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Abstract

For actuarial applications we consider the Sparre–Andersen risk model when the interclaim
times are Generalized Erlang(n) distributed. Unlike the standard Erlang(n) case, the roots of the
generalized Lundberg’s equation with positive real parts can be multiple. This has a significant
impact in the formulae for ruin probabilities that have to be found.

We start by addressing the problem of solving an integro–differential equation that is satisfied
by the survival probability, as well as other probabilities related, and present a method to solve
such equation. This is done by considering the roots with positive real parts of the generalized
Lundberg’s equation, and then establishing a one-one relation between them and the solutions of
the integro–differential equation mentioned above. We first study the cases when all the roots are
single and when there are roots with higher multiplicity. Secondly, we show that it is possible
to have double roots but no higher multiplicity. Also, we show that the number of double roots
depend on the choice of the parameters of the generalized Erlang(n) distribution, with a maximum
number depending on n being even or odd.

Afterwards, we extend our findings above for the computation of the distribution of the maxi-
mum severity of ruin as well as, considering an interest force, to the study the expected discounted
future dividends, prior to ruin. Our findings show an alternative and more general method to the
one provided by Albrecher et al. (2005), by considering a general claim amount distribution.
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1 Introduction

In the present paper we work with the Sparre–Andersen model driven by equation

U(t) = u+ ct−
N(t)

∑
i=0

Xi, t ≥ 0,

where X0 ≡ 0, u (≥ 0) is the initial capital, c (> 0) is the premium income per unit time t, {Xi}∞

i=1 is
a sequence of independent and identically distributed random variables (i.i.d.), each representing a
single claim amount, with common distribution function P(x), P(0) = 0, and density p(x). Its Laplace
transform is denoted by p̂(.). We denote by µk = E[Xk

1 ] the k-th moment of Xi. The first moment µ1
is assumed to exist as a general condition, higher moments are only required for moment calculations
in Sections 4 and 5.

The sequence {Xi} is independent of the counting process {N(t), t ≥ 0}, with N(t) = max{k :
W1 +W2 + · · ·+Wk ≤ t} where the random variables Wi, i ∈ N+, are i.i.d. with common distribution
generalized Erlang(n), with parameters λ1,λ2, . . . ,λn. The common probability density function of
Wi, i ∈ N+, kn(t), is given by

kn(t) =
n

∑
i=1

(
n

∏
j=1, j 6=i

λ j

λ j−λi

)
λie−λit , n ∈ N+,

and the distribution function is

Kn(t) = 1−
n

∑
i=1

(
n

∏
j=1, j 6=i

λ j

λ j−λi

)
e−λit .

We assume a positive loading factor, that is cE(W1)> E(X1), equivalent to c∑
n
i=1 λ

−1
i > µ1.

Next, we set some definitions, notation and mathematical preliminaries regarding our main objects
of interest in the Sparre–Andersen model. The time to ruin is denoted as T = inf{t > 0 : U(t) <
0|U(0) = u}, and T = ∞ if and only if U(t)≥ 0 ∀ t > 0. The ultimate ruin probability is defined as
Ψ(u) = Pr(T < ∞|U(0) = u) and the corresponding non–ruin probability (or survival probability) as
Φ(u) = 1−Ψ(u).

If we set an upper barrier b ≥ u regarding the payment of dividends, we denote by τb = inf{t >
0 : U(t) ≥ b|U(0) = u} the first time that the surplus upcrosses the level b ≥ u. The probability that
the surplus attains the level b from initial surplus u without first falling below zero is given by

χ(u,b) = Pr(T > τb|U(0) = u),

with ξ(u,b)= 1−χ(u,b) being the probability that ruin occurs from u before the surplus ever reaching
b.

The probability that ruin occurs and that the deficit at ruin is at most y is given by G(u,y) =
Pr(T < ∞,U(T ) ≥ −y|U(0) = u). For a given u, this is a defective distribution function, clearly
limy→∞ G(u,y) = Ψ(u). The corresponding (defective) density is denoted as g(u,y). If we assume
that the surplus process continues after ruin, we denote the time of the first upcross of the surplus
through level “0” after ruin has occurred by T ′ = inf{t : t > T, U(t)≥ 0}, for finite T . In the time
interval where the surplus is at deficit, we define the maximum severity of ruin as

Mu = sup{|U(t)| : T ≤ t ≤ T ′|U(0) = u}.
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We note that Mu ≥ |U(T )|. The conditional distribution function of the maximum severity of ruin,
given that ruin occurs, is defined as

J(z;u) = Pr(Mu ≤ z|T < ∞), u,z≥ 0.

We further consider the problem where an insurance portfolio is supposed to provide dividend
income to the insurance company shareholders. Let constant b≥ u be the dividend barrier, so that if
the process upcrosses b dividends are payable continuously to the shareholders at rate c until a new
claim occurs. Let the random variable Du denote the present value, at force of interest δ(> 0), of
dividends payable to shareholders until ruin occurs, and denote the existing m-th moment of Du by
Vm(u,b) = E[Dm

u ], m ≥ 0, where V0(u,b) ≡ 1. For simplicity we will denote V1(u,b) = V (u,b). We
assume the existence of Vm(u,b).

