155.56 158.88 163.27 147.79 159.09 148.17 156.41

3 564 178.32 198.84 195.89 185.63 179.79 185.59 192.29

4 372 257.48 243.91 231.66 261.68 258.82 260.86 259.64

5 90 344.38 294.63 287.55 356.39 338.46 355.67 330.27

Highest Premium 542.91 451.10 509.59 596.95 548.13 594.69 473.14

Lowest Premium 52.59 109.46 114.08 46.58 53.37 46.82 59.44

Ratio 10.32 4.12 4.47 12.81 10.27 12.70 7.96

Although the total amount of premiums is the same whatever the model and the principle used, we

can see that, at individual level, things are di¤erent. When the expected value principle is used we obtain
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two main groups: the �rst one is composed by the double Poisson and the approaches based on the

negative binomial distribution except the BIPL. The second one includes the approaches based on the

(correlated) bivariate Poisson (KKBIP and KNBIP). The BIPL behaves somewhere in the middle.

The ratios between the highest premium over the lowest one con�rms that the �rst group leads to a

much larger variability among risks (ratio around 13 versus ratio around 5) when compared to the second

one. As expected, the BIPL presents a ratio of 7.3 between the ratios of the two groups.

When the standard deviation principle is used results are quite similar: the same groups appear and

individual premiums are in line with those obtained using the expected value principle. For our data the

standard deviation principle originates lower ratios between the extreme premiums which can be a good

point for the de�nition of the tari¤.

5 Conclusions

For this data set, we can conclude that taking dependence into account matters. Moreover the Poisson

regression structure was unable to capture the heterogeneity of the data and consequently the negative

binomial models, and their generalizations, present a much better �t. The standard deviation principle

leads to narrower scales than the expected value principle.

Based on the comments of the previous section and on the �tness of the models, if we had to choose

a model, we would decide by the BIPL model.
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