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Abstract

The main goal of this work is to extract the Risk Neutral Densities (RNDs)
and Subjective Probability Density Functions (SPDFs) of the exchange rate
USD/BRL (price of US Dollar in terms of Brazilian Real) for the period be-
tween June 2006 and September 2014. We have deepened previous studies,
evaluating not only the market expectations provided by these densities, but
also the performance of these densities in predicting the future realizations of
this exchange rate.

The RNDs were estimated using two structural models and two non-structural
models. In the first category, we included the Variance Gamma-OU (VG Gamma-
OU) model and the CGMY Gamma-OU model. In the second category, we used
the Density Functional Based on Confluent Hypergeometric function (DFCH)
model and the Mixture of Lognormal Distributions (MLN) model.

In this study, the DFCH, the CGMY Gamma-OU and the VG Gamma-OU
produced densities (RND and SPDF) with 1 month to maturity that exhibited
a very good performance in forecasting the observed USD/BRL. The MLN, de-
spite having and acceptable predictive power for 1 month term, underperformed
substantially the other 3 models.

JEL Classification: G13; C13; C15; F31

Keywords: Risk–neutral density; Option pricing, CGMY Gamma-OU, Vari-
ance Gamma Gamma-OU, Hypergeometric function, Mixture of Lognormal
Densities, Lévy Processes.



1 Introduction

An option is a contingent claim whose payoff depends on the future state of
the underlying asset. Therefore, option prices are mainly influenced by the
expectations of the future underlying asset prices and by its uncertainty. For
a particular asset and maturity, the availability of option prices for various
exercise prices allows the estimation of Risk-Neutral Densities (RND). These
densities can provide important information to risk managers, policy makers
and investors.

In the real world, there is only a range of discrete option prices, which makes
it necessary to estimate the RNDs through a smoothing function. The RND
depends on the model used on its estimation, which makes the choice of a
reliable model very important. The use of the Black and Scholes model (B&S),
the standard model in option pricing, is not recommended due to its limitations.
This model is based on strong assumptions, such as modeling the asset price
using a geometric Brownian Motion (GBM), with a constant expected return
and a constant volatility. This constant volatility assumption contradicts the
empirical evidence that we have different implied volatilities across maturities
and across strike prices. The volatility shoud be stochastic over time.

In this work, we estimated RNDs for the period between June 2006 and
September 2013 using option prices with the exchange rate USD/BRL as the
underlying asset. These RNDs were estimated using two categories of models:
structural and non-structural. A structural model assumes a specific dynam-
ics for the price or volatility process. A non-structural model allows the es-
timation of a RND without describing any stochastic process for the price or
volatility of the underlying asset. In the latter category we used the Density
Functional Based on Confluent Hypergeometric function (DFCH) and the Mix-
ture of Lognormal Distributions (MLN), two non-structural models that proved
to be reliable in Santos and Guerra (2014). In the former category we used
models based on Lévy processes: the Variance Gamma-OU (VG-OU) and the
CGMY Gamma-OU (CGMY Gamma-OU), two rich and sophisticated stochas-
tic volatility models that generate jumps for asset returns and volatility and,
consequently, are able to generate plausible true RNDs, with statistical proper-
ties similar to the ones observed in the empirical data (leptokurtic distributions
with fat tails).

As is generally known, the RND is not a direct measure of the subjective prob-
abilites that investors attribute to the multiplicity of future underlying asset
prices, since the option prices incorporate investors risk preferences. Theoreti-
cally, if we know the latter, we are able to estimate the Subjective Probability
Density Function (SPDF). Bliss and Panigirtzoglou (2004) suggested the esti-
mation of the risk aversion assuming that, if investors are rational, their SPDF
is expected to correspond to the distribution of observed realizations (called
objective distribution). This means that the SPDF should provide, on average,
accurate forecasts and that the difference between the RND and the objective
distribution arises from the risk aversion of the rational investor. Many authors
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estimated the SPDF imposing an assumption of stationarity over long periods
(see Ait-Sahalia and Lo (2000) and Jackwerth (2000)). We believe that the
Bliss and Panigirtzoglou (2004) approach is more suited to extract the SPDF,
because it estimates probabilities that are more reactive to market changes and
events, so we used this method to convert the RNDs into SPDFs. This work
goes deeper than previous studies as it includes not only the analysis of the
market sentiment, but also the analysis of the forecasting power of the RNDs
and SPDFs.

This paper is organized into six sections. Section 2 describes the non-structural
and structural models used to estimate the RNDs. Section 3 describes the
methodology used to transform the RNDs into SPDFs. In section 4, we com-
pared the prediction power of the RND and SPDF through the confrontation
between the estimated densities and the realized outcomes of the exchange rate
USD/BRL. In Section 5, we analyzed the historical probabilities implied on
the RNDs and SPDFs for the period between June 2006 and September 2013.
Finally, section 6 presents the conclusions.