This paper generalizes results previously presented by Bergel and Egı́dio dos Reis (2013), and
therefore of Li (2008), who worked on the Erlang(n) renewal model. This generalization, from
Erlang(n) to generalized Erlang(n) interarrival times, is by no means straightforward. This is an
important generalization as unlike the former case, the roots of the generalized Lundgerg’s equation
can be multiple, as a consequence new formulae for ruin probabilitites have to be found. We start by
showing two different theorems, the first proves the possible existence of double roots of the gener-
alized Lundgerg’s equation, the second proves the non existence of higher multiplicity. The number
of double roots depends on the parameter choice and the parameter n of the generalized Erlang(n)
distribution.

After, we use our findings and work further formulae for the probability that the surplus attains
the upper level b (≥ u) from initial surplus u without first falling below zero, for the distribution of
the maximum severity of ruin, and study formulae for the moments of discounted future dividends,
when a dividend barrier is assumed.

The work flows as follows. In the next section we present some of the mathematical background
on the model related to our problem. In Sections 3 and 4 we study the integro–differential equation
and show explicit formulae for the maximum severity of ruin. On Section 5 we give attention to the
dividends problem. Finally, in the last section we state some concluding remarks.

2 Mathematical background

In recent years the Sparre–Andersen risk model has been a major point of interest in risk and ruin
theory. Many authors devoted their attention and did important advances in the topic. In this paper
we present some new developments.

Following Gerber and Shiu (2003), we can prove that χ(u,b) satisfies an order n integro–differential
equation with n boundary conditions and that can be written in the form

B(D)v(u) =
∫ u

0
v(u− y)p(y)dy, u≥ 0, (2.1)

where

B(D) =
n

∏
i=1

(
I−
(

c
λi

)
D
)
,

and D is the differential operator. If we find n linearly independent particular solutions v j(u), j =
1, . . . ,n for this equation, then we have

χ(u,b) =~v(u)[V (b)]−1~eT, (2.2)
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where ~v(u) = (v1(u), . . . ,vn(u)) is a (1× n) vector of solutions, V (b) is a (n× n) matrix with entry
(i, j) given by

(V (b))i j =
di−1v j(u)

dui−1

∣∣∣∣
u=b

,

and~e = (1,0, . . . ,0) is a (1×n) vector.
In this manuscript we will be seeking for those solutions, which in turn depend on the roots of the

fundamental Lundberg’s equation. Recall that for this case the fundamental Lundberg’s equation is
given by

n

∏
i=1

(
1− c

λi
s
)
= p̂(s). (2.3)

We denote by the numbers ρ1,ρ2, . . . ,ρn−1 ∈ C, the roots of this equation which have positive real
parts (there are of course other roots, among them is 0 and −R, where R > 0 is the adjustment
coefficient, see Li and Garrido (2004a)).

On the other hand the generalized Lundberg’s equation is given by

n

∏
i=1

(
1+

δ

λi
− c

λi
s
)
= p̂(s), (2.4)

where the constant δ > 0 can be seen as the force of interest. This equation has exactly n roots with
positive real parts (see Li and Garrido (2004a)) and will be considered in Section 5.

In a previous article, following Li (2008), Bergel and Egı́dio dos Reis (2013), found a vector of
solutions~v(u) for the case when the interclaim times follow an Erlang(n) distribution. Here, our work
starts by giving the corresponding version of ~v(u) when we have generalized Erlang(n) interclaim
times. This will be given in the next section. Then, we apply our results in order to find the corre-
sponding expressions for the distribution of the maximum severity of ruin. Afterwards, we deal with
the dividends problem, we mean the calculation of the m-th moment Vm(u,b). For the compound Pois-
son model (or Erlang(1) model), an integro–differential equation for V (u,b) can be found in Dickson
(2005), and for Vm(u,b) in Dickson and Waters (2004). For the generalized Erlang(n) model we give
the respective integro–differential equations as well as a method to find their solutions, providing an
alternative to the method given by Albrecher et al. (2005).

2.1 Multiplicity of the roots of the generalized (fundamental) Lundberg’s equation

We study briefly the possibility that the Lundberg’s equations (2.4) have multiple roots, more precisely
double roots. We can rewrite equations (2.4) and (2.3) in the following form

Bδ(s) = p̂(s), B(s) = p̂(s),

where Bδ(s) = ∏
n
i=1

(
1+ δ

λi
− c

λi
s
)

and B(s) = ∏
n
i=1

(
1− c

λi
s
)

respectively.

Theorem 2.1. Let s1 and s2 be two consecutive positive real zeros of Bδ(s). If Bδ(s) is positive in the
interval (s1,s2) then the generalized Lundberg’s equation has one of the following:

• Two real roots in the interval;

• A double root in the interval;
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• No real roots on this interval.

Proof: The proof is based on a comparison of both sides of the equation (2.4). We observe that
for s ∈ R+, the Laplace transform p̂(s) is a positive and decreasing function of s, with p̂(0) = 1
and lims→∞ p̂(s) = 0. In addition, p̂(s) is a convex function. Therefore p̂(s) has no zeros or poles
in s ∈ R+. (In Figure 1 we show an example of p̂(s) when the interclaim arrivals are generalised
Erlang(3) distributed, from Example 2.1).

Assume that Bδ(s1) = Bδ(s2) = 0 and Bδ(s) > 0 in the interval (s1,s2). Define the distance be-
tween p̂(s) and Bδ(s) in the interval (s1,s2) as

d = d(p̂,Bδ) = min
x1,x2∈(s1,s2)

{√
(x1− x2)2 +(p̂(x1)−Bδ(x2))2

}
If d > 0 there are no real roots of the generalized Lundberg’s equation in (s1,s2), and if d = 0 we

will have either two real roots or a double real root in (s1,s2). Additionally, in the case of a double
real root, since d = 0 exactly for one point in the interval (s1,s2), the function Bδ(s) must be concave
in the vicinity of this point.

�
A similar theorem can be stated for the fundamental Lundberg’s equation (2.3), as follows.

Corollary 2.1. Let s1 and s2 be two consecutive positive real zeros of B(s). If B(s) is positive in the
interval (s1,s2) then the fundamental Lundberg’s equation has one of the following:

• Two real roots in the interval.

• A double root in the interval.

• No real roots on this interval.

Next example illustrates the three situations considered above.

Example 2.1. Suppose that the interclaim times Wi follow a generalized Erlang(3) distribution, with
parameters λ1 = 0.5,λ2 = 1.5,λ3 = 2.5. Then E[Wi] = 3.067. Suppose that the claim amounts Xi

are exponentially distributed with parameter β ≥ 0.5. Then we choose c = 1 to satisfy the positive
loading condition and let δ = 0.5.

Notice that the generalized Lundberg’s equation becomes

Bδ(s) =
(1− s)(2− s)(3− s)

1.875
=

β

β+ s
= p̂(s)

The function Bδ(s) has 3 zeros at s = 1,2,3, furthermore it is positive in the interval (2,3). Then it is
easy to verify that the fundamental Lundberg’s equation has:

• Two real roots in (2,3) for 0.5≤ β < 0.67003513333375991355;

• A double root 2.61013 in (2,3) for β = 0.67003513333375991355;

• Two complex conjugate roots, where the real part of them is in (2,3)
for β > 0.67003513333375991355.

See Figure 1, with β rounded to 0.67. ∗
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Figure 1: Example of the roots of the generalized Lundberg’s equation

Next, we show that the fundamental Lundberg’s equation can have more than one double positive
real root. We look for the conditions that must be satisfied by the parameters of the Generalized
Erlang distribution that would give the maximum possible number of double positive real roots in
the fundamental Lundberg’s equation. For this purpose we assume that the claim amounts Xi are
exponentially distributed with parameter β.

Theorem 2.2. The fundamental Lundberg’s equation B(s) = p̂(s) = β/(β + s) can have at most
(n−1)/2 double positive real roots for n odd, and (n−2)/2 double positive real roots for n even.

Proof: Assume that n is odd. Since the fundamental Lundberg’s equation has n−1 roots with pos-
itive real parts, the maximum possible number of double positive real roots would be (n−1)/2. Then
the logic is as follows: we start assuming that the fundamental Lundberg’s equation has (n−1)/2 dou-
ble positive real roots and we find the conditions that the parameters λi of the generalized Erlang(n)
distribution must satisfy to support this assumption.

Let ρ1,ρ2, . . . ,ρ n−1
2

be the double positive real roots. Then

B(s)− p̂(s) =
n

∏
i=1

(
1− c

λi
s
)
− β

β+ s

=
∏

n
i=1

(
1− c

λi
s
)
(β+ s)−β

β+ s
=

(−c)n

∏
n
i=1 λi

s(s+R)∏

n−1
2

j=1(s−ρ j)
2

β+ s
, (2.5)

where R denotes the adjustment coefficient, 0 < R < β.

Considering the parameters λi as unknowns we can compare the coefficients of si, for i = 1, . . . ,n
in Equation (2.5) to obtain a system of n equations on the variables λi, as follows

λ̃1 = c(ρ̃1 +(β−R))
λ̃2 = c2(ρ̃2 +(β−R)ρ̃1 +β(β−R))
...

λ̃n−1 = cn−1(ρ̃n−1 +(β−R)∑
n−2
k=0 βk ρ̃n−2−k)

λ̃n = cn(β−R)∑
n−1
k=0 βk ρ̃n−1−k,

(2.6)

where
λ̃i = SYMi(λ1, . . . ,λn)
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is the elementary symmetric polynomial of degree i on the n variables λ1,λ2, . . . ,λn and

ρ̃ j = SYM j(ρ1,ρ1,ρ2,ρ2 . . . ,ρ n−1
2
,ρ n−1

2
)

is the elementary symmetric polynomial of degree j on the n−1 variables ρ1,ρ1,ρ2,ρ2 . . . , ρ n−1
2
,ρ n−1

2
.

Therefore, the fundamental Lundberg’s equation has (n−1)/2 double positive real positive roots
if the system (2.6) has solution for the parameters λi such that these parameters are all positive and
distinct.

If n is even, then n− 1 is odd, and the maximum possible number of double positive real roots
would be (n− 2)/2. Proceeding with the same logic as above, we obtain a system like (2.6) on the
variables λi. �

A similar result can be obtained for the generalized Lundberg’s equation. So far we have inves-
tigated the existence of double positive real roots in the Lundberg’s equations for a Sparre–Andersen
model with generalized Erlang(n) interclaim times. Now we study the possibility of higher order real
roots.

Theorem 2.3. The multiplicity of the positive real roots of the fundamental Lundberg’s equation is at
most two.

Proof: We proceed by contradiction. Suppose that the fundamental Lundberg’s equation B(s) =
p̂(s) has a root ρ > 0 with multiplicity k > 2. This means that

B(ρ) = p̂(ρ)
B′(ρ) = p̂′(ρ)
B′′(ρ) = p̂′′(ρ)

...
B(k−1)(ρ) = p̂(k−1)(ρ).

Since k > 2 we have in particular B(ρ) = p̂(ρ) and B′(ρ) = p̂′(ρ). Then it is easy to verify that
B′′(ρ)< 0 for any root ρ satisfying these two conditions, because the function B(s) is concave around
ρ (see the proof of Theorem 2.1). On the other hand we have p̂′′(ρ) > 0 because p̂′′(s) > 0 ∀s ≥ 0
because the function p̂(s) is always convex. This implies that B′′(ρ) 6= p̂′′(ρ) and we arrive to a
contradiction. �

3 Solutions for the integro-differential equation

We look now for n linearly independent particular solutions v j(u), j = 1, . . . ,n of the integro-
differential equation (2.1). For that purpose we need to use the roots of the fundamental Lundberg’s
equation that have positive real parts (denoted as ρi, i = 1, . . . ,n− 1) and the non–ruin probability
Φ(u) in the following manner,

Theorem 3.1. If ρ1,ρ2, . . . ,ρn−1 ∈ C are distinct, then the following functions are linearly indepen-
dent particular solutions of the integro-differential equation (2.1):

v j(u) =
∫ u

0
Φ(u− y)eρ jydy, j = 1,2, . . . ,n−1,

vn(u) = Φ(u).
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Proof:
It can be shown that any solution v(u) of (2.1) has Laplace transform

v̂(s) =
dv(s)

B(s)− p̂(s)
,

where dv(s) is a polynomial of degree at most n−1 of the form

dv(s) =
n−1

∑
i=0

(
n

∑
k=i+1

(
∑

i1<···<ik

(−1)k

λi1 · · ·λik

)
v(k−1−i)(0)

)
si

=
n−1

∑
i=0

(
n

∑
k=i+1

Bkv(k−1−i)(0)

)
si,

where the coefficient Bk is given by Bk = ∑
i1<···<ik

(−1)k

λi1 · · ·λik
.

It is known that Φ(u) is solution of (2.1), see Li (2008), its Laplace transform is given by

Φ̂(s) =−Φ(0)
(

cn

∏
n
i=1 λi

)
∏

n−1
i=1 (ρi− s)

B(s)− p̂(s)
=

dΦ(s)
B(s)− p̂(s)

,

therefore we have

dΦ(s) =−Φ(0)
(

cn

∏
n
i=1 λi

) n−1

∏
i=1

(ρi− s).

Now, let’s see that any function v j(u) =
∫ u

0 Φ(u− y)eρ jydy, with j = 1,2, . . . ,n−1, is solution of
(2.1). We can show that

B(D)v j(u) = dΦ(ρ j)eρ ju +
∫ u

0
(B(D)Φ(u− t))eρ jtdt

and that ∫ u

0
v j(u− y)p(y)dy =

∫ u

0
(B(D)Φ(u− t))eρ jtdt.

Since dΦ(ρ j) = 0, j = 1,2, . . .n−1, we get the desired equality. It remains to prove that those v j(u)’s
are linearly independent.

Suppose that we have a linear combination such that ∑
n
j=1 c jv j(u) = 0, ∀u≥ 0. Consider the cases

(i) and (ii) below.

(i) cn = 0:

Let H(t) = ∑
n−1
j=1 c jeρ jt , then

n

∑
j=1

c jv j(u) =
n−1

∑
j=1

c j

∫ u

0
Φ(u− y)eρ jydy

=
∫ u

0
Φ(u− y)

n−1

∑
j=1

c jeρ jydy

= Φ∗H(u) = 0.

The fact that Φ ∗H(u) = 0, ∀u ≥ 0 with Φ(u) 6≡ 0, implies H(u) ≡ 0 almost everywhere. But
H(t) is a continuously differentiable function, this implies that c1 = c2 = · · ·= cn = 0.
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(ii) cn 6= 0:

Define G(t) = ∑
n−1
j=1 (−c j/cn)eρ jt , so Φ ∗G(u) = Φ(u) ∀u ≥ 0. Not all the remaining coef-

ficients c j’s can be 0, otherwise G(t) ≡ 0. But then limu→+∞ G(u) = ±∞ depending on the
sign of the non zero coefficients. As Φ(u) is a non–decreasing non–negative function with
limu→+∞ Φ(u) = 1, we will have that limu→+∞ Φ∗G(u) =±∞, which is a contradiction.

This completes the proof. �
We have shown a set of n linearly independent particular solutions of the integro-differential

equation (2.1) for the case when the roots ρ1,ρ2, . . . ,ρn−1 ∈ C are distinct. Now we will show the
corresponding particular solutions for the case of existing multiple roots.

First suppose that we have one root with multiplicity n− 1. From Theorem 2.3 we know that
there are no positive real roots with multiplicity higher than 2. However we decided to include the
following theorem to illustrate in detail our method of finding the solutions of 2.1 in the case of
multiplicities.

Theorem 3.2. If ρ1 = ρ2 = . . . = ρn−1 = ρ then the following functions are linearly independent
particular solutions of the integro-differential equation (2.1):

v j(u) =
∫ u

0
Φ(u− y)y j−1eρydy, j = 1,2, . . . ,n−1,

vn(u) = Φ(u).

Proof: In the same way we can prove by direct computation of the derivatives of the v j(u)’s that

B(D)v j(u) =
∫ u

0
v j(u− y)p(y)dy, j = 1,2, . . . ,n.

To see the linear independence of the v j(u)’s we can proceed like in the proof of Theorem 3.1. �

Now, assume the most general case, when we have k (1≤ k≤ n−1) different roots, ρ1,ρ2, . . . ,ρk,
where the root ρi has multiplicity mi and that ∑

k
i=1 mi = n−1.

