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Abstract

For actuarial applications we consider the Sparre�Andersen risk model when

the interclaim times follow a Phase�Type distribution, PH(n).

First of all we focus our attention on the generalized Lundberg's equation to

determine the cases when multiple roots can arise, with the highest possible level

of accuracy. Second, we study the linear independence of the eigenvectors related

to the Lundberg's matrix . Finally we apply our results to compute the ultimate

and �nite time ruin probabilities, the probability of arrival to a barrier prior to

ruin, severity of ruin and its maximum, the expected discounted future dividends,

among others.
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1 Introduction

Lundberg's equation, named after Swedish actuary Ernst Filip Oskar Lundberg, is a

major subject of study for the computation of ruin probabilitites. This equation came

�rst into light for the study for the well known Lundberg's inequality and adjustment

coe�cient, being the former as an upper bound for the ultimate ruin probability. Nowa-

days, the roots of the Lundberg's equation play an important role in the calculation of

many quantities that are fundamental in risk and ruin theory. Namely, the ultimate

and �nite time ruin probabilities, the probability of arrival to a barrier prior to ruin,

severity of ruin and its maximum, the expected discounted future dividends, among

others.

All those calculations depend on the nature of the roots of the Lundberg's equation,

particularly its roots with positive real parts. There are several papers that have been

devoted to the subject, namely Albrecher and Boxma (2005), Dickson and Waters

(2004), Li and Garrido (2004a,b), Ren (2007) and some others. But in all those works

it is always assumed that the roots are distinct.

Our interest is to address two problems: First, to determine the cases when multiple

roots can arise, with the highest possible level of accuracy; Second, to study the linear

independence of the eigenvectors related to the Lundberg's matrix. We will then be

able to compute the quantities discussed above for the case of multiple roots.

We illustrate �nding explicit formulae for some examples and values for the param-

eter n of the PH(n) family, and some particular claim amount distributions.
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2 Phase�Type model

In the present article we work with the Sparre�Andersen model driven by the equation

U(t) = u+ ct−
N(t)∑
i=1

Xi, t ≥ 0,

where u (≥ 0) is the initial capital, c (≥ 0) is the premium income per unit

time t, {Xi}∞i=1 is a sequence of (i.i.d.) independent and identically distributed ran-

dom variables, each representing a single claim amount, with common distribution

function P (x) and density p(x). Its Laplace transform is denoted by p̂(.) . Denote by

µk = E[Xk
1 ] the k-th moment of Xi. We assume the existence of µ1(general condi-

tion), in some parts of this manuscript we will work with cases where higher moments

exist. The sequence {Xi} is independent of the counting process {N(t), t ≥ 0}, with

N(t) = max{k : W1 +W2 + · · · +Wk ≤ t} where the random variables Wi, i ∈ N+,

are i.i.d. with cumulative distribution K(t) and density k(t). The Laplace transform

is denoted by k̂(.)

We assume that the interclaim times Wi follow a Phase�Type(n) distribution with

representation (α,B). This means that Wi corresponds to the time of absorption

in a terminating continuous time Markov chain {J(t)}t≥0 with n transient states

{1, 2, . . . , n} and one absorbing state {0}. The n × n intensity matrix B = (bi,j)
n
i,j=1

denotes the transition rates between the n transient states, with bi,i < 0, bi,j ≥ 0 for

i 6= j, and
∑n

j=1 bi,j ≤ 0 for i = 1, . . . , n. The vector α = (α1, α2, . . . , αn) denotes the

initial distribution with αi ≥ 0 for i = 1, . . . , n, and
∑n

i=1 αi = 1. Then

k(t) = αeBtbT, K(t) = 1− αeBteT, t ≥ 0,

k̂(s) = α(sI−B)−1bT, E[W1] = −αBeT,
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where bT = −BeT is the vector of exit rates to the absorbing state {0}, e =

(1, 1, . . . , 1) is a 1× n vector and I is the n× n identity matrix.

We assume a positive loading factor, that is cE[W1] > E[X1].

3 Lundberg's equation

The following matrix

Lδ(s) =

(
s− δ

c

)
I +

1

c
B +

1

c
bTαp̂(s), (3.1)

which we call the Lundberg's matrix, have been subject of study in several works,

like Albrecher and Boxma (2005), Ren (2007), Li (2008), Ji (2011), among others. In

the expression δ stands for a non negative constant.

According to Ren (2007), the solutions of

Det(Lδ(s)) = 0, (3.2)

and the solutions of the fundamental Lundberg's equation

k̂(δ − cs)p̂(s) = 1, (3.3)

as de�ned in Gerber and Shiu (2005) are identical.

Albrecher and Boxma (2005) show that (3.2) has exactly n solutions in the right

half of the complex plane using matrix theory, therefore the fundamental Lundberg's

equation (3.3) have exactly the same n solutions in the right half of the complex plane,

which we denote by ρ1, ρ2, . . . , ρn.

In all the papers mentioned before, it is assumed that these roots have distinct

values. However, we can �nd a great variety of examples where multiple roots can
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arise, specially double roots. First of all we want to show how to build these examples

with double roots.

De�nition 3.1. Let A = (ai,j)
n
i,j=1 be a n× n matrix.

De�ne, for 1 ≤ i1 < i2 < . . . < ik ≤ n

Mi1,i2...ik =



ai1,i1 ai1,i2 . . . ai1,ik

ai2,i1 ai2,i2 . . . ai2,ik
...

...
. . .

...

aik,i1 aik,i2 . . . aik,ik


, 1 ≤ k ≤ n,

then

trk(A) =
∑

1≤i1<i2<...<ik≤n

det(Mi1,i2...ik).

Example 3.1. For k = 1

tr(A) =
n∑
i=1

Mi =
n∑
i=1

aii.

For k = 2

tr2(A) =
∑

1≤i<j≤n

det(Mij) =
∑

1≤i<j≤n

(aiiajj − aijaji).

For k = n− 1

trn−1(A) =
∑
i=1n

det(M1...,i−1,i+1,...,n) = det(A)tr(A−1).

For k = n

trn(A) = det(M1...n) = det(A).
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By convention we set tr0(A) = 1.

Theorem 3.2.

k̂(s) = α(sI−B)−1bT =
N(s, n)

det(sI−B)
,

where,

det(sI−B) =
n∑
i=0

(−1)n−itrn−i(B)si,

and, for n odd

N(s, n) = α[−B(s)n−1 − [B2 −Btr(B)](s)n−2 − . . .+ [(−1)
n−1
2 B

n−1
2

−(−1)
n−3
2 B

n−3
2 tr(B)− . . .−Btrn−3

2
(B)](s)

n+1
2

−[(−1)
n+1
2 B

n+1
2 − (−1)

n−1
2 B

n−1
2 tr(B)− . . .

−Btrn−1
2
(B)](s)

n−1
2 − [(−1)

n−1
2 B−

n−3
2 det(B)

−(−1)
n−3
2 B−

n−5
2 trn−1(B)− . . .− Itrn+3

2
(B)](s)

n−3
2

− . . .+ [B−1det(B)− Itrn−1(B)](s)− det(B)]1T,

and an analogous formula for n even.

Example 3.2. For n = 1, α = (1), B = (−b), 1 = (1), then

k̂(s) =
α[−B]1T

s− det(B)
=

b

s+ b
.

For n = 2

k̂(s) =
α[−Bs+ Idet(B)]1T

s2 − tr(B)s+ det(B)
.

For n = 3

k̂(s) =
α[−Bs2 − (B2 −Btr(B))s− Idet(B)]1T

s3 − tr(B)s2 + tr2(B)s− det(B)
.
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Now we recall the fundamental Lundberg's equation k̂(δ− cs)p̂(s) = 1. We restrict

our attention to the right half of the complex plane, more speci�cally on the positive

real axis, and we look for the possibility of having a double real root.

For s ∈ R+, the Laplace transform p̂(s) is a positive and decreasing function of s,

with p(0) = 1 and lims→∞p̂(s) = 0. Therefore p̂(s) has no zeros or poles in s ∈ R+.

The function k̂(δ − cs) is the quotient of the polynomial N(s, n), which has degree

at most n − 1, and the polynomial det(sI − B), which has degree n. The poles of

k̂(δ − cs) are the numbers s = δ−ζ
c
, where ζ ranges over all the eigenvalues of B.

Theorem 3.3. Let s1 and s2, with s1 < s2, be two real poles of k̂(δ− cs), and suppose

that there is no other real pole or zero of k̂(δ − cs) in the interval (s1, s2). If k̂(δ − cs)

is positive in the interval (s1, s2) then the fundamental Lundbeg's equation has one of

the following:

- Two real roots in the interval.

- A double root in the interval.

- Two complex conjugate roots, where the real part of them is in the interval.

Example 3.3. Suppose that the interclaim times Wi follow a generalized Erlang(3)

distribution, with intensity matrix

B =


−0.5 0.5 0

0 −1.5 1.5

0 0 −2.5


and α = (1, 0, 0), b = (0, 0, 2.5). Then E[Wi] = 3.067. Suppose that the claim amounts

xi are Exponentially distributed with parameter β ≥ 0.5. Then we choose c = 1 to

satisfy the positive loading condition and let δ = 0.5.
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The fundamental Lundberg's equation becomes

(
1.875

(1− s)(2− s)(3− s)

)(
β

β + s

)
= 1

The function k̂(δ − cs) = k̂(0.5 − s) = 1.875
(1−s)(2−s)(3−s) has no zeros and 3 poles at

s = 1, 2, 3, furthermore it is positive in the interval (2, 3). Then it is easy to verify that

the fundamental Lundberg's equation has

- Two real roots in (2, 3) for 0.5 ≤ β < 0.67.

- A double root 2.61 in (2, 3) for β = 0.67.

- Two complex conjugate roots, where the real part of them is in (2, 3) for β > 0.67.

4 Lundberg's matrix

Previously we told that the solutions of the fundamental Lundberg's equation and the

solutions of (3.2) are identical and we denoted by ρ1, ρ2, . . . , ρn the n solutions which

have positive real parts.

Consider the Lundberg's matrices Lδ(ρi), i = 1, 2, . . . , n. All those matrices are

singular, or equivalently all of them have 0 as an eigenvalue. Let hi be an eigenvector

of Lδ(ρi) associated to the eigenvalue 0 or, equivalently, let hi be a vector in the null

space of Lδ(ρi).

Theorem 4.1. Let ρ1, ρ2, . . . , ρm be distinct, 2 ≤ m ≤ n. Then the eigenvectors

h1,h2, . . . ,hm are linearly independent.

Proof. By contradiction, suppose that they are linearly dependent. Assume that we

can �nd a subset of l elements of {h1,h2, . . . ,hm}, with 2 ≤ l ≤ m, that is linearly

dependent and that every subset with l − 1 elements or less is linearly independent.

Without loss of generality assume that the dependent subset is {h1,h2, . . . ,hl−1}.
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Then there are constants c1, c2, . . . , cm not all zero such that

c1h1 + c2h2 + · · ·+ clhl = 0.

Assume that cl 6= 0, then we can write

hl =
l−1∑
i=1

c̃ihi, c̃i = −
ci
cl
.

Multiplying both sides by Lδ(ρl) we obtain

0 = Lδ(ρl)hl = Lδ(ρl)
l−1∑
i=1

c̃ihi

l−1∑
i=1

c̃iLδ(ρl)hi =
l−1∑
i=1

c̃ih̃i,

where h̃i = Lδ(ρl)hi, i = 1, . . . , l − 1.

Since hi, i = 1, . . . , l − 1 are not eigenvectors of Lδ(ρl) we have h̃i 6= 0, so the

vectors h̃i are linearly dependent.

Now the eigenvectors h1,h2, . . . ,hl−1 are linearly independent by assumption and

they are not in the null space of Lδ(ρl), therefore Lδ(ρl) maps them to another set of

linearly independent vectors. But this means that h̃i are linearly independent and this

is a contradiction.
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5 The First Time the Surplus Attain a Certain Level

For a barrier level b ≥ u de�ne

Tb = min{t ≥ 0 : U(t) = b},

to be the �rst time the surplus reaches level b. For δ ≥ 0 de�ne

R(u, b) = E[e−δTb|U(0) = u],

to be the Laplace transform of Tb. Furthermore de�ne

Ri,j(u, b) = Ei[e
−δTbI(J(Tb) = j)|U(0) = u],

to be the Laplace transform of Tb when the process starts from initial surplus u at state

i and reaches the level b at state j. Then

R(u, b) = αR(u, b)eT,

where R(u, b) = (Ri,j(u, b))
n
i,j=1.

It follows from Li (2008) that

R(u, b) = e−K(b−u), R(u, b) = αe−K(b−u)eT, u ≤ b,

where K is a n× n matrix that satis�es the following equation

cK = (δI−B)− bTα

∫ ∞
0

p(x)e−Kxdx.

Assuming that the roots of the fundamental Lundberg's equation with positive real
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parts ρ1, ρ2, . . . , ρn are distinct, Li (2008) shows that

K = H∆H−1,

where ∆ = diag(ρ1, ρ2, . . . , ρn) and H = (h1,h2, . . . ,hn). The column vector hi is an

eigenvector of Lδ(ρi) corresponding to the eigenvalue 0. Then

R(u, b) = αHe−∆(b−u)H−1eT, u ≤ b. (5.1)

If the roots ρ1, ρ2, . . . , ρn are not all distinct then the matrix H is not invertible

and we can not apply formula (5.1) to �nd R(u, b).

In the case of a double root we propose to replace on the appearances of such root

by one of the negative roots of the fundamental Lundberg's equation. There is always

one negative root, we denote it by ρ0 = −r where r > 0 is the adjustment coe�cient.

Example 5.1. We continue the last example. Choosing β = 0, 67 the fundamental

Lundberg's equation has the following roots

ρ0 − r = −0.58, ρ1 = 0.69, ρ2 = ρ3 = 2.61,

the corresponding eigenvectors are

h0 = (0.15, 0.49, 0.85),h1 = (0.77, 0.47, 0.41),h2 = ρ3 = (0.27,−0.89, 0.36),

Therefore

H =


0.15 0.77 0.27

0.49 0.47 −0.89

0.85 0.41 0.36


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and we apply formula (5.1) to obtain

R(u, b) = 0.1e0.58(b−u) + 0.93e−0.69(b−u) − 0.034e−2.61(b−u)

Remark 5.1. In the case of double roots we can apply the same method to compute

other quantities like the ultimate and �nite time ruin probabilities, severity of ruin and

its maximum, the expected discounted future dividends, among others.

6 Conclusions

We studied the fundamental Lundberg's equation to �nd cases where double roots can

arise and for such cases we provided a method to compute the Laplace Transform of

the time to reach a certain level. Regarding the Lundberg's Matrix, we gave a proof

of the linear independence of the eigenvectors related to di�erent eigenvalues.
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