2 Risk Neutral Density estimation

2.1 Option prices and the RND

The call option value is given by the discounted value of its expected payoff on
the expiration date T .

C(X,T ) = e−rT
∫ ∞
X

f(ST −X)dST , (1)

where X is the exercise price, ST is the price of the underlying asset at T and
r is the risk-free interest rate. The expectation is taken under the risk neutral
measure.

Breeden and Litzenberger (1978) deduced the relationship between the option
prices and the RND, taking the second derivative of equation (1) with respect
to X, that is

d2C(X,T )

dX2
= e−rT f(ST ). (2)

2.2 Structural models

In the next sections we introduce four structural models based on Lévy pro-
cesses: the Variance Gamma, the CGMY, the CGMY Gamma-OU and the
Variance Gamma-OU.

2.2.1 Lévy processes and the Lévy-Khintchine formula

A structural model should generate a flexible stochastic process. Therefore, we
should consider processes that capture both small moves and large moves or
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”jumps” in the asset returns. The non-Gaussian nature of the returns distri-
bution and the fat-tails phenomenon is mainly influenced by ”jumps” in asset
returns.

The class of Lévy processes includes many processes that allow small moves
and large jumps in asset returns and. The Brownian motion, the Merton jump-
diffusion, the Variance Gamma (VG), the Normal Inverse Gaussian (NIG), the
CGMY and the Generalized Hyperbolic are examples of Lévy processes (see
Schoutens (2003)).

A Lévy process {Xt, t ≥ 0} is a stochastic process with independent and sta-
tionary increments, which is also stochastically continuous. The well known
Lévy-Khintchine formula provides a complete characterization of the distribu-
tion associated to a Lévy process (see Cont and Tankov (2003)). This formula
states that the characteristic function of a Lévy process is given by

ΦX(u) = exp(tψ(u)), u ∈ R. (3)

where the characteristic exponent in equation (3) is given by

ψ(u) = iγµ− 1

2
σ2u2 +

∫ +∞

−∞
(eiux − 1− iux1|x|≤1)ν(dx), (4)

where γ ∈ R, σ ∈ R+ and ν is a positive measure on R\ {0}, called the Lévy
measure and satisfying: ∫

R\{0}
min

{
1, x2

}
ν(dx) <∞.

A Lévy process characterized by the Lévy triplet (γ, σ2, ν) can be decomposed
into three independent parts: (i) the linear deterministic part given by the drift
γt; (ii) the diffusion or Brownian part σWt, where Wt is a standard Brownian
motion; (iii) the pure jump part, which is characterized by the Lévy measure ν.

In financial applications, the price of an underlying asset St can be modelled
by an exponential Lévy process and the risk-neutral dynamics is given by:

St = S0 exp(Xt), (5)

where Xt is a Lévy process under the risk neutral measure Q.

Variance Gamma process The Variance Gamma (VG) process is often used
in financial applications, capturing a wide range of realistic stochastic properties,
while remaining tractable (see Madan, Carr and Chang (1998) and Carr et al.
(2002)). This process has no diffusion component (is a pure jump process) and
captures both frequent small moves and rare large jumps. The process can be
defined as a difference of two gamma processes or as a subordinating Brownian
motion.

Using the subordinating approach, the VG is represented as a Brownian mo-
tion with drift θ defined at a random time given by a gamma process.
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XV G (t) = θGt + σW (Gt), (6)

where Gt is a gamma process with mean t and variance rate ν, independent of
the Brownian motion W . The characteristic function is given by

ΦXVG(u, t) =

(
1

1− iθνu+ σ2νu2/2

) t
ν

, (7)

The Lévy measure of the VG process is given by (see Madan, Carr and Chang
(1998) and Carr et al. (2002)):

νV G(dx) =

{
C exp(G|x|)

|x| for x < 0
C exp(−Mx)

x for x > 0
, (8)

where

C = 1/ν > 0,

G =

(√
1

4
θ2ν2 +

1

2
σ2ν − 1

2
θν

)−1
> 0,

M =

(√
1

4
θ2ν2 +

1

2
σ2ν +

1

2
θν

)−1
> 0.

CGMY process The VG Lévy measure can be generalized (see Carr et al.
(2002)), introducing a new parameter Y , and obtaining the new measure

fCGMY (dx) =

{
C exp(−G|x|)
|x|1+Y for x < 0

C exp(−Mx)
x1+Y for x > 0

, (9)

where Y < 2. The Lévy process associated to this Lévy measure is known as
the CGMY process.

The Y parameter controls the behavior of small jumps. When Y = 0, we
obtain the previous VG process. The parameter C can be viewed as a measure
of the global level of jump activity, scaling the expected number of jumps of all
sizes. The parameters G and M control the rate of exponential decay on the
right and left of the Lévy measure, respectively.

VG Gamma-OU and CGMY Gamma-OU process For short maturities,
the introduction of jumps generates the appropriate implied volatility patterns
seen in empirical data. However, the independence of log-returns in exponential-
Lévy models has an unfortunate consequence: these models fail to reproduce
the implied volatility smiles and skews observed in options market prices over a
range of different maturities. This drawback is caused by the volatility clustering
phenomenon. In order to surpass this problem, we consider a stochastic process
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for volatility, which should be a positive and mean-reverting process. This
process can be defined, considering a stochastic time: in periods of high volatility
time runs faster than in periods of low volatility. Therefore, random changes in
volatility are captured by random changes in time. This stochastic time change
can be modeled by a Gamma-OU process. The stochastic time concept in asset
pricing was first used in Clark (1973).

The Ornstein-Uhlenbeck (OU) process was introduced by Barndorff and Shep-
hard (2001) as a volatility model. It can be defined as the solution of the
stochastic differential equation

dyt = −λytdt+ dzλt, y0 > 0,

where {zt, t ≥ 0} is a subordinator (strictly positive and increasing Lévy process)
and λ > 0. The process zt can also be called a Background Driving Lévy Process
(BDLP).

The D-OU process {yt, t ≥ 0} is a nonnegative nondecreasing Lévy process.
This process is strictly stationary on the positive half-line, that is, there exists
a law D, called the stationary law, such that yt will follow the law D for every t
if y0 is has the distribution D. For a Gamma-OU process, the BDLP {zt, t ≥ 0}
is a Gamma process that has Lévy measure

w(x) = ab exp(−bx)1(x>0),

where a and b are positive parameters. The Gamma-OU process has the char-
acteristic function

ΦYGamma−OU (u, t, λ, a, b, y0) = exp(iuy0λ
−1(1− exp(−λt)))× (10)

exp

(
λa

iu− λb

(
b log

(
b

b− iuλ−1(1− exp(−λt))

)
− iut

))
. (11)

The stochastic process CGMY Gamma-OU transforms the CGMY process Xt

into a stochastic volatility process Zt through a stochastic time change, modeled
by a subordinator Yt. In the CGMY Gamma-OU case, the CGMY process Xt

is subordinates to the Gamma-OU process Yt (see Carr et al. (2003)).
The characteristic function of the CGMY Gamma-OU process is given by

E(exp(iuZt)) = E(exp(ψXCGMY (Yt)(u))) (12)

= ΦYGamma−OU (−iψXCGMY (u), t, λ, a, b, y0) (13)

By a similar procedure, the VG process Xt can be transformed into a VG
Gamma-OU process, that is:

E(exp(iuZt)) = E(exp(ψXVG(Yt)(u))) (14)

= ΦYGamma−OU (−iψXVG(u), t, λ, a, b, y0) (15)
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If we know the characteristic function of the Lévy process, the RND can be
extracted from option prices using a method based on the Fourier Transform
(see Carr and Madan (1999)).

2.3 Non-Structural Models

2.3.1 Density Functional Based on Confluent Hypergeometric func-
tion

In this model, a specific functional form for the RND is not assumed. The model
is based on a formula that encompasses various densities, such as the normal,
gamma, inverse gamma, weibull, pareto and mixtures of all these probability
densities.

Abadir and Rockinger (2003) proposed a functional based on the confluent
hypergeometric function (1F1). This function includes special cases of the in-
complete gamma, normal and mixtures of the two distributions. Moreover, this
method has the advantage of being more efficient than fully nonparametric esti-
mation methods for small samples and more flexible than parametric methods.

The confluent hypergeometric function can be defined by:

1F1(α;β; z) ≡
∞∑
j=0

(α)j
βj

zj

j!
≡ 1 +

α

β
z +

α(α+ 1)

β(β + 1)

z2

2
+ ..., (16)

(a)j ≡ (a)(a+ 1)...(a+ j − 1) ≡ Γ(a+ j)

Γ(a)
,

with Γ(v), for v ∈ R\ {...,−2,−1, 0}, being the gamma function and −β /∈
N ∪ {0}.

The option pricing functional is called density functional based on confluent
hypergeometric function (DFCH) and gives the European call price as a mixture
of two different confluent hypergeometric functions:

C(X) = c1 + c2X + 1X>m1a1((X −m1)b1)1F1(a2; a3; b2(X −m1)b3) (17)

+ (a4)1F1(a5; a6; b4(X −m2)2),

where −a3,−a6 /∈ N∪ {0} , b2, b4 ∈ R− and a
1
, a2, a4, a5, b1, b3 ∈ R. In order to

get the implied probability density function, the formula stated in equation (2)
is applied to C(X). Considering appropriate restrictions in order to guarantee
that f(X) integrates to 1 and assuming that c1 = −c2m2, b1 = 1 + a2b3,
a5 = − 1

2 , a6 = 1
2 , formula (17) can be simplified (see Abadir and Rockinger

(2003)) and the number of parameters to estimate in equation (17) is reduced
to seven.

2.3.2 Mixture of lognormal distributions

Bahra (1997) and Melick and Thomas (1997) proposed the mixture of log-
normal distributions (MLN) as a non-structural model. In their approach,
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the authors assumed a functional form for the RND that encompasses several
stochastic processes for the underlying asset price.

The price of an European call option can be obtained as the discounted sum
of all expected future payoffs:

C(X, τ) = e−rτ
∫ ∞
X

f(ST )(ST −X)dST , (18)

where τ = T − t.
Bahra (1997) considered that f(St) can be represented by a mixture of two

lognormal density functions:

f(St) = wL(α1, β1, St) + (1− w)L(α2, β2, St), (19)

where L(αi, βi, St) is the i-th lognormal density with parameters αi and βi:

L(αi, βi, St) =
1

Stβi
√

2π
e[−(ln(St)−αi)

2/2β2
i ], (20)

αi = ln(St) + (µi −
1

2
σ2
i )(T − t),

βi = σi
√

(T − t).

The price of the call option is given by the formula (see Jondeau et al. (2006))

c(X, τ) = e−rτ{w[eα1+
1
2β

2
1N(d1)−XN(d2)] (21)

+ (1− w)[eα2+
1
2β

2
2N(d3)−XN(d4)]},

where

d1 =
− ln(X) + α1 + β2

1

β1
, (22)

d2 = d1 − β1,

d3 =
− ln(X) + α2 + β2

2

β2
,

d4 = d3 − β2.

3 Subjective PDF estimation

The SPDF was estimated following the approach of Bliss and Panigirtzoglou
(2004), which is based on the assumption that investors are rational and risk-
averse. The first assumption implies that investors can predict, on average,
the future outcome of the realized returns on the underlying asset (Objective
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Distribution). The latter means that investors are willing to pay a premium as a
way to avoid undesirable outcomes. This means that, if the RND is an unbiased
predictor (equal to the Objective Distribution), then there is no evidence of
risk premia in option prices and the RND corresponds to the SPDF; on the
other hand, if the RND fails to predict the future outcomes, then the bias is
measured by the degree of the investor risk aversion. Therefore, the SPDF
corresponds to the probability density function after deducting the rational risk
preferences from the RND. The rational risk preferences are determined by the
degree of risk aversion that minimizes the bias between the RND and the realized
returns of the underlying asset. This bias was measured by the Berkowitz test
and the exponential utility function was used as representing the investors risk
preferences.

3.1 Testing RND forecast performance with Berkowitz
Test

For each cross section of option prices, we have one RND which compares with
only one realization (e.g. the one month RND estimated on a certain date can
only be compared with the observed return on the underlying asset after one
month).

Given that our predictors are densities, the RND’s accuracy has to be mea-
sured through a statistical test that measures the overall fit of the distribution
instead of point estimates. Therefore, we used the Berkowitz test, proposed
by Berkowitz (2001) as an alternative way to measure the performance of a
probability distribution of credit losses. This statistical test is an alternative
to the standard methods whose density performance is given by the number of
realized returns that exceed a limit, usually defined by the VAR (Value-at-Risk
- loss that is predicted not to be exceeded with a certain probability, frequently
99%). These tests, based on the number of exceedances, are considered to be
less reliable because they are confined to part of the distribution and focus the
attention on rare violations. The Berkowitz test, whose objective is to evalu-
ate the entire distribution, involves the following transformation of the realized
returns on the underlying asset:

yt =

∫ Xt

−∞
f̂(u)du = F̂ (Xt). (23)

where Xt refers to the post realizations on t, f̂ is the forecast density (in this
case represented by the RND) and F̂ corresponds to the cumulative distribution

of f̂ . Under the null hypothesis that the forecast density is equal to the true
probability density function (PDF), the yt is i.i.d. and uniformly distributed on
(0,1). This result is very interesting because it holds regardless of the distribu-
tion of the realized returns and even if the forecast density changes over time
(which is clearly our case).

The previous transformation is made in two steps:
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1. Convert Xt into the predicted probability of observing this return or a
smaller one. This probability is estimated by inserting Xt in the RND,

yt =

∫ Xt

−∞
RND(u)du, (24)

2. Apply the inverse cumulative standard normal distribution function to yt,

zt = Φ−1(yt). (25)

We could test directly the uniformity of the transformed variable yt using
statistical tests employed for this purpose: Kolmogorov-Smirnov, Chi-squared,
and Kupier tests. However, Berkowitz (2001) suggests a further transformation
from yt to zt in order to make use of a more powerful test based on the normality.
He defined zt as a first-order autoregressive model:

zt − µ = ρ(zt−1 − µ) + εt. (26)

with µ and var(εt) being the mean and variance of zt respectively, and ρ being

being the correlation between zt−1 and zt. Under the null hypothesis that f̂
is the true PDF, zt should be independent across observations and standard
normal (µ = 0, var(εt) = 1 and ρ = 0). In the alternative hypothesis we
have a first-order autoregressive model with mean different from 0 and variance
different from 1. Berkowitz (2001) measured the difference between these two
models using the likelihood ratio test:

LR3 = −2
[
L(0, 1, 0)− L(µ̂, σ̂2, ρ̂)

]
, (27)

where L(µ, σ2, ρ) denotes the log-likelihood-function and the hats denote esti-
mated values. Under the null hypothesis LR3 follows a χ2(3) distribution.

L(µ, σ2, ρ) = −1

2
log(2π)− 1

2
log

[
σ2

1− ρ2

]
− (zt − µ/(1− ρ))2

2σ2/(1− ρ2)
(28)

− T − 1

2
log(2π)− T − 1

2
log(σ2)−

T∑
t=2

(zt − µ− ρzt−1)2

2σ2
. (29)

3.2 Risk Aversion and Utility function

It is known that the probabilities provided by the RND are not subjective
probabilities, but instead are risk neutral probabilities. A risk-neutral investor
is indifferent in terms of risk, which means that he does not take any investment
decision based on its uncertainty. If two investments have the same expected
payoff he will not give preference to one over the other, even if one is riskier.
However, in the real world there are a multiplicity of investors with different
preferences: investors can be more attracted to risk or can be more risk averse
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and are willing to pay a premium to avoid undesirable outcomes. This means
that, the price of an option does not depend only on the probability of future
outcomes, but also on the utility it yields.

Various methods have been developed in economics to define the relationship
between utility and wealth and, consequently, to measure the degree of risk
aversion. In this paper, we assumed a parametric form for the utility function
using the exponential utility function:

U(St) = −e
−γSt

γ
, (30)

where γ is the only parameter of the function. Pratt and Arrow proposed the
calculation of the risk aversion coefficient using the second derivative of the
utility function (measures how the change in utility itself changes as a function
of wealth) and dividing it by the first derivative.

ARA = −U
′′(St)

U ′(St)
= γ, (31)

RRA = −StU
′′(St)

U ′(St)
= Stγ, (32)

Equation (31) corresponds to the absolute risk aversion (ARA), which in this
case is constant (the amount of wealth that we are willing to risk remains the
same as the wealth increases). Instead of measuring absolute changes in wealth,
we can measure proportional changes, which can be done through Equation
(32) that determines the relative risk aversion (RRA). In the exponential utility
function, the RRA is dependent on both gamma and the realization St, which
is time varying.

According to Ait-Sahalia and Lo (2000), given the RND and the utility
function it is possible to derive the SPDF through the following relations:

SPDF

RND
= λ

U ′(ST )

U ′(St)
= ζ(ST , St), (33)

SPDF =

RND
ζ(ST ,St)∫
RND
ζ(x,St)

dx
=

U ′(St)
λU ′(ST )

RND∫ U ′(St)
λU ′(ST )

RNDdx
=

RND
U ′(ST )∫
RND
U ′(x)dx

(34)

where λ is constant and ζ(ST , St) is the pricing kernel. The SPDF must be
normalized to integrate to 1.

4 Data

For this work, we used the currency OTC options with the underlying USD/BRL.
The quotes were taken from the daily settlement bid prices in Bloomberg for
Offshore USDBRL FX Options. The collected data covers the period from May
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2005 to September 2013 and comprises the end of month prices. We only consid-
ered out-of-the money options (calls and puts) and at-the-money options, due
to the general understanding that out-of-the-money options tend to be more
liquid than in-the-money options. In this work, we estimate the RNDs using
one, three and six months to maturity options.

For each maturity, we estimated 101 RNDs between May 2005 and September
2013 (one for each month). Using these RNDs, we estimated 88 SPDFs. For
each month, the SPDF was determined by the degree of risk aversion that
minimizes the bias between the RND and the realized returns of the underlying
asset in the previous twelve months (e.g. the one month SPDF of June 2006 was
estimated using the RNDs between May 2005 and May 2006 and the observed
exchange rates one month after these RNDs).

5 Performance of non-structural and structural
models

In this section, we analyze the performance of the RND and SPDF estimators
in predicting the future changes of the exchange rate USD/BRL. For these es-
timations we used the CGMY Gamma-OU, VG Gamma-OU, DFCH and MLN.
The three objectives of this analysis were: to investigate whether the estimated
SPDF exceeds the RND in terms of predicting power (an expected result since
the RND is not a direct measure of the subjective probabilities), to check if
these densities provide any information about the future outcomes and to ana-
lyze which method has the highest forecast power.

In order to test the predictive power of the estimated RND, we compared the
one month RNDs of the period between June 2006 and September 2013 with the
USD/BRL outcomes in the following months. The same backtesting analysis
was done for the 88 SPDFs estimated for the same period.

The results of these comparisons (reflected in the transformed variables of
section 3.1) were aggregated according to the sub-periods considered in the
test and the predictive power was measured using the Berkowitz test. In the
12 months Berkowitz test (Table A.1), each backtesting set was composed by
12 consecutive months. In the sub-periods Berkowitz test (Table A.2), each
backtesting set was composed by the months considered in each sub-period of
section 6.

The results in Tables A.1 and A.2 show the worst performance of the MLN
model in comparison with the other models. However, it maintains, like the
other models, average p-values well above 5% (average p-values of 25,56% and
28,57% for the RND and SPDF respectively). It should be noted that the DFCH
and the CGMY Gamma-OU models had, on average, the highest p-values for
both the RND and SPDF, as can be seen in table A.1. The VG Gamma-OU
model has also demonstrated to have a good predictive power with an average
p-value closer to the values of the previous two models (average p-values of
35,63% and 43,5% for the RND and SPDF respectively). If we look to the
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number of times in which the p-value does not exceeds 5% (rejecting the null
hypothesis with a confidence level of 95%), we can even see the superiority of
the VG Gamma-OU over the CGMY Gamma-OU in terms of SPDF estimation.

In addition, we observed that, in average, the SPDF outperforms the RND
(in almost all cases, the mean of the p-values of the SPDF is higher). However,
it should be noted that the SPDF does not always improve the predictive power
of the RND. This is most evident on the number of times that the p-values does
not exceed 5% in table A.1. In fact, for all models the null hypothesis is more
times rejected with the SPDF than with the RND.

We also executed the backtesting analysis with the 3 months RND and SPDF,
taking care to cancel the correlation effects (for a 12 months period we only
considered 4 non-overlapping months - e.g. between June 2006 and June 2007
we included the 3 months RND of June 2006, September 2006, December 2006,
March 2007) and, this way, avoid the incorrect rejection of the null hipotheses.
We noticed that the forecasting power for the 3 months term was very low, as
shown in table A.3 (see Appendix 8) where the lower p-values are evident.

The good predictive power of the 1 month RND lead us to different con-
clusions from the work of Bliss and Panigirtzoglou (2004) and Anagnou et al
(2002). We also noted that, on average, the SPDF improved the forecast power,
which is in line with the conclusion of the previous authors. However, contrary
to what we may expect, the SPDFs were rejected as good forecasts of the objec-
tive densities more times than the RND. We stress, however, that our work is
not directly comparable. Firstly, these authors considered different options on
different underlying assets. Secondly, they extracted the RNDs using a different
methodologies.

6 Historical behavior of the True and Risk Neu-
tral Probabilities

In this section, we analyzed the information provided by the estimated RNDs
and SPDFs for the period between June 2006 (half a year before the problems
regarding the subprime crisis started to worsen) and September 2013 (after the
peak of the sovereign crisis). The RNDs were obtained using the DFCH model
(we only considered the 1 month term). The economic information was obtained
in the Weekly Global Economic Brief, published by the World Bank.

Before continuing, a few concepts should be explained. An increase/decrease
in the exchange rate USD/BRL means a depreciation/appreciation of the Brazil-
ian Real (hereafter called BRL) in respect to the US Dollar. The probability
of a large depreciation/appreciation of the BRL means the likelihood of an in-
crease/decrease of the USD/BRL above 25%. The probability of a medium
and small depreciation/appreciation of the BRL means the likelihood of an in-
crease/decrease above 5% and 2% respectively.
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Figure 1: DFCH model - Subjective Probability and RND of an increase in
USD/BRL above 25%.

Figure 2: DFCH model - Subjective Probability and RND of a drop in
USD/BRL above 25%.
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Figure 3: DFCH model - Subjective Probability and RND of an increase in
USD/BRL above 5%.

Figure 4: DFCH model - Subjective Probability and RND of a drop in
USD/BRL above 5%.
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6.1 From June 2006 to July 2007

The second half of 2006 and first half of 2007 was a period of BRL appreciation
and volatility reduction. In order to avoid the BRL appreciation and protect
Brazil exports, the COPOM (Brazil Monetary Policy Committee) proceeded
consecutive SEDIC (overnight reference rate of the Brazilian inter-bank money
market) rate cuts. This falling SEDIC led to the temporary decrease of the
probabilities of a small/medium BRL appreciation. However, the probabilities
of a small/medium BRL depreciation decreased more strongly during this pe-
riod, which shows the lack of effectiveness of this FX intervention. In fact, the
BRL continued to appreciate (Figure 8) as a result of the healthier Brazilian
macroeconomic conditions when compared with US data and the increasing
credit and mortgage issues (the subprime crisis).

6.2 From August 2007 to July 2008

The trend described in the previous paragraph (BRL appreciation and decrease
in volatility) was temporarily interrupted between July and September 2007,
with a peak in volatility and increase in USD/BRL. This BRL weakening was
related to heightened fears that the subprime and credit crisis in US would
potentially reduce the global risk appetite for the emerging markets. It was the
first shock concerning the subprime crisis, with shortages and lack of liquidity
in the money market (rumors about some financial institutions experiencing
liquidity difficulties, such as Northern Rock).

After September 2007 and until July 2008, the BRL returned do its upward
trend, but this time, this movement was also supported by an increase of the
rate’s differential between the Brazilian and US interest rates (In April 2008
COPOM started a series of four consecutive rises and in June 2006 the FED
began a cycle of Federal Funds rate lowering). During this period the volatility
slightly decrease and the investor’s expectations revealed an asymmetry towards
the BRL appreciation.

6.3 From August 2008 to February 2009

In August 2008 the BRL appreciation came to an end. Two reasons might have
contributed to the end of the USD depreciation: the end of the rises in oil prices
(historically there is a negative correlation between oil prices and the dollar)
and commodity prices (as a commodity exporter Brazil’s trade surplus would
be negatively affected), and the improvement in the US Balance of Payments.
There was also a huge increase in uncertainty, which could be seen in the abrupt
rise of the probabilities of large USD/BRL fluctuations (BRL appreciation or
depreciation above 25%), namely the probability of a large BRL depreciation.
This upward movement in volatility reached its maximum in November 2008
after a sequence of negative events (Government-sponsored enterprises Fannie
Mae and Freddie Mac which owned or guaranteed about half of the U.S mortgage
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market were being placed into conservatorship of the FHFA 1, Lehman Brothers
led for bankruptcy, the Bank of America purchased Merril Lynch and the US
government bailed out Goldman Sachs and Morgan Stanley) that increased the
risk aversion and the fears that the capital inflows for the emerging economies
such as Brazil would be reduced, which would depreciate its exchange rate.

In December 2008 the USD stopped its rally and the volatility started to
decrease. This new trend was partially caused by the increase in the US quan-
titative easing2 and by the decrease of the Fed Reserve Target Rate to 0.25%
in December 2008.

6.4 From March 2009 to October 2009

In the period between March 2009 and October 2009 the BRL appreciation and
the volatility’s downward trend continued and come closer to the levels prior
to the turbulent period that started in August 2008, which could indicate the
perception in the financial markets that the worst of the global recession was
over. Nevertheless, the volatility remained at higher levels than before the peak
of the crisis.

6.5 After November 2009 and up to June 2011:

Although the fears of overheating in the Brazil economy and the first signs of
economic recovery in the US, this period was characterized by a small BRL
appreciation. However, the sharp decrease of the previous period ended and we
even witnessed two strong USD/BRL corrections in the first semester of 2010:
this pair reached a level close to 1,9 in February and May 2010.

In general terms, the probabilities of a real appreciation decreased, which
indicates a diminishing probability of the declining trend in the USD/BRL. This
probability’s trend was temporary interrupted in April/May 2010 and October
2010 by events that could contribute to the BRL appreciation:
• April/May 2010 had seen the start of the cycle of rises in SELIC rates

and the disclosure of a strong GDP growth rate in Brazil in the first quarter of
2010,
• October 2010. The RND was taken on the 29th October which was

the eve of the second round of Brazilian Presidential elections in 31th October.
There was also uncertain in the market regarding the size of the Fed’s QE2
program that gave rise to an appreciation of the emerging market currencies
against the dollar.

1The Federal Housing Finance Agency is an independent federal agency created on July 30,
2008, when the President George Bush signed into law the Housing and Economic Recovery
Act of 2008. The Act objective was to create a world-class, empowered regulator with all of
the authorities necessary to oversee vital components of US.s secondary mortgage markets.
Fannie Mae, Freddie Mac, and the Federal Home Loan Banks.

2Quantitative easing was used by the FED to increase the supply of money by increasing
the excess reserves of the banking system, through buying not only government bonds, but
also troubled assets in order to improve the liquidity of these assets.
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The volatility followed the decreasing trend from the previous period and in
June 2011 reached the lowest level since the start of the subprime crisis.

6.6 After July 2011 and up to May 2012:

The period between July 2011 and September 2011 was marked by an abrupt rise
in volatility and probability of large movements in the exchange rate USD/BRL,
up to the highest level after the peak of the subprime crisis. The main events
that occurred during these 3 months were:
• Intensification of the negotiations regarding the increase of the U.S. debt

ceiling. From the date in which the debt ceiling was surpassed (May 16, 2011)
until the date where the final agreement between republicans and Democrats
passed on the Senate (August 2, 2011), the US debt issuance was substituted
by “extraordinary measures” to fund federal obligations,
• Disappointing figures from the US and Global Growth pointed to a

weakening of the economic activity. This situation triggered a strong rise of
uncertainty and substantially increased the fear of a downturn in the world
economy,
• Intensification of the sovereign debt crisis in the Euro Area. Unlike

previous episodes of volatility in the Euro Area, this time there was contagion
worldwide, partly prompted by the apparent inability of politicians to get in
front of the crisis.

After a peak in volatility in September 2011, the uncertain decreased again in
October 2011, as demonstrated in the decrease of both the standard deviation
and probability of large movements (figures 7, 1 and 2). The positive reaction
in the last week of October 2011 is partly related with an agreement in the
Euro Area to strengthen the European Financial Stability Facility (EFSF) and
to write down 50% of Greek debt.

6.7 June 2012 to April 2013

Decrease in uncertainty due to signs of improvement on Market sentiment after
the agreement between Euro Area finance ministers in order to provide Eu-
ros 100bn package to recapitalized troubled Spanish banks (Bankia, Catalunya
Banc, Banco de Valencia and Novagalicia Banco). The ratification of the Eu-
ros 700bn European Stability Mechanism (ESM) by the German Constitutional
Court, which removed significant hurdles from deeper European integration,
also helped to reduce the May/June high volatility.

The continuation of interest rate cuts in Brazil until October 2012 and to
the release of better economic indicators in US (higher than expected US GDP
growth in Q3 2012, recovering in housing Market – housing market reached
a two year high- and increase in payroll jobs – 236 000 jobs were added in
February) may have led to the considerable decrease in the probabilities of a
BRL appreciation.
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6.8 May 2013 to September 2013

Ben Bernanke announced a “tapering” of some Quantitative Easing measures
conditionally upon continued positive economic data. The possibility that US
could end its quantitative easing programs lead to an expectation of rise in long-
term interest rates , which caused capital flows into US and an substantially
increase of the likelihood of a large BRL depreciation.

7 Conclusion

With the aim to test if the RNDs and SPDFs are good predictors of the future
asset values, we extracted the RNDs from the option prices on the exchange
rate USD/BRL and analyzed its predictive power. Assuming that investors
are rational, we also estimated the SPDF in order to check if the subjective
probabilities provided any additional information. The probabilities supplied
by these densities were also analyzed for the period between June 2006 and
September 2013 and related with the main events that affected the options
market during this period. The RNDs were estimated using two non-structural
models (DFCH and MLN) and two structural models with stochastic volatility
(CGMY Gamma-OU and VG Gamma-OU).

In general terms, we found that all the tested models produced RNDs and
SPDF capable of predicting the future outcomes for the 1 month term. We
stress, however, that the MLN underperformed substantially the other models
and that all the models failed to predict the future outcomes for the 3 months
term.The DFCH model slightly outperformed the two structural models.

The good performance of the DFCH, CGMY Gamma-OU and VG Gamma-
OU for the shorter terms places them has potential good alternatives to the
standard methods used in market and credit risk and pricing (e.g. Black and
Scholes and Merton models - simplistic models without capacity to capture fat
tails). In this context, we emphasize the importance of the CGMY Gamma-OU
and VG Gamma-OU due to the advantages in using structural models for this
purpose (due to their tractability).
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Figure 5: DFCH model - Subjective Probability and RND of an increase in
USD/BRL above 2%.

Figure 6: DFCH model - Subjective Probability and RND of a drop in
USD/BRL above 2%.
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8 Appendix
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Table A.1: P-Value Berkowitz Test of 1 month term RND and SPDF. Outcome
period of one year.
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Table A.2: P-Value Berkowitz Test of 1 month term RND and SPDF. Out-
come periods correspond to the considered sub-periods between June 2006 and
September 2013.

Table A.3: P-Value Berkowitz Test of 3 months term RND and SPDF. Non-
overlapping data during and outcome period of one year.
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Figure 7: DFCH model - RND Standard Deviation.

Figure 8: Exchange rate USD/BRL between June 2006 and September 2013.

23



Figure 9: SELIC reference rate between June 2006 and September 2013.

Figure 10: FED FUND rate between June 2006 and September 2013.
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