Theorem 3.3. Under the conditions described above, the following functions are linearly independent
particular solutions of the integro-differential equation (2.1)

v00(u) = Φ(u),

vi j(u) =
∫ u

0
Φ(u− y)y j−1eρiydy, i = 1,2, . . . ,k; j = 1,2, . . . ,mi.

Proof: The proof of this theorem is based on the proofs of Theorems 3.1 and 3.2. Basically if we
have k different roots ρi, i= 1, . . . ,k, and ρi has multiplicity mi, with ∑

k
i=1 mi = n−1, then we combine

the two previous theorems to obtain this result. �

3.1 A note on the survival probability

From the previous analysis we can recover some particularly interesting information regarding the
survival probability and its derivatives when u = 0. Li and Garrido (2004b) showed that

Φ(0) =
∏

n
i=1 λi(c∑

n
i=1

1
λi
−µ1)

cn ∏
n−1
i=1 ρi

.
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Using our findings we can do some extension by getting the k−th derivative Φ(k)(u)
∣∣
u=0. For sim-

plicity we write Φ(0) = (λ̄ µ̄/(cn ρ̄), where λ̄ = ∏
n
i=1 λi, µ̄ = c∑

n
i=1

1
λi
−µ1 and ρ̄ = ∏

n−1
i=1 ρi.

We have mentioned before that

dΦ(s) = −Φ(0)
(

cn

∏
n
i=1 λi

) n−1

∏
i=1

(ρi− s)

=

(
− µ̄

ρ̄

) n−1

∏
i=1

(ρi− s) =
n−1

∑
i=0

ãisi, (3.1)

where

ãi =

(
− µ̄

ρ̄

)(
(−1) j

∑
i1<···<in−1− j

ρi1 · · ·ρin−1− j

)
.

On the other hand we have

dΦ(s) =
n−1

∑
i=0

(
n

∑
k=i+1

BkΦ
(k−1−i)(0)

)
si =

n−1

∑
i=0

b̃isi. (3.2)

We compare the coefficient of si in (3.1) and (3.2) to get a system of n equations ãi = b̃i, 0≤ i≤ n−1,
for the unknowns Φ(k)(0), k = 0,1, . . . ,n−1 (we already know Φ(0)). After solving that system we
obtain the following

Φ
(k)(0) = AkΦ(0), k = 0,1, . . . ,n−1, (3.3)

where the constants Ak are given by A0 = 1 and

Ak = ∑
i1<···<ik

(−1)k+1
[

λi1 · · ·λik

ck −ρi1 · · ·ρik

]
+

k−1

∑
j=1

(−1)k+1− j
[

λi1 · · ·λik− j

ck− j

]
,

with k = 1, . . . ,n−1. We notice that the higher derivatives of Φ(u) at u = 0 are just multiples of Φ(0).

Li and Garrido (2004a) found a defective renewal equation for the survival probability Φ(u)

Φ(u) =
∫ u

0
Φ(u− y)η0(y)dy+Φ(0), (3.4)

where η0(y) = λ̄

cn T0Tρn−1 · · ·Tρ1 p(y) is a “defective density”, and Tr is the following complex operator
of an integrable real-valued function f , with Re(r)≥ 0,

Tr f (x) =
∫

∞

x
e−r(u−x) f (u)du , r ∈ C, x≥ 0 .

We compute the derivatives of Φ(u) at u = 0 using equation (3.4) and obtain

Φ
(k)(0) = Φ(0)

[
η

k
0(0)+

k−1

∑
i=1

(
k−1

i

)
η

k−1−i
0 (0)η(i)

0 (0)

]
, k = 1, . . . ,n−1, (3.5)
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Thus, comparing the expressions for Φ(k)(0) in (3.3) and (3.5) we get

Ak = η
k
0(0)+

k−1

∑
i=1

(
k−1

i

)
η

k−1−i
0 (0)η(i)

0 (0).

Hence, from the equation above we obtain expressions for the derivatives of η0(y) at y = 0

η0(0) = A1,

η
(k−1)
0 (0) =

k

∑
j=0

(−1) j+1

(
∑

i1<···<i j

λi1 · · ·λi j

c j

)
×(

∑
i1≤···≤ik− j

ρi1 · · ·ρik− j

)
, (3.6)

for k = 1, . . . ,n− 1. On the other hand, we compute directly the derivatives of η0(y) at y = 0 to get
the expression

η
(k−1)
0 (0) = −

n

∑
i=n−k

(
∑

1≤ j1<···< jn−i≤n

(
n−i

∏
m=1

(
ρn−(k−1)−

λ jm

c

)))
×(

∑
1≤ j1≤···≤ ji−n+k≤n−k

(
i−n+k

∏
m=1

(
ρ jm−ρn−(k−1)

)))
. (3.7)

Both expressions for η
(k−1)
0 (0) given in (3.6) and (3.7) are equivalent. From this equivalence we

obtain many combinatorial identities, but that belongs to the field of Combinatorics and goes beyond
the scope of this work.

Remark 3.1. The defective density η0(y) is a special case of the function ηδ(y) for a force of interest
δ ≥ 0. This function appears in Li and Garrido (2004a) for the study of the Gerber–Shiu penalty
functions.

4 The maximum severity of ruin

In the previous section we have shown how to obtain the solutions of the integro–differential equation.
Now, we will use these results to obtain the corresponding expressions for the distribution of the
maximum severity of ruin. We will find an expression for that distribution which only depends on the
non-ruin probability Φ(u) and on the claim amounts distribution.

From Dickson (2005) and (2.2) we know that the distribution of the maximum severity of ruin
J(z;u) can be expressed as:

J(z;u) =
1

1−Φ(u)

∫ z

0
g(u,y)(v1(z− y), . . . ,vn(z− y))dy[V (z)]−1~eT . (4.1)

If we denote by

~h(z,u) =
∫ z

0
g(u,y)(v1(z− y), . . . ,vn(z− y))dy

=

(∫ z

0
g(u,y)v1(z− y)dy, . . . ,

∫ z

0
g(u,y)vn(z− y)dy

)
= (h1(z,u), . . . ,hn(z,u)),
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then we only have to find an expression for every component of~h(z,u).
Considering the case of the Theorem 3.1 in the previous section we have that for j = 1,2, . . . ,n−1,∫ z

0
g(u,y)v j(z− y)dy =

∫ z

0
g(u,y)

∫ z−y

0
Φ(z− y− x)eρ jxdxdy

=
∫ z

0
eρ jx[Φ(u+(z− x))−Φ(u)]dx,

and for j = n, ∫ z

0
g(u,y)vn(z− y)dy =

∫ z

0
g(u,y)Φ(z− y)dy = Φ(u+ z)−Φ(u).

In a similar way, when we consider the case of Theorem 3.3, we have that for i = j = 0,∫ z

0
g(u,y)v00(z− y)dy =

∫ z

0
g(u,y)Φ(z− y)dy = Φ(u+ z)−Φ(u),

and for i = 1, . . . ,k; j = 1, . . . ,mi,∫ z

0
g(u,y)vi j(z− y)dy =

∫ z

0
g(u,y)

∫ z−y

0
Φ(z− y− x)x j−1eρixdxdy

=
∫ z

0
x j−1eρix

[∫ z−x

0
g(u, t)Φ((z− x)− t)dt

]
dx

=
∫ z

0
x j−1eρix[Φ(u+(z− x))−Φ(u)]dx.

Example 4.1. Generalized Erlang(3) – Exponential. We work explicit formulae for the particular
case when interclaim arrivals are generalized Erlang(3,λ1,λ2,λ3) distributed, with λ1 6= λ2 6= λ3,
and claim amounts are exponential(β) distributed.

Considering the safety loading c = (1+θ)λ1λ2λ3/β(λ1λ2 +λ1λ3 +λ2λ3) with θ > 0, the gener-
alized Lundberg’s equation (2.2) takes the form

3

∏
i=1

(
1−
(

c
λi

)
s
)
− β

(s+β)
= 0.

It has four roots: 0,ρ1,ρ2 and −R, where 0 < R < β is the adjustment coefficient. Assume that
ρ1 = ρ2 = ρ is a double (real) root (therefore ρ > 0).

After applying Theorem 3.2, the three solutions of the integro – differential equation (2.1) come

Φ(u) = 1−
(

1− R
β

)
e−Ru

v2(u) =
−1
ρ

+
β−R

β(R+ρ)
e−Ru +

R(β+ρ)

ρβ(R+ρ)
eρu

v3(u) =
1
ρ2 −

β−R
β(R+ρ)2 e−Ru− R(2βρ+Rβ+ρ2)

ρ2β(R+ρ)2 eρu +
R(β+ρ)

ρβ(R+ρ)
ueρu

Calculating (4.1) we get

J(z;u) = 1− αe−Rz

1− γe−(ρ+R)z−δe−(ρ+R)zz−ηe−Rz
,
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where

α =
R(R+ρ)2

β(β+ρ)2 , δ =−R(ρ+R)(β−R)
ρ(β+ρ)

,

γ = − R(β−R)
ρ2(β+ρ)2 ((R+ρ)(β+ρ)+ρ(2ρ+R+β)),

η = 1− R
β+ρ

[
R+ρ

β
− (β−R)(R+ρ)

ρβ
− (β−R)(R+2ρ)

ρ2

]
,

with η = 1−α− γ. Note that this expression for J(z;u) is independent from u.
Now we compute the conditional moments of the maximum severity Mu given that ruin occurs, by

formula, for r ≥ 1,

E(Mr
u|T < ∞) = r

∫
∞

0
zr−1(1− J(z;u))dz

= rα

∫
∞

0

zr−1e−Rz

1− γe−(ρ+R)z−δze−(ρ+R)z−ηe−Rz
dz .

Now, choosing β = 1, λ1 = 6.098, λ2 = 2, λ3 = 3, θ = 0.1 and c = 1.103, we obtain a double
root ρ = 4.596, the adjustment coefficient R = 0.129 and

J(z;u) = 1− 0.092e−0.129z

1+0.012e−4.724z +0.021e−4.724zz−0.921e−0.129z .

The expected value and the standard deviation of the maximum severity of ruin are E(Mu) = 1.932
and s.d.(Mu) = 3.528. ∗

5 Dividends

In this section we consider the dividends problem. We can follow Dickson and Waters (2004) to
generalize an equation for Vm(u,b) in a Generalized Erlang(n) risk process. So, conditioning on the
time and the amount of the first claim we get, for 0≤ u < b and m = 1,2, ...,

Vm(u,b) =
∫

∞

b−u
c

kn(t)e−mδt
[(

c s
t− b−u

c

)m
+

+
m

∑
j=1

(
m
j

)(
c s

t− b−u
c

)m− j ∫ b

0
p(x)Vj(b− x,b)dx

]
dt +

+
∫ b−u

c

0
e−mδtkn(t)

∫ u+ct

0
Vm(u+ ct− x,b)p(x)dx dt, m≥ 1. (5.1)

In particular, for m = 1

V (u,b) =
∫

∞

b−u
c

kn(t)e−δt
(

c s
t− b−u

c
+

∫ b

0
p(x)V (b− x,b)dx

)
dt +

+
∫ b−u

c

0
e−δtkn(t)

∫ u+ct

0
V (u+ ct− x,b)p(x)dx dt, (5.2)

where st = (eδt −1)/δ in standard actuarial notation.
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Following Albrecher et al. (2005), we derived for a Generalized Erlang(n) risk process the integro–
differential equations satisfied by the discounted expected dividends

n

∏
i=1

((
1+

δ

λi

)
I − c

λi
D
)

V (u,b) =
∫ u

0
V (u− x,b)p(x)dx (5.3)

dkV (u,b)
duk

∣∣∣∣
u=b

=

(
δ

c

)k−1

, 1≤ k ≤ n,

and for a general m = 1,2, . . .,

n

∏
i=1

((
1+

δ

λi

)
I − c

λi
D
)

Vm(u,b) =
∫ u

0
Vm(u− x,b)p(x)dx (5.4)

dkVm(u,b)
duk

∣∣∣∣
u=b

=
k

∑
j=1

m!
(m− j)!

{
k
j

}(
δ

c

)k− j

Vm− j(b,b), 1≤ k ≤ n,

where
{

k
j

}
= 1

j! ∑
j
i=0(−1) j−i

( j
i

)
ik denotes the Stirling numbers of the second kind. We define for

convenience Vm− j(u,b)≡ 0, for m < j in the formula above.
These equations generalize those proposed by Dickson (2005) and Dickson and Waters (2004)

for the classical compound Poisson risk model, and are not only more explicit than those proposed by
Albrecher et al. (2005), but also applicable for a general claim amount distribution instead (see their
Equation (10) of Section 4).

Assume that the Generalized Lundberg’s equation (2.4) has k different roots with positive real
parts, ρ1,ρ2, . . . ,ρk, and the root ρi has multiplicity mi ≥ 1, i = 1,2, . . . ,k. Following an argument
originally proposed by Bühlman (1970), Section 6.4.9 for a Poisson risk model, we propose for a
Generalized Erlang(n) risk model that V (u,b) can be written in the form

V (u,b) =
k

∑
i=1

(
mi

∑
j=1

Ci j(b)βi j(u)

)
eρiu, (5.5)

where Ci j’s are constants (that depend on the parameter b), and the functions βi j(u) are solutions of
the integro–differential equations

n

∏
t=1

(
I − c

λti
D
)

v(u) =
∫ u

0
v(u− x)pi(x)dx, (5.6)

with λti = λt +δ− cρi and pi(x) = e−ρix p(x)/p̂(ρi), for t = 1, . . . ,n, i = 1, . . . ,k.

Thus, the functions βi j(u) can be computed solving an equation of the same kind as Equation (2.1)
but with different “parameters” and a different “density”. Constants Ci j’s are determined using the
boundary conditions given in (5.3), which gives a system of n equations with n unknowns

dkV (u,b)
duk

∣∣∣∣
u=b

=
k

∑
i=1

mi

∑
j=1

Ci j(b)
dk(βi j(u)eρiu)

duk

∣∣∣∣
u=b

=

(
δ

c

)k−1

, 1≤ k ≤ n, (5.7)

We summarize this in the following theorem
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Theorem 5.1. The solutions of integro-differential equation (5.3) can be written on the form

V (u,b) =
k

∑
i=1

(
mi

∑
j=1

Ci j(b)βi j(u)

)
eρiu,

where ρi’s are the roots with positive real parts of the generalized Lundberg’s equation (2.4), βi j(u)’s
are defined in (5.6) and the constants Ci j’s are defined in (5.7).

Proof:
The proof is long but straightforward, it follows by taking derivatives of V (u,b) and finding out

which conditions must be satisfied by the ρi’s and βi j(u)’s to get the equality in (5.3). �
This method generalizes the results by Albrecher et al. (2005), since it works for any kind of claim

amounts distribution, and not only for the distributions with rational Laplace transforms. Special care
should be taken in the case when some of the roots (ρi’s) of the generalized Lundberg’s equation are
complex, by using standard techniques of the theory of differential equations. The same approach
can be implemented to find a general Vm(u,b), m ≥ 2, writing it in the form (5.5) and using the
corresponding boundary conditions given in (5.4).

Example 5.1. Consider that the interclaim times are generalized Erlang(3) distributed, with param-
eters λ1,λ2,λ3, and the claim amounts are exponentially distributed with parameter α. Let the force
of interest be δ > 0.

The Generalized Lundberg’s equation (2.4) is

(λ1 +δ− cs)(λ2 +δ− cs)(λ3 +δ− cs) =
λ1λ2λ3α

α+ s
,

where c = (1+θ)λ1λ2λ3/α(λ1λ2 +λ1λ3 +λ2λ3) for some θ > 0. There are 3 roots with positive real
parts. Let R > 0 be the adjustment coefficient and assume that we have a single root ρ1 > 0 and a
double root ρ2 > 0.

Applying Theorem 5.1 we can write

V (u,b) =C11v11(u)eρ1u +(C21v21(u)+C22v22(u))eρ2u.

We already know ρ1 and ρ2. We must find the constants C11,C21,C22 and the functions v11(u),v21(u),v22(u).
To find the functions v11(u),v21(u) and v22(u) we proceed as follows:

•

• v11(u) is a solution of the integro–differential equation

3

∏
t=1

(
I − c

λt1
D
)

v(u) =
∫ u

0
v(u− x)p1(x)dx, (5.8)

where λt1 = λt +δ− cρ1 and p1(x) = (α+ρ1)e−(α+ρ1)x = α1e−α1x, for t = 1,2,3.

Let

(λ11− cs)(λ21− cs)(λ31− cs) =
λ11λ21λ31α1

α1 + s

be the associated fundamental Lundberg’s equation and R1 > 0 the corresponding adjustment
coefficient. Then, we can choose v11(u) = 1− (1− R1/α1)e−R1u, a “survival probability”,
which is a well known solution of (5.8).
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• v21(u) and v22(u) are both solutions of

3

∏
t=1

(
I − c

λt2
D
)

v(u) =
∫ u

0
v(u− x)p2(x)dx, (5.9)

where λt2 = λt +δ− cρ2 and p2(x) = (α+ρ2)e−(α+ρ2)x = α2e−α2x, for t = 1,2,3.

Let

(λ12− cs)(λ22− cs)(λ32− cs) =
λ12λ22λ32α2

α2 + s

be the associated Fundamental Lundberg’s equation, R2 > 0 the corresponding adjustment
coefficient and ρ21,ρ22 the two roots with positive real parts.

Let ṽ(u) = 1− (1−R2/α2)e−R2u.

Then, using Theorem 3.1 (if ρ21 6= ρ22 we use Theorem 3.2, otherwise), we can choose

v21(u) =
∫ u

0
ṽ(u− y)eρ21ydy

=
−1
ρ21

+
α2−R2

α2(R2 +ρ21)
e−R2u +

R2(α2 +ρ21)

ρ21α2(R2 +ρ21)
eρ21u

v22(u) =
∫ u

0
ṽ(u− y)eρ22ydy

=
−1
ρ22

+
α2−R2

α2(R2 +ρ22)
e−R2u +

R2(α2 +ρ22)

ρ22α2(R2 +ρ22)
eρ22u

To find the constants C11,C21,C22 we use the boundary conditions given in (5.3) and we obtain

 C1
C2
C3

=



d(eρ1uv11(u))
du

∣∣∣∣
u=b

d(eρ2uv21(u))
du

∣∣∣∣
u=b

d(eρ2uv22(u))
du

∣∣∣∣
u=b

d2(eρ1uv11(u))
du2

∣∣∣∣
u=b

d2(eρ2uv21(u))
du2

∣∣∣∣
u=b

d2(eρ2uv22(u))
du2

∣∣∣∣
u=b

d3(eρ1uv11(u))
du3

∣∣∣∣
u=b

d3(eρ2uv21(u))
du3

∣∣∣∣
u=b

d3(eρ2uv22(u))
du3

∣∣∣∣
u=b



−1
1(
δ

c

)
(

δ

c

)2

 .

6 Some concluding remarks

In this work we have shown a method to find expressions for the distribution of the maximum sever-
ity of ruin in the Sparre–Andersen model with generalized Erlang(n) interclaim times in the cases
when the generalized Lundberg’s equation has single or multiple roots. Those expressions depend
exclusively on the non–ruin probability and the claim amounts distribution.

Multiple roots do not arise in the (single) Erlang(n) model. Our work shows that the existence
of multiple roots brings the need for further developments or a different approach. Also, we gener-
alized the results obtained by Albrecher et al. (2005) for the expected discounted future dividends
considering an arbitrary claim amount distribution and for the case of multiple roots.
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Bühlman, H. (1970). Mathematical Methods in Risk Theory, Springer-Verlag. Berlin, Heidelberg,
New York.

Dickson, D. C. M. (2005). Insurance risk and ruin, Cambridge University Press, Cambridge.

Dickson, D. C. M. and Waters, H. R. (2004). Some optimal dividends problems, Astin Bulletin 34,
49–74.

Gerber, H. U. and Shiu, E. S. W. (2003). “Discussion of Y. Cheng and Q. Tang’s Moments of the
surplus before ruin and the deficit at ruin”, North American Actuarial Journal 7(3), 117–119.

Ji, L. and Zhang, C. (2011). Analysis of the multiple roots of the Lundberg fundamental equation in
the PH(n) risk model, Applied Stochastic Models in Business and Industry.

Li, S. (2008). A note on the maximum severity of ruin in an Erlang(n) risk process, Bulletin of the
Swiss Association of Actuaries 167–180.

Li, S. and Dickson, D.C.M. (2006). The maximum surplus before ruin in an Erlang(n) risk process
and related problems, Insurance: Mathematics & Economics 38(3), 529–539.

Li, S. and Garrido, J. (2004a). On ruin for the Erlang(n) risk process, Insurance: Mathematics &
Economics 34(3), 391–408.

Li, S. and Garrido, J. (2004b). On a class of renewal risk models with a constant dividend barrier,
Insurance: Mathematics & Economics 35(3), 691–701.

17



Agnieszka I. Bergel Alfredo D. Egı́dio dos Reis
Department of Mathematics Department of Management
ISEG and CEMAPRE ISEG and CEMAPRE
Universidade de Lisboa Universidade de Lisboa
Rua do Quelhas 6 Rua do Quelhas 6
1200-781 Lisboa 1200-781 Lisboa
Portugal Portugal

+351 21 3922 766 (CEMAPRE)
agnieszka@iseg.ulisboa.pt alfredo@iseg.ulisboa.pt

18


