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Abstract

This study evaluates the performance of feed-forward neural networks to model
and forecast recovery rates of defaulted bank loans. In order to guarantee that the
predictions are mapped into the unit interval, the neural networks are implemented
with a logistic activation function in the output neuron. The statistical relevance of
explanatory variables is assessed using the bootstrap technique. The results indi-
cate that the variables which the neural network models use to derive their output
coincide to a great extent with those that are significant in parametric regression
models. Out-of-sample estimates of prediction errors suggest that neural networks
may have better predictive ability than parametric regression models, provided the
number of observations is sufficiently large.
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1 Introduction

With the advent of the new Basel Capital Accord (Basel Committee on Banking Super-
vision, 2006), banking organizations may choose between two approaches for determining
credit risk capital requirements: a standardized approach relying on ratings attributed by
external agencies for risk-weighting assets, and an internal ratings based (IRB) approach
in which institutions may implement their own internal models to calculate credit risk
capital charges. Banks that adopt the advanced variant of the IRB approach are expected
to provides estimates of the loss given default : the credit that is lost when a borrower
defaults, expressed as a fraction of the exposure at default. Modeling loss given default
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(or its complement, the recovery rate) on defaulted obligations is a challenging task. First,
excluding the costs of workout processes or potential gains in asset sales, recovery rates
are only observed on the interval [0, 1]. This imposes the use of econometric techniques
that take into account the bounded nature of recovery rates. Second, recovery rate dis-
tributions are frequently bimodal, containing many observations with very low recoveries
and many with complete or near complete recoveries (see, e.g., Asarnow and Edwards,
1995; Felsovalyi and Hurt, 1998; Davydenko and Franks, 2008; Araten et al., 2004; Der-
mine and Neto de Carvalho, 2006; Caselli et al., 2008). Third, empirical studies show
that it is not easy to find explanatory variables that strongly influence recovery rates.

The most straightforward technique for modeling recoveries is the linear regression
model estimated by ordinary least squares methods. For example, this approach is em-
ployed in Caselli et al. (2008), Davydenko and Franks (2008) and Grunert and Weber
(2009). However, modeling and predicting recoveries with a linear model has serious lim-
itations. First, because the support of the linear model is the real line it does not ensure
that predicted values lie in the unit interval. Also, given the bounded nature of the depen-
dent variable, the partial effect of any explanatory variable cannot be constant throughout
its entire range. These limitations can be overcome by employing an econometric method-
ology specifically developed for modeling proportions, such as the (nonlinear) fractional
regression estimated using quasi-maximum likelihood methods (Papke and Wooldridge,
1996). In the context of credit losses, this approach was adopted in Dermine and Neto
de Carvalho (2006) and Chalupka and Kopecsni (2009). An alternative procedure is to
perform the regression on appropriately transformed recoveries. The most eminent ex-
ample of this technique is Moody’s LossCalcTM V2 (Gupton and Stein, 2005), in which
recoveries are normalized via a beta distribution and a linear regression is carried out on
the transformed data set. A distinct approach is offered by nonparametric models, in
which the functional form for the conditional mean of the response variable is not pre-
determined by the researcher but is derived from information provided by the data. For
example, Bastos (2010) suggested the use of nonparametric regression trees for modeling
recoveries on bank loans. The advantage of this technique is its interpretability, since tree
models resemble ‘look-up’ tables containing historical recovery averages. Furthermore,
because the predictions are given by recovery averages, they are inevitably bounded to
the unit interval.

The purpose of this study is to investigate the performance of artificial neural net-
works to forecast bank loan recoveries. An artificial neural network is a nonparametric
mathematical model that attempts to emulate the functioning of biological neural net-
works. It consists of a group of interconnected processing units denoted by neurons. Due
to their good capability of approximating arbitrary complex functions, neural networks
have been applied in a wide range of scientific domains. In particular, neural networks
have been successfully employed in modeling the probability of default (see, e.g., Altman
et al., 1994), which, together with the recovery rate, determines the expected credit loss of
a financial asset. In this study, neural networks are trained to identify and learn patterns
in a set of recovery rates of defaulted bank loans. In regression problems, off-the-shelf
neural network implementations typically employ linear activation functions in the output
neuron. In this analysis, on the contrary, the neural networks are implemented with a
logistic activation function in the output neuron, since this choice guarantees that the
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predicted values are constrained to the unit interval.
The data set employed in this study contains the monthly history of cash flows recov-

ered by the bank during the workout process. This allows for the estimation of out-of-
sample predictive accuracies at several recovery horizons after default, and to understand
the properties of neural networks under different recovery rate distributions and number
of observations. The parametric model against which the performance of neural networks
is benchmarked is the fractional regression of Papke and Wooldridge (1996). The per-
formance of these techniques is also benchmarked against simple predictions given by
average recoveries. It is shown that neural networks have better predictive ability than
parametric regressions, provided the number of observations is sufficiently large.

The statistical relevance of explanatory variables and the direction of partial effects
given by the neural network and fractional regression models are compared. Because the
opaqueness of neural networks precludes the derivation of valid statistical tests to assess
the importance of input variables, the sampling distributions and appropriate critical
values are obtained using a resampling technique known as the bootstrap (Efron, 1979). It
is shown that the significance of the explanatory variables and the direction of the partial
effects given by the neural network models are, in general, compatible with those given
by the fractional regressions.

The remainder of this paper is organized as follows. The next section describes the
data set of bank loans and the explanatory variables. Section 3 reviews the parametric
fractional regression and neural network techniques. The determinants of recovery rates
given by the parametric and neural network models are discussed in Section 4. In Sec-
tion 5, a comparison of in-sample and out-of-sample predictive accuracies given by these
models is presented. Finally, Section 6 provides some concluding remarks.

2 Data sample and variables

This study is based on the bank loan data set of Dermine and Neto de Carvalho (2006).
It consists of 374 loans granted to small and medium size entreprises (SMEs) by a bank
in Portugal. The defaults occurred between June 1995 and December 2000, and the mean
loan amount is 140,874 euros.1

Borrowing firms are classified into four groups according to their business sector: (i)
the real sector (activities with real assets, such as land, equipment or real estate), (ii)
the manufacturing sector, (iