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Abstract

To investigate the time heterogeneity e¤ects of …scal policy in the U.S.,

we use a non-recursive, Blanchard and Perotti-like structural VAR with

time-varying parameters, estimated through Bayesian simulation over the

1965:2–2009:2 period. Our evidence suggests that …scal policy has lost some

capacity to stimulate output but that this trend is more pronounced for

taxes net of transfers than for government expenditure, whose e¤ectiveness

declines only slightly. Fiscal multipliers keep conventional signs throughout.

An investigation of changes in …scal policy conduct indicates an increase in

the countercyclical activism of net taxes over time, which appears to have

reached a maximum during the 2008-09 recession.
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1 Introduction

E¤ectiveness of …scal policy to stimulate activity remains a highly controversial

topic, as it resurfaced in the discussion of the stimulus packages implemented in

the awake of the recent recession. This controversy stems in the …rst place from the

di¤erences between the predictions of neoclassical and Keynesian and some New

Keynesian macromodels. Empirical investigation could be expected to shed light

on this, but the measurement of the e¤ects of …scal policy is fraught with problems

of endogeneity and anticipation. Di¤erent ways to overcome them lead to di¤erent

estimated shock series and measured impacts.

Yet another problem in this context is that, even within the same approach,

results may vary substantially when the sample period varies. Subsample instability

has been mentioned, but not much explored in the original SVAR contribution in

the …eld by Blanchard and Perotti (2002). Subsequent work in this vein (e.g.

Perotti (2004) and Pereira (2009)) paid more attention to the issue. However, in

these and in other studies, inference appears somewhat fragile because the number

and timing of the breaks has been imposed from the outset. Usually, only one

abrupt change is allowed and its dating is made to coincide with the emergence of

the “Great Moderation” or with the change in the conduct of monetary policy.

In the event study approach, the main alternative approach for identi…cation

of …scal (spending) shocks, time heterogeneity issues were also initially overlooked.

However, recent work belonging to this strand of the literature, as represented by

Ramey (2010), has introduced improved measures of military spending shocks and

presented some results on (in)stability of the …ndings. Ramey reports subsample

results for one of the new shock measures proposed and, for instance, she …nds

clearly di¤erent impacts of …scal policy when the sample starts in 1955 vis-à-vis

when it includes the WW II.

The issue of time variation must be given careful consideration if one is to deter-

mine precisely what the existing identi…cation methodologies imply in terms of the

impacts of …scal policy. This paper takes up this issue in the framework of the Blan-

chard and Perotti identi…cation approach, by embedding it into a VAR with time-
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varying parameters (TVP). As argued forcefully in Primiceri (2005) and Boivin

(2006), these models have great ‡exibility in terms of capturing non-linearities and

time heterogeneity, and are free from the shortcomings of less formal alternative

approaches, such as split- or rolling-sample estimates. On the one hand, they allow

one to adopt an agnostic position concerning the number, the timing and the shape

of the breaks. On the other hand, they also permit associating the uncovered time

variation with some measure of its precision.

TVP-VAR models have been already used in a relatively large number of papers

focusing on monetary policy (e.g. Cogley and Sargent (2001), Cogley and Sargent

(2005), Primiceri (2005)). Applications to …scal policy are almost inexistent. To

the best of our knowledge, Kirchner et al. (2010) is the only study where a model

of this kind is implemented for the euro area, and a recursive identi…cation scheme

is adopted.

The methodology for estimating reduced-form VARs with time-varying coe¢-

cients and covariance matrices is well established by now. However, its applica-

tion to the case of identi…ed VARs, particularly with non-recursive identi…cation

schemes, as the one we use, poses some questions insu¢ciently covered in the lit-

erature. The contribution of our paper is thus twofold. At the methodological

level we extend the TVP-SVAR …eld to more general identi…cation schemes, such

as a Blanchard and Perotti-like one. In this framework, at the empirical level, we

document changes in the e¤ects and the conduct of …scal policy in the U.S. over

time.

The structure and key results of the paper are as follows. Sections 2 and 3

deal with methodological issues. TVP-VARs are usually estimated with the aid

of Bayesian tools. More precisely, we use the Gibbs sampler as applied to the

analysis of state-space models. An overview of the simulation procedure is given in

the text, but the full details are left to an appendix. These sections also describe

the identi…cation strategy and the way how it is embedded into the simulation

procedure. In Section 4 we adduce some evidence about parameter instability

when our model is estimated with a traditional …xed-parameter speci…cation. The

outcome of the stability tests provides support to the use of a model where both
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coe¢cients and the covariance matrix are allowed to vary through time, i.e. the

so-called heteroskedastic TVP model. The remaining sections of the paper present

and discuss the results.

We identify shocks to the two …scal variables, taxes net of transfers and govern-

ment spending, and our estimation period stretches from 1965:2 to 2009:2 (using

quarterly data). We …nd a drop in the e¤ects of net taxes on output around mid-

seventies, and then a further gradual weakening until the end of the sample. The

e¤ects of expenditure shocks have faded over time as well, but much more smoothly.

This is our most important …nding. Although this evidence agrees with the com-

mon belief that …scal policy has lost power to stimulate activity in the last decades,

it illuminates the recent debate with a di¤erent light because the discussion has

been con…ned to the e¤ects of government spending.

A particular hypothesis we also investigate is whether there has been an increase

in policy e¤ectiveness in the course of recessionary episodes, and …nd moderate

support for it. The amount of time-variation we get is more modest than the one

suggested by the estimation of the time-invariant parameter version of our model

over a rolling sample, which we also present to have a bridge to previous studies.

We then go on to investigate the impacts of …scal policy on consumption. Posi-

tive shocks to net taxes bring private consumption down, and the multiplier remains

stable throughout. On the expenditure side, we …nd evidence of a negative and

small multiplier within the quarter and, in recent decades, essentially zero multi-

pliers for longer horizons. The evidence we get is not consistent with a sizeable

Keynesian impact of expenditure shocks on consumption that SVARs are normally

believed to corroborate, though it could square with some New Keynesian models.

The …nal issue we address are patterns of time-variation in the conduct of …scal

policy. As regards systematic policy, there has been an overall increase in the coun-

tercyclical responsiveness of net taxes to output over time. In particular, there was

a jump in …scal activism during the 1973-75 recession and this indicator appears

to have reached a peak in the course of the 2008-09 recession. We get procycli-

cal expenditure responses, featuring a decreasing trend throughout the simulation

period.
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2 Model speci…cation and identi…cation

In the time-varying parameter context it is convenient to write the VAR in such a

way that the reduced-form coe¢cients are stacked into a single vector. Following

this convention, the model we consider throughout the paper can be written as

x = µ + u, (1)

u = e, (2)

e = ", (3)

where x is a  £ 1 vector of endogenous variables and  =  ­ [1x
0
¡1 x

0
¡],

­ denoting the Kroenecker product; µ is a ( + 1) £ 1 vector that stacks the

reduced-form coe¢cients, equation by equation, i.e., µ = [¹£1 £]
0,

with ¹ a £ 1 vector of (time varying) intercepts and £ ( = 1  ) are £ 

matrices containing the coe¢cients for the lag  of the endogenous variables); 

and  are the  £  matrices of the contemporaneous coe¢cients, and  is a

£  diagonal matrix that contains the standard deviations of the orthogonalized

shocks. System (1) is the reduced-form system, system (2) speci…es the structural

decomposition of the covariance matrix §, and system (3) speci…es the volatility

of the structural disturbances.

All parameters are allowed to vary stochastically over time, according to a

speci…cation whose presentation we postpone to the next section. It is assumed

that " is a £ 1 Gaussian vector with ["] = 0 and [""
0
] = , implying that

u and e are vectors of Gaussian heteroskedastic disturbances such that

[uj  ] = [ej] = 0

[uu
0
j  ] = ¡1 

0


0
(

¡1
 )

0 = §

and

[ee
0
j] = 

0

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Our baseline speci…cation has four variables: net taxes (), government ex-

penditure (), in‡ation () and output () (see subsection 5.1 for more on the de-

…nition of the variables). Let x be equal to [   ]
0, u to [   ]

0

and e to [   ]0.

Previous studies estimating TVP-VARs have resorted to recursive identi…cation

schemes. This is the case, most notably, of Cogley and Sargent (2001), Primiceri

(2005) and Kirchner et al. (2010). We depart from them in this regard and use a

simpli…ed version of the identi…cation scheme in Perotti (2004) and Pereira (2009),

in that there is no contemporaneous reaction of prices to net taxes. Furthermore,

we do not include an interest rate variable in our VAR.

A …rst formulation of our identi…cation scheme, useful to motivate it, is one such

that matrices  and  in (2) are given, by (time subscripts omitted), respectively:

 =

2

6
6
6
4

1 0 ¡13 ¡¤14
0 1 ¡¤23 0

0 ¡32 1 0

¡41 ¡42 ¡43 1

3

7
7
7
5
, =

2

6
6
6
4

1 12 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3

7
7
7
5
. (4)

We identify the shocks to net taxes and expenditure, and impose a convenient

orthogonalization between price and output shocks ordering the latter variable in

the second place. Net taxes respond contemporaneously to prices and output, but

expenditure responds only to the …rst of these variables. This latter restriction is

common in …scal VARs identi…ed by restrictions in the matrices of contemporane-

ous coe¢cients. Output is allowed to react within the quarter both to net taxes

and expenditure, but prices can react to expenditure only. Further, government

expenditure is ordered before net taxes.

The elasticities of net taxes to output and expenditure to prices, ¤14 and ¤23,

are calibrated according to the formulas given in Appendix A of Pereira, who

elaborates on the procedure introduced by Blanchard and Perotti (2002). The

calibrated …gure for the …rst parameter varies over time while that for the second

one is assumed constant. However, the price elasticity of taxes, 13, is estimated.
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Since the number of free parameters (six) is equal to the number of free elements

of § less the four standard deviations in , the order condition is met exactly in

(4).

The equations from system (2), with matrices  and  as given in (4), contain

endogenous regressors:  is endogenous in the price equation, 

 is endogenous in

the net tax equation, and  is endogenous in the output equation. Hence, in a

time-invariant parameter setting, the structural decomposition in (4) would have

to be estimated by 2SLS1 (or a more general method, such as maximum likelihood).

When one moves to a time-varying context, it is convenient that matrices 

and  are such that the equations from (2) include predetermined variables only.

As explained in the next section, in this case the identi…cation scheme can be easily

embedded into the algorithms for normal linear state space models used to draw

the matrix §. This condition holds in the alternative speci…cation of matrices 

and  as

 =

2

6
6
6
4

1 0 0 ¡¤14
0 1 ¡¤23 0

0 0 1 0

0 0 0 1

3

7
7
7
5
, =

2

6
6
6
4

1 12 13 0

0 1 0 0

0 32 1 0

41 42 43 1

3

7
7
7
5
, (4’)

which form an identi…cation scheme equivalent to (4), in the sense that it yields

the same impulse-responses in a time-invariant setting.2 As shown in Appendix C,

there is a one-to-one correspondence between the parameters of both schemes; in

particular, the calibrated parameters coincide. Hence, Bayesian estimation take as

a reference the de…nition of matrices  and  as given in (4’).

When studying the e¤ects of …scal policy on private consumption, we consider a

generalization of the baseline system including the latter variable. It is ordered last

1It would be estimated sequentially, using the residuals of previous steps as instruments for
the endogenous regressors. Speci…cally, ̂ as an instrument for ̂


 in the price equation, ̂


 as an

instrument for ̂ in the net tax equation, and ̂

 as an instrument for ̂ in output equation.

2In Appendix C be we show that the estimated structural shocks (ê) resulting from (4) and
(4’) fully coincide for net taxes and expenditure, and coincide except for a scale factor for output
and prices.
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in the system, and a convenient orthogonalization in relation to output and prices

is imposed. This should be innocuous for the object of interest, the e¤ects of the

…scal policy shocks. It is straightforward to modify the identi…cation methodology

for the baseline speci…cation to accommodate such an extension.

3 Formalizing time variation and Bayesian sim-

ulations

Three blocks of time-varying parameters or states are considered. The …rst includes

the coe¢cient states, i.e., the reduced form coe¢cients of vector µ. The second

block contains the covariance states, the non-zero and non-unity elements of  in

(4’) (recall that matrix  has no unknown elements). Let b denote the vectors

collecting the states corresponding to row ; there are three such vectors: b1 b3,

and b4. The third block contains the volatility states, which are the elements in

the main diagonal of . These are taken in logarithms and collected in the vector

logd.

As is common in empirical applications of this sort of models, the coe¢cient

and the covariance states are assumed to follow driftless random walks, and the

volatility states are assumed to evolve as geometric random walks:

µ = µ¡1 + ²

 , (5)

b = b¡1 + ²

   = 1 3 4 (6)

log d = log d¡1 + ²

  (7)

where it is assumed that ² s (0 ), ² s  (0 ), and ² s

(0 ), and that the disturbances ² , ²

, and ²


 are orthogonal to each

other and also to ". The elements of matrices 
,  and  are usually called

the hyperparameters. Apart from the block-diagonality of the covariance of the

innovations relating to covariance states, we impose no other restrictions on the

matrices of the hyperparameters.
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The simulation of the heteroskedastic TVP-VAR using Bayesian methods is by

now fairly standard, so we outline here the main steps and give the full details in

Appendix B. The algorithm iterates on a number of blocks using the conditioning

feature of the Gibbs sampler. The time-varying parameters are treated as unob-

served state variables whose dynamics are governed by the transition equations

(5), (6) or (7). These, together with the measurement equations relating the state

variables to the data, form a normal linear state-space model in each block. A

Bayesian algorithm for this model, as proposed in Carter and Kohn (1994) (see

also Kim and Nelson (1999b) for a description), is run sequentially, sampling the

state vectors from the posterior Gaussian distributions with mean and covariance

matrix obtained from running the ordinary Kalman …lter followed by a backward

recursion.

More precisely, the Gibbs simulation algorithm consists of going through the

following steps at each iteration.

Step 1 The measurement equation in this block is given by (1) and the state equa-

tion by (5). A history of µ’s is generated conditional on the data, histories

of covariance and volatility states (which yield a history of §’s) and the

covariance of innovations in the state equation ().

Step 2 The normal linear state space algorithm is applied sequentially, equation by

equation, conditional on the data, histories of coe¢cient and volatility states,

and the covariance of innovations in state equations (). The measurement

equations come from (4’) and the state equations from (6). A history of b3’s

is generated …rstly; then, conditional on it, a history of b1’s and, …nally,

conditional on both, a history of b4’s.

Step 3 The measurement equation is based on a transformed version of (3) and the

state equation is (7). A history of logd’s is generated conditional on the data,

histories of coe¢cient and covariance states, and the covariance of innovations

in state equation ().
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Step 4 The model’s hyperparameters, ,  and , are generated conditional on

histories of the corresponding state vectors (µ, b and log d).

There is one further aspect that merits discussion in our application of Bayesian

methods, in this context of the multivariate stochastic volatility model. The meth-

ods that have been used in empirical macroeconomics to estimate a time-varying

matrix §, notably in Cogley and Sargent (2005) and Primiceri (2005), require a

decomposition of this matrix of the form

§ = 
0


with  lower triangular and  diagonal. Using this factorization, it is possible to

draw blockwise from the distribution of the covariance states (), and from the

distribution of the volatility states (). In this case, the measurement equations

are given by u = e and e = ", which correspond to (2) and (3) above. Note

also that the variables in the -th measurement equation following from u = e,

that is  with   , are predetermined. Hence, once independence between the

states belonging to di¤erent equations is assumed, the normal linear state space

algorithm can be applied equation by equation. This assumption is equivalent to a

block-diagonal covariance matrix of the respective innovations, each block relating

to a given equation.

However, the estimate of § obtained as described depends on the ordering of

the variables underlying the triangular structure of . This is, in general, a unde-

sirable feature of the impulse responses coming from TVP-SVARs with stochastic

volatility: not only they depend of an identi…cation scheme applied to the draws of

§, but the draws themselves also depend on a previous orthogonalization scheme.

When the identi…cation restrictions assume the form of a triangular factorization,

as it is often the case in monetary policy VARs, a straightforward solution (also

from the computational viewpoint) is to draw for § already using that factor-

ization.3 That is, the identi…cation scheme is also embbebed into the simulation

3Primiceri (2005) suggests a more general procedure in case several factorizations i.e. orderings
of the variables appear plausible. This is to impose a prior on each of them, and then average
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procedure 4. In our case, when formulation (4’) is used, it is possible to proceed the

same way because it gives raise to a system where all regressors are predetermined

(in contrast to formulation (4)). The normal linear state space algorithm can also

be applied equantionwise, as long as there is independence between the parameters

belonging to the di¤erent rows of .

3.1 Priors and practical issues

In order to make the whole procedure operational, prior distributions need to be

speci…ed, both for the initial states and the hyperparameters. We follow the pre-

vious TVP-VAR literature in this regard. The priors for the initial states are

Gaussian, with means given by the point estimates µ̂, b̂ and log d̂ from esti-

mating a time-invariant VAR over the training subsample 1947:1-1959:4, and co-

variance matrices equal to multiples of the corresponding asymptotic covariances5

(see Appendix B). We note that the calibration of the priors for the initial states

has typically almost no in‡uence on a posteriori inference.

The hyperparameters have conjugate inverse-Wishart priors, with scale matrices

equal to a constant fraction of the aforementioned asymptotic variances of the

parameters estimated over the training subsample (multiplied by the respective

degrees of freedom). This constant fraction summarizes the prior beliefs about the

amount of time variation. In the prior for the covariance matrix of the innovations

relating to coe¢cient states, , this was set to the benchmark value of (001)2,

used by Cogley and Sargent (2001) and in virtually all subsequent TVP studies.6

This is a conservative …gure, as it can be interpreted as time variation accounting

for 1 percent of the standard deviation of each coe¢cient. As discussed below,

however, using larger values for this constant — implying more prior volatility of

the states — changes little in the pattern of posteriori time variation in the e¤ects

the results obtained on the basis of posterior probabilities.
4Except for the initial state of logdt, whose covariance matrix is set to a multiple of the

identity.
5Except for the initial state of logd whose covariance matrix is set to a multiple of the identity.
6The corresponding value for  was set to (001)2 and the ones for  to (01)2, following

Primiceri (2005).
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of …scal policy.

One issue arising in the simulation of TVP-VARs is whether to impose a stabil-

ity condition that discards the draws of µ that imply non-stable systems.
7 As one

might expect, this condition makes more of a di¤erence for the impulse responses

at longer horizons (according to our experience in the - application, say, longer

that 4 steps ahead), since the stability properties of the system become apparent

as one projects them into the future. In Cogley and Sargent (2001) the variable of

concern was in‡ation, and they imposed the stability condition on the grounds that

Fed’s behavior rules out explosive paths of this variable. In the context of …scal

policy, as noted in Kirchner et al. (2010), there might not be such a compelling

theoretical reason for imposing this condition because …scal policy may have not

been on sustainable paths at some points in time. Hence, we chose to report results

without the stability condition and, for the benchmark speci…cation, we signal in

the text how they change when it is imposed. A practical aspect about the stability

condition is that it makes the simulation procedure more time consuming, since

that part of the draws are thrown out. In the application at hand, we found that

approximately two out of three draws were unstable.

In this paper, a “…ltered” variant of the simulation algorithm is used (as in

Cogley and Sargent (2001) and Gambetti et al. (2008)). Full sets of iterations

of the Gibbs sampler are sequentially implemented, with the simulation period

extended by one year at a time. The starting date is always 1960:1; the …rst ending

date is 1965:2, and the last one 2009:2. The full set iterations is thus repeated 45

times. For each ending date, 30,000 iterations of the Gibbs sampler are run, after

a burn-in period of 5,000, and every 5th iteration is kept. The implied impulse-

responses for each of the kept draws (6,000) are computed, and we report statistics

of the distribution of those responses.

At the end of Appendix B we also report results concerning the autocorrelation

functions of the draws, which give an indication about the convergence properties

of the algorithm. These autocorrelations are generally low, indicating that the

7This is implemented in such a way that the whole history of µ’s generated at step 1 is
discarded, in case the condition is not met at least for one .
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chain mixes well.

4 Some preliminary evidence about parameter

instability

To motivate our application, providing support to the time-varying approach, in

this section we apply parameter instability tests to the …xed-parameter version of

our …scal VAR. This sort of tests has been employed, for instance, in the recent

literature investigating regime changes in macroeconomic relationships, as in Stock

and Watson (2002) and Ahmed et al. (2004), focusing on the moderation in GDP

growth volatility in recent decades. We perform two such tests. The …rst one is

the Nyblom-Hansen (NH) test, as presented in Hansen (1992), which has precisely

the random-walk TVP model as the alternative hypothesis. Both tests were im-

plemented by estimating directly the structural form of the system, that is, in the

notation of Section 2:

x = ¹+£1x¡1 +  +£x¡ +e

Given that 2SLS estimation (equation by equation) is used, the test statistic was

computed according to the particular formulation for this estimator in Hansen

(1990).

The second test is based on the Quandt likelihood-ratio statistic in Wald form

(QLR), that is, the maximum of the Chow statistics calculated for a sequence

of breakdates over a portion of the sample. Although it has also power against

the randomly TVP alternative, this is a test for parameter constancy against the

alternative of a single break of unknown timing. The sequential break dates were

de…ned considering a symmetric trimming of 25%: noting that the usable sample is

from 1948:2 to 2009:2, they start at 1963:2 and end at 1994:3. At each break date

all coe¢cients in each equation were allowed to change by means of interacting

dummies. The Wald statistic for the joint exclusion of these dummies was then

computed taking the White heteroskedasticity-consistent covariance matrix and
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the -values were obtained as described in Hansen (1997)). The display of the

values of the test statistic over time is interesting, as it gives an indication about

the occasion(s) where a structural break is more likely to have taken place.

After testing for a change in the coe¢cients, we have also tested for a break in

the variances using a simple procedure from Stock and Watson (2002). We took

the residuals from estimating each equation imposing a break in the coe¢cients at

the date selected by the QLR test. We then repeated this test in regressions of

each series of residuals in absolute value on a constant and a dummy de…ned again

for each break date. Thus, the results of the variance stability test are made robust

to the break in the coe¢cients.

It is well known that the distributions of the Nyblom-Hansen and Quandt like-

lihood ratio statistics are derived under the assumption of stationary regressors.

Non-stationarity biases the results of the tests toward showing instability. This

should not interfere with our results because, prior to estimation, we have de-

trended all variables. GDP, net taxes and expenditure were detrended assuming a

quadratic trend and the price (in‡ation) variable is measured as the …rst di¤erences

of the log GDP de‡ator (see subsection 5.1 for further details).

Table 1: Results of parameter stability tests (p-values)

Equation NH NH QLR QLR

joint variance coe¤s. variance

Net taxes 0.16 0.07 0.00 0.73

Expenditure 0.01 0.00 0.00 0.00

GDP de‡ator 0.00 0.00 0.00 0.00

GDP 0.01 0.00 0.00 0.00

Note: -values of the the Nyblom-Hansen (NH) test for driftless random-walk coe¢-

cients and variance (1st column) and variance only (2nd), and -values of the QLR

test for a single break of unknown timing in the coe¢cients (3rd) and variance (4th).

The usable sample is 1948:2 to 2009:2 and the break search dates for the QLR test are

located between 1963:2 and 1994:3.

Table 1 shows the -values for the Hansen-Nyblom and QLR tests, and Figure
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Figure 1: Sequencies of QLR statistics
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1 plots the full sequences of QLR statistics. The -values point to widespread

parameter instability in the system. As regards the expenditure equation, the

sequence of QLR statistics suggests a large break in the coe¢cients — much more

strongly than the one in the variance — occurring toward the beginning of the

sample. This might be accounted for by the Korea War, that made the stochastic

process followed by expenditure in the early …fties very di¤erent from subsequently.

As far as the output equation is concerned, in contrast, there is much stronger

evidence of a break in the variance than in the coe¢cients (and a similar picture

is observed for the price equation). This is consistent with the …ndings of the

literature on the great moderation, that regime changes a¤ected …rst and foremost

the volatility of the shocks (see Stock and Watson (2002)). Furthermore, our

estimate of the break date in (conditional) volatility is also consistent with most

previous estimates (see, for instance, Kim and Nelson (1999a), McConnell and

Perez-Quiros (2000) and Stock and Watson (2002)).

At the usual 5% level, the Nyblom-Hansen test does not reject the parameter

constancy hypothesis for the net tax equation. The results from the QLR test are

partly contradictory with this, since they do reject the null of constant coe¢cients,

with the evidence cumulating in the second half of the sample. It might be that

instability in the coe¢cients of this equation is more of the single break type, and

thus best captured by the QLR statistic. As regards the variance, the evidence is

reversed since only the Nyblom-Hansen test signals some instability (although not

signi…cant at the 5% level).

As a whole, the results of the tests clearly support the use of a speci…cation

with time-varying parameters against a …xed-parameter one. Moreover, they call

for a model that accommodates stochastic volatility. Further still, the results of

the QLR statistic indicate di¤erent break timings, depending on speci…c equations

and parameters, and not a generalized regime change a¤ecting all equations at the

same point in time. Therefore, a model with time-varying parameters also appears

superior to the traditional split- or rolling-sample estimates of a …xed parameter

model.
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5 Results

5.1 Data

Recall that our baseline speci…cation includes four variables: taxes net of transfers,

government expenditure (consumption plus investment)8, GDP and in‡ation. We

also estimate a speci…cation including private consumption. Taxes net of trans-

fers, government expenditure, output, and private consumption are in loglevels,

in real and per capita terms. We detrend all these variables prior to estimation

by regressing them on a second order polynomial in time. In‡ation is calculated

as the change in the log GDP de‡ator at annual rates. The data are on a quar-

terly basis, seasonally adjusted, and the lag length of the system is set to 2, the

same value as in previous studies with TVP-VARs. A short lag length prevents

the simulation procedure from becoming too heavy, as it reduces considerably the

size of the vector of coe¢cient states (for instance, in the benchmark system, from

68 elements with 4 lags to 36 elements with 2 lags). Usually, in time-invariant

settings, SVARs estimated with quarterly data contain 4 lags. Therefore, for the

sake of comparison with previous studies, we also estimate such a version of our

model over a rolling-sample, and adopt a lag length of 4 in that instance.

5.2 Time-varying responses of output to …scal shocks

Figure 2 presents the percentage responses of output to …scal shocks in the model

with driftless random-walk parameters. The shocks have the size of 1 percent of

GDP and so the …gures have the interpretation of multipliers. The charts show for

date  the simulated impulse-responses with the parameters indexed to that date9

for four horizons: within the quarter and 1,2 and 3 years ahead. We present both

the median response (darker line) and the average response (lighter line), as they

8For the sources of the data and for the precise way how …scal variables are computed see the
Appendix A.

9We follow the usual practice of presenting a simpli…ed version of the impulse-responses, in
which the response for shocks at  is a function of the parameters estimated for that date all steps
ahead.
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di¤er somewhat for longer horizons, plus con…dence bands corresponding to the 16

and 84 percentiles. The shaded areas in the charts are the NBER recessions.

We comment on the median response, which is less sensitive to the extreme

responses brought about by unstable draws. There is a weakening of the e¤ects

of net tax shocks throughout the simulation period. The impact multiplier slowly

evolves from around¡08 in the mid-sixties to¡04 toward 2009. This weakening is,

however, more visible for longer horizons. For instance, 1 year ahead, the multiplier

‡uctuates around ¡20 until mid-seventies, then there is a peak of e¤ectiveness in

1975 (¡25). This is followed by a drop (in absolute terms) to about ¡15, and a

further decrease to ¡10 by the end of the simulation period.

On the expenditure side, the amount of time variation provided by the TVP

speci…cation is more limited. In the responses one year ahead and longer, a slight

weakening of the impacts occurs initially, until around 1977, from 125 to 075-

05. Subsequently, the response essentially stabilizes around this latter …gure. The

pro…le of contemporaneous impacts is the opposite in the initial years, featuring a

slightly increase from 0.25 to 0.50. There is as well a stabilization thereafter.

Results in Figure 2 indicate a fading of the e¤ects of …scal policy over time,

this being much more evident for net taxes than for expenditure. Such a pattern

corroborates the common belief that the e¤ectiveness of …scal policy in the U.S.

has lost strenght in recent decades but puts almost all the burden for this on net

taxes, not on government expenditure. Further, although for net taxes there is

evidence of a sizeable one-o¤ break in the mid-seventies, in general the responses

evolve in a way that is well described by the gradual change hypothesis. Further

still, in spite of the observed time variation, the multipliers keep conventional signs

and reasonable sizes throughout. Hall (2009) summarizes the evidence on spending

multipliers coming from regressions and VARs (SVAR and event study approaches)

as lying in the interval from 0.5 to 1.0. The …gures we get broadly conform to this

interval. They are only marginally above it in the initial years and slightly below

toward the end of the period. Evidence on net tax multipliers is much scarcer, but

values from ¡20 to ¡10 are in the usual range as well.

An important caveat to note about our evidence is that it contains a consider-
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Figure 2: Time-pro…le of output responses – Bayesian simulation of a model with
time-varying parameters
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able amount of uncertainty. The con…dence bands in Figure 2 are rather wide, and

particularly so in the case of expenditure shocks, for which they comprise the x-axis

at all horizons considered. Even for net tax shocks, since a horizontal line always

…ts within the area delimited by the two bands, one cannot reject the hypothesis

of constant e¤ects throughout the period.

When the stability condition is imposed, the pattern of the responses over time10

is qualitatively similar, but those for 2 years after the shock and longer become

noticeably more compressed. The median net tax multiplier 2 years ahead is in

the range ¡14 to ¡05 with the stability condition, and ¡20 to ¡07 without it;

similarly, the expenditure multiplier falls in the interval 025 to 09 instead of 04

to 13. When the average response instead of the median response is taken and/or

responses for longer horizons are considered these discrepancies widen.

We present the NBER recessions in the charts with the impulse-responses, so as

to provide informal evidence whether there has been a peak in policy e¤ectiveness

around such episodes. This hypothesis is sometimes mentioned in the literature

(recently, for instance in Hall (2009)). As far as net tax shocks are concerned, there

is some support for it in our results. We noted that the maximum impact of these

shocks occurs in 1975, when the slack in the economy was very large.11 Moreover,

toward the end of longer recessions, such as the ones of 1969-70 and 1981-82, there

is as well a hint of increase in e¤ectiveness, and this occurs even more strongly in

the recent contraction. Actually, notice that the multiplier changes from ¡08 in

2008 to ¡11 in 2009. On the side of expenditure shocks, the responses remain

more or less ‡at during recessionary episodes.

We now compare our …ndings with those presented in Kirchner et al. (2010),

where a similar type of model is used for the euro area. They identify shocks

to spending only, ordering them before all the other variables (an identi…cation

assumption we also make), and report responses from 1980 on. Concerning the

amount of time variation captured, their results are equally compressed as ours,

10Not shown but available from the authors on request.
11Note that the e¤ects depicted in Figure 2 refer to the second quarter of each year, and the

trough of the 1973-75 recession was in the …rst quarter.
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or even somewhat more.12 Otherwise, both the level and pro…le of their responses

di¤er from the ones in this paper. They get a decrease in the size of the spending

multiplier starting from late eighties, a period in which we get stability of the

response. Furthermore, their one-year-ahead multiplier is below ours: marginally

positive (always lower than 05) until 2000 and slightly negative thereafter.

5.3 Comparison with rolling samples estimates

We now take up a comparison between the responses in Figure 2 and those re-

sulting from the estimation of a time-invariant speci…cation over rolling samples

of 25 years. The impact of …scal shocks on GDP in , depicted in Figure 3, refers

to the estimates for the sample ending at that date. Note that the …rst year for

which these estimates can be calculated is 1973, and therefore the time-span cov-

ered di¤ers from the one in Figure 2 which starts in 1965. Median responses and

16- and 84-percentile con…dence bands are shown.13 The pro…les of net tax re-

sponses are broadly consistent in the two methodologies, in that the response fades

progressively.

However, rolling the model with time-invariant parameters yields a much sharper

weakening toward the end of the simulation period, in such a way that perverse

positive multipliers (up to about 05) arise from 2003 on. Turning to expenditure

shocks, the results in Figure 3 are much more volatile than under the TVP speci-

…cation. The multiplier one year ahead assumes values ranging from a maximum

of around 15 to small negative (between the mid-eighties and the mid-nineties,

although a zero multiplier is also inside the con…dence bands during this period).

Hence, when subsample sensivity is considered, the results of the SVAR model with

12The reason may be that, although Kirchner et al. (2010) do not impose the stability condition,
they use a smoothed variant of the simulation procedure. Instead, we use a …ltered variant.

13These are computed as follows. A time-invariant reduced form VAR is estimated for each
of the rolling-samples. On the basis of the point estimate for the covariance matrix, one draws
…rstly for this matrix, assuming a inverse-Wishart distribution. The structural decomposition
is applied to each draw. At the same time, one draws for the vector of coe¢cients, assuming
a Gaussian distribution, conditional on the covariance matrix previously drawn. The implied
impulse-responses are obtained on the basis of 1000 draws and the relevant statistics computed.
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Figure 3: Time-pro…le of output responses – rolling-sample estimates of a model
with …xed parameters
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…xed parameters challenge the sizes and even the conventional signs of the output

multipliers, as presented in Blanchard and Perotti (2002). Notice, however, that

studies such as Perotti (2004) and Pereira (2009) already pointed in this direction14.

The fact that the TVP speci…cation shows comparatively much less instability

raises the issue of whether the prior for the hyperparameters in the latter speci…ca-

tion, in particular that for the covariance of the innovations relating to coe¢cient

states, is compressing posterior time variation. To investigate this possibility, in

calibrating the inverse-Wisharts for all the hyperparameters 15 we fed more prior

volatility into the system by setting the constant fraction of the parameters’ as-

ymptotic variances to (01)2. However, the results remained very similar to those

in Figure 2. This …nding suggests that the rolling samples estimates may be over-

estimating the actual drift, particularly for the responses to expenditure shocks. It

appears to lack the ‡exibility of the TVP model to smoothly accommodate new

observations, which brings about large changes in the estimated coe¢cients.

5.4 Time-varying responses of private consumption

A key disagreement between the predictions of some New Keynesian models and

Neoclassical models concerns the impact of government expenditure on private

consumption. The former predict a positive e¤ect on this variable of a rise in gov-

ernment purchases, while the latter posit a negative e¤ect. We now investigate this

question on the basis of the simulation of a identi…ed TVP-VAR including private

consumption, in addition to output, prices, net taxes and government expenditure.

The responses of private consumption to …scal shocks are presented in Figure 4.

Again, they can be interpreted as multipliers since …scal shocks are now normalized

to have the size of 1 percent of that variable.

14It is hard to blame the size of the rolling window (25 years) for this instability. For instance,
although in a simpler context, Stock and Watson (2007) use rolling samples with only 10 years.
The uncertainty surrounding the point estimates in Figure 3 is not unusually large for VAR
standards.

15The benchmark value of this constant is (01)2 for calibrating  and ; see Section 3.1 and
Appendix B.
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Figure 4: Time-pro…le of private consumption responses – Bayesian simulation of
a model with time varying parameters.
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We …nd that positive shocks to net taxes consistently reduce private consump-

tion. The e¤ects are smaller (in absolute terms) than for output: the multipliers

one year ahead and longer remain not far from ¡05 throughout the whole period.

The results for expenditure shocks have the interesting feature that the contempo-

raneous consumption multiplier is slightly negative, thus having the opposite sign of

the output multiplier. For longer horizons, the indicator generally assumes small

positive values (maximum of about 03) in the initial years, until mid-seventies,

and then essentially decays to zero. This evidence is clearly not compatible with a

large Keynesian impact of expenditure shocks on consumption, particularly in the

more recent decades, and plays down this sort of reading of the SVAR evidence

(as in Ramey (2010)), as opposed to the event study approach deemed to back

up the neoclassical prior. It could …t with in New Keynesian models that may

yield slightly positive or zero consumption multipliers, depending on the degree of

deviation from the neoclassical benchmark assumptions.16 It is worth noting that

the consumption multipliers on the basis of the time-invariant rolling sample (not

shown) parallel those for output in Figure 3. In the case of expenditure shocks,

they ‡uctuate a lot, being generally positive, but assuming negative values between

mid-eighties and mid-nineties.

5.5 Some evidence on time variation in the conduct of …scal

policy

We …nalize this paper by using our framework to address questions such as time

variation in exogenous …scal policy and the responsiveness of endogenous policy to

output. In contrast to monetary policy, relatively little attention has been devoted

to them. For instance, there has been much debate over the existence of a drift in

the coe¢cients of the reaction function of the Federal Reserve versus in the variance

of the exogenous disturbances (see, e.g., Cogley and Sargent (2005), Boivin (2006)

16The size of the multipliers in these models depends, for instance, on the intensity of the
(negative) relationship between the markup ratio and output and the (positive) elasticity of
labour supply (Hall (2009)), or the proportion of non-Ricardian consumers (Galí et al. (2007)).
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and Sims and Zha (2006) and references therein).

In a SVAR framework it is natural to distinguish between non-systematic and

systematic policy. Given that our model incorporates stochastic volatility, we have

direct evidence on the former coming from the time-varying …gure for the standard

errors of the structural …scal shocks, which is a by-product of the simulation ex-

ercise. Things are more di¢cult concerning systematic policy. First, as usual in

SVAR models, it is not possible to di¤erentiate between discretionary and auto-

matic components. Therefore, if one is to analyze how …scal policy activism has

changed over time, the two components must be considered together. An additional

issue is that such an analysis is carried out by looking at the response of …scal vari-

ables to output shocks.17 However, as explained in Section 2, the identi…cation of

output shocks vis-à-vis price shocks is based on an arbitrary ordering (incidentally,

a limitation that also applies to similar analyses for monetary policy, as in Prim-

iceri (2005)). Notwithstanding these issues, we believe this is a worthwhile exercise

to pursue.

We consider systematic policy …rst. Figure 5 shows the one-year-ahead re-

sponses of …scal variables to output shocks. Note that in our system the contem-

poraneous responses are determined by the identi…cation assumptions, i.e., a zero

response in the case of expenditure and the calibrated elasticity in the case of net

taxes. These assumptions also in‡uence the responses for longer horizons, but the

latter are increasingly determined by the remaining dynamics of the system, as

one projects into the future. It is worth noting that the calibrated elasticity of net

taxes to output ‡uctuates in the interval from 20 to 25, without a clearly de…ned

trend for almost the whole period, but rise sharply to 35 in the two quarters of

2009.18

17It is worth noting that the the size of output (and price) shocks in identi…cation scheme (4’),
which we use in the simulations, does not coincide with the one in (4); see the Appendix B on
this. However, since this di¤erence is small — the standard deviation of the shocks is about 4
percent bigger in the …rst scheme in a …xed-parameter setting — we ignore this issue.

18This recent behavior is explained as follows. In the course of recessions there is a large
decrease in net taxes, which results from the simultaneous fall in taxes and rise in social bene…ts.
Therefore, the weight of taxes in total goes up and that of transfers, which is negative, becomes
more negative. Since the elasticity of taxes to ouput is positive and the elasticity of transfers is
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Figure 5: Time-pro…le of the one-year-ahead responses of …scal variables to output
shocks

As expected, net taxes respond positively to shocks to GDP, in line with the

operation of the automatic stabilizers and the conduct of stabilization actions. A

one percent shock to GDP triggers initially a rise close to 3 percent in net taxes,

then there is a shift to responses around 3.5 percent from mid-seventies on, and

further to around 4 percent toward the end of the simulation period. In the last

time period considered, the second quarter of 2009, there is a jump in the response

to a …gure of 45. On the expenditure side, the responses are procyclical: they

start with …gures slightly over 1 percent and essentially show a decreasing trend

throughout the period considered, to a value around 04. In order to put these

…gures into context, we …rst calculate the implied semi-elasticity of the de…cit (as

a percentage of output) to the output gap, a common indicator of …scal policy

responsiveness.19 This semi-elasticity ‡uctuates in the range from 03 to 05 until

the eighties and from 05 to 06 in the last two decades. The overall increase

negative, by itself this leads to an increase in the overall elasticity.
19This is obtained as the di¤erence between the products of the response of each …scal variable

and the ratio of that variable to GDP. Note that our semi-elasticity actually refers to the primary
de…cit, since the de…nition of …scal variables we adopt excludes interest outlays.
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Figure 6: Time-pro…le of the standard deviation of structural …scal shocks

in responsiveness we get is consistent with previous …ndings, as in Taylor (2000)

and Auerbach (2002). In particular, our …gures broadly match the response of the

surplus to the output gap presented in the …rst of these studies (032 for the sample

1960-1982 and 068 for the sample 1983-1999).

Figure 5 shows in particular two jumps in the strength of net tax responses

coinciding, respectively, with the 1973-75 and the 2008-09 recessions. The coun-

tercyclical action around these recessionary episodes is likely to contribute to the

measured increase in responsiveness. Moreover, as previously observed, in the

course of the recent recession there was a large increase in the calibrated elasticity.

The behavior of expenditure is procyclical. The responses are generally signi…-

cant; the lower con…dence band becomes slightly below the x-axis from 1999 on but

only marginally. In a regression of discretionary Federal expenditure on output gap,

Auerbach (2002) …nds evidence of countercyclicality, albeit statistically insigni…-

cant. The di¤erence to our results may be due to the inclusion of the spending of

state and local government, which has been found to follow a procyclical pattern.

We now move on to non-systematic policy. Figure 6 presents the evolution of

the volatility of structural …scal shocks since mid-sixties. As far as net taxes are
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concerned, there was a rise in this volatility from early to mid-seventies, with a

peak around 1975. Factors such as bracket creeping in the Personal Income Tax in

a period of rising in‡ation20, and large countercyclical one-o¤ measures around the

1973-75 recession (notably the Nixon tax rebate), despite partly captured by the

systematic part of the VAR, may “pass on” to the shocks to some extent. Volatility

goes progressively down, to a minimum around 2000, and subsequently there is a

large increase toward the end of the sample. This recent evolution should re‡ect

…rstly the tax cuts enacted by the Bush II administration and, more recently, the

tax and bene…t measures included in the stimulus packages of 2008-2009 albeit,

similarly to above, these are also accommodated by the systematic reaction to the

recession, reinforced by the measured enhanced responsiveness. As a matter of

fact, the fall in net taxes in the course of the 2008-09 recession, about 50 percent,

was the largest one throughout the simulation period. The corresponding …gure for

the 1973-75 recession (including the Nixon tax rebate) was around 30 percent, and

the one for the 1982-83 recession (contemporary with Reagan’s tax cuts) around

20 per cent. The standard deviation of spending shocks remained comparatively

more stable, featuring a minor decrease throughout the period.

6 Conclusions

In this paper we presented the results of the simulation of a …scal policy VAR with

time-varying parameters, embedding a non-recursive, Blanchard and Perotti-like

identi…cation scheme into a Bayesian simulation procedure. Our evidence suggests

that policy e¤ectiveness has come down substantially over the period considered,

1965:2 to 2009:2, particularly as far as net taxes are concerned. On the expenditure

side, a fading of the e¤ects of policy shocks is detected as well, but of a much smaller

magnitude. Private consumption responds negatively to net tax shocks and very

little to expenditure shocks. In this case, the e¤ects are found to remain stable

over time. We have also addressed time-variation in the conduct of …scal policy,

20The rates and brackets of the Personal Income Tax remained unchanged between the Tax
Reform Act of 1969 and the Tax Reform Act of 1976 (Tax Foundation (2007)).
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…nding that endogenous net taxes have increasingly reacted to output, while the

respective exogenous component has ‡uctuated much and been particularly volatile

in the recent years.

With the exception of the stance of the business cycle, we do not perform any

exercise relating the documented time-pro…le of the …scal multipliers to possible

underlying factors. Many other hypotheses have been put forward in this context,

as it is well known, such as the degree of openness of the economy or the easing

of liquidity constraints. In order to investigate them in a rigorous manner, one

would have to set up a non-linear system whose speci…cation and simulation pose

questions that are left to further research.
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7 Appendices

A De…nition of variables and data sources

All the data we use are taken from the National Income and Product Accounts,

NIPA, which are freely available in the website of the Bureau of Economic Analy-

sis. Fiscal data are from NIPAs Table 3.1., Government Current Receipts and
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Expenditures: data on the components of government consumption, including the

breakdown defense/non-defense, are from NIPAs Table 3.10.5, Government Con-

sumption Expenditures and General Government Gross Output ; data on social ben-

e…ts including unemployment and health-related bene…ts are from NIPAs Table

3.12., Government social bene…ts (annual data, the share for the year as a whole

was assumed for the quarter). Gross domestic product is from NIPAs Table 1.1.5.,

Gross Domestic Product. Gross domestic product de‡ator is from NIPAs Table

1.1.4., Price Indexes for Gross Domestic Product. Population is from NIPAs Table

2.1., Personal income and its Disposition.

Taxes = Personal current taxes + Taxes on production and imports + Taxes

on corporate income + Contributions for government social insurance + Capital

transfer receipts (the latter item is composed mostly by gift and inheritance taxes).

Transfers = Subsidies + Government social bene…ts to persons + Capital

transfers paid ¡ Current transfer receipts (from business and persons).

Net taxes = Taxes ¡ Transfers.

Purchases of goods and services = Government consumption ¡ Consump-

tion of …xed capital21 + Government investment.

B Detailed simulation procedure

The simulation procedure uses the Gibbs sampler, iterating on four steps. Histories

of states are sequentially generated and, in the last step, the model’s hyperpara-

meters, conditional on the results for the other steps. Throughout this appendix

we follow the usual convention of denoting the history of a vector w up to time ,

fwg=1, by w
. The description of the procedure is for the baseline system with

four variables, i.e.  equal to 4 and x to [   ]
0.

21Consumption of …xed capital is excluded on two grounds. Firstly, there are no shocks to this
variable, which is fully determined by the existing capital stock and depreciation rules. Secondly,
from the viewpoint of the impact on aggregate demand, it is the cost of capital goods at time
of acquisition (already recorded in government investment) that matters and not at time of
consumption.
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B.1 Step 1 - drawing for the coe¢cient states ()

The measurement equation in this step is given by (1). The state-space model is

thus

x = Xµ + u, (A1)

µ = µ¡1 + ²

 , (A2)

where u s (0§), ²

 s (0 ), and u and ²


 are independent. The

full history of coe¢cient states µ is drawn conditional on the data, x , a history

of covariance and volatility states summarized in § , and the hyperparameters in

. The posteriori distributions are (see Kim and Nelson (1999b), Ch.8):

µ j y
 §   s  (µ j  


 j ) (A3)

and

µ j y
 µ+1§

  s (µj+1 

j+1

)  = 1   ¡ 1, (A4)

where the conditional mean and variance in expression (A3), µ j and  
 j , can

be obtained as the last iteration of the usual Kalman …lter, going forward from

µj = µj¡1 +  j¡1(
0



j¡1 +§)

¡1(y ¡ 0
µj¡1),

 j =  
j¡1 ¡  j¡1(

0



j¡1 +§)

¡1 0



j¡1,

µj¡1 = µ¡1j¡1,

 j¡1 =  ¡1j¡1 +,

starting from the initial values µ0j0 and  0j0. These initial values are given by the

mean and covariance matrix of the prior, µ0 » (µ̂ 4 (µ̂)), obtained as coe¢cient

vector and covariance matrix from the OLS estimation of the reduced-form system

(1) for the training subsample 1947:1-1959:4. The elements in µ¡1 are drawn from

(A4) going backward. That is, µ¡1 is drawn conditional on the realization of µ ,

µ¡2 conditional on the realization of µ¡1 and so on up to µ1. The conditional

mean and variance in (A4) are given by

µj+1 = µj +  j(

j +)¡1(µ+1 ¡ µj),

 j+1 =  j ¡  j(

j +)¡1 j.
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B.2 Step 2 - drawing for the covariance states (b)

The system of measurement equations is now based on (2), i.e. u = ( ¡

)e + e, with matrices  and  as given in (4’). As explained in the text, it is

assumed that there is independence between the states in  belonging to di¤erent

equations, that is, the covariance matrix of the state innovations is block-diagonal,

with the block for equation  given by ,  = 1 3 4.

The simulations in this step are conditional on x and µ , which makes u

observable, a history of volatility states,  , and the the hyperparameters in .

Note also that the elements of  are known. Since there is independence among

states in di¤erent equations and, at the same time, the covariance matrix of the

error term in themeasurement equation (
0
) is diagonal, the state-space problem

can be tackled equation by equation. Moreover, the structure of matrix  is such

that the elements of e entering each equation as regressors are predetermined, so

the assumptions of the linear state-space model are met.

The simulations proceed in the following sequence. Firstly, given u and  ,

 is observable. The …rst state-space problem is

 = b3 +  (A5)

b3 = b3¡1 + ²
3
 , (A6)

where b3 = [32],  s (0 233), 33 denoting the third element in the

main diagonal of D, 
3
 s (0 3), and  and ²

3
 are independent. This

simulation yields a history 3 and, conditional on it, a history 

 .

The next state-space model is

 ¡ ¤14 = []b1 + , (A7)

b1 = b1¡1 + ²
1
 , (A8)

where b1 = [1213],  s (0 211), 11 denoting the …rst element in the

main diagonal of D, ²
1
 s (0 1), and  and ²

1
 are independent. This
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simulation yields a history b1 and, conditional on it, a history 

.

The third state-space problem is

 = []b4 + , (A9)

b4 = b4¡1 + ²
4
 , (A10)

where b4 = [414243],  s (0 244), 44 denoting the fourth element

in the main diagonal of , ²
4
 s (0 4) and  and ²

4
 are independent.

This simulation yields b4 and, conditional on it, a history 

 .

The simulations for each of the three state-space models are conducted precisely

in the same way as described for Step 1, on the basis of the distributions corre-

sponding to (A3) and (A4) above. The initial values for the Kalman …lter, b0j0 and

 0j0, are from the mean and covariance matrix of the priors: b0 »  (b̂ 4 (b̂)).

These parameters are obtained from estimating by OLS the structural decomposi-

tion (4’) for the training subsample 1947:1-1959:4.

B.3 Step 3 - drawing for the volatility states (D)

The system of measurement equations is now based in (3), i.e. e = D". Squaring

and taking logarithms on both sides of each measurement equation, the state-space

model becomes:

e+ = 2 logd + log "
2
  (A11)

log d = log d¡1 + ²

  (A12)

where e+ = log(e
2
+0001) denotes the logarithm of the square of each element of e

plus a o¤setting constant equal to 0001, logd denotes the elementwise logarithm of

the vector d and log("2 ) the elementwise logarithm of the vector ". Furthermore,

 s (0 ) and, since " and ² are independent, the same applies to log "
2


and ² .
22

22This description of the simulation procedure assumes that the covariance matrix of the state
innovations, , is unrestricted and thus the volatility states are drawn jointly. One could alter-
natively assume a diagonal  matrix — i.e. independent state innovations —, in which case the
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The algorithms for the Gaussian linear state space model cannot be directly ap-

plied in this case, because the disturbances log "2  = 1 4 are not Gaussian. The

distribution of these disturbances can, however, be approximated using a mixture

of seven Gaussian densities (see Kim et al. (1998) for the details):

(log "2) ¼
P7

=1  (log "
2
; ¡ 12704 

2
 ), (A13)

where  ,  and 2 are known constants which depend on . Then, conditioning

on the realization of an indicator random variable   = 1 4 taking on values

in f1 2 3 4 5 6 7g, one element of the family of normals is selected:

log "2 j  =  s ( ¡ 12704 
2
 ). (A14)

Therefore, a history logd can be drawn conditional on s , in addition to x , µ ,

B (making e or e+ observable) and the hyperparameters in . It is straightfor-

ward to adapt the formulae in Step 1 to this end. The initial values for the Kalman

…lter are, as previously, from the mean and covariance matrix of the prior which is

given by logd0 » (log d̂ ). The …gures in log d̂ are the log standard deviations

of the structural shocks from the abovementioned estimation of the system in the

training subsample.

B.3.1 Step 3A: drawing for 

A history s is sampled independently for  = 1  4 and  = 1  , given e+ and

logd , using the following result

( =  j e+ log ) _  (e
+
; 2 log  + ¡ 12704 

2
 ), (A15)

with  de…ned in f1 2 3 4 5 6 7g and  ,  and 
2
 known constants.

simulations would be carried out equation by equation. We experimented with both possibilities
and the results were similar.
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B.4 Step 4: Drawing for the hyperparameters

The prior and posterior distributions of the hyperparameters are conjugate inverse-

Wishart. The hyperparameters are drawn conditioning on the data and histories

of coe¢cient, covariance and volatility states, which makes the innovations in all

state equations (i.e. ² , ²1 , ²3 , ²4 and ² ) observable.

The prior distribution of  is  ( ¹ 0), with ¹ = 20 (µ̂), where  (µ̂) is

the covariance matrix of the reduced-form coe¢cients, used to calibrate the prior

for µ0 above, 0 is the number of observations in the training sample23 and 2
is a chosen parameter. We set  to 001. The posteriori distribution of  is

 (( ¹ +
P

=1 ²

 ²
0
 )
¡1 0 +  ).

The prior distribution for3 is  ( ¹3 2), with ¹3 = 22 (b̂3), where  (b̂3)

is the covariance matrix of the coe¢cients of the structural decomposition, used to

calibrate the prior for b30 above, and 2 is a chosen parameter. This parameter is

set to 01. The posterior for 3 is given by  (( ¹3 +
P

=1 ²
3²30)¡1 2 +  ).

The prior distribution for1 is  ( ¹1 3), with ¹1 = 32 (b̂1), where  (b̂1)

is the covariance matrix of the coe¢cients of the structural decomposition, used

to calibrate the prior for b10 above, and 2 equal to 01. The posterior for 
1 is

given by  (( ¹1 +
P

=1 ²
1²10)¡1 3 +  ).

The prior distribution for4 is  ( ¹4 4), with ¹4 = 42 (b̂4), where  (b̂4)

is the covariance matrix of the coe¢cients of the structural decomposition, used to

calibrate the prior for b40 above, and 2 is equal to to 01. The posterior for 
4

is given by  (( ¹4 +
P

=1 ²
4²40)¡1 4 +  ).

The prior distribution for  is  ( ¹ 5), with ¹ = 524, where 
2
 is a

chosen parameter. This is set to 001. The posterior for  is given by  (( ¹ +
P

=1 ²
²0)¡1 5 +  ).

23 In the 5-variable system including private consumption, 0 is set to 56. This is equal to the
size of the vector µ plus 1, the minimum number of degrees of freedom for the prior to be proper
(and exceeds the number of observations in the training sample).
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B.5 Convergence diagnostics for the simulation procedure

We conclude this appendix by reporting a set of results concerning autocorrela-

tions of the draws. The convergence of the Gibbs sampler is known to be faster

when the draws are approximately independent. Following Primiceri (2005), we

report the 20th sample autocorrelation of the kept draws for last iteration of the

Gibbs sampler, corresponding to the simulation period 1960:1-2009:2. The num-

ber of parameters is very large and we thus present this statistic for a selection

comprising the coe¢cient states in the …rst equation (1782 = 9£ 198), the volatil-

ity states (792 = 4 £ 98) and the hyperparameters (686). Figure 7 shows that

the autocorrelations are close to zero in most cases and, when they are higher,

remain nevertheless below 0.2. The only exception is for the hyperparameters in

, featuring autocorrelations in the range from 0.2 to 0.3 (see the end of the third

panel).

C Mapping between the identi…cation schemes

(4) and (4’) in Section 2

The system of equations implied by scheme (4) in Section 2 is

 = 13

 + ¤14


+12


+


 , (B1)

= ¤23

+


 , (B2)

 = 32

 +  , (B3)

 = 41

 + 42


 + 43


 +  . (B4)

Note that equation (B2) has no unknown parameters. In order to reparameter-

ize equation (B3), one has to replace  as given by (B2) in it, yielding

 = 32

 + + , (B3’)
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Figure 7: Autocorrelation of the draws for selected sets of parameters
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where 32 = 32(1¡ 32
¤
23) and + = (1¡ 32

¤
23).

Consider now equation (B1). Using the expression for  in (B3’) and simpli-

fying yields

 ¡ ¤14

 = 12


 + 13

+
 +   (B1’)

where 12 = 12 + 3213 and 13 = 13.

Finally, equation (B4) can be rewritten as

 = 41

 + 42


 + 43

+
 + + (B4’)

where 41 =(1¡41
¤
14)

¡141, 42 = (1¡ 41
¤
14)

¡1[(4113 + 42
¤
23 + 43)32 + 4112+

42], 43 = (1¡ 41
¤
14)

¡1(4113 + 42
¤
23 + 43) and + = (1¡ 41

¤
14).

It is easy to check that the set of equations implied by scheme (4’) in Section 2

consists of (B1’), (B2), (B3’) and (B4’).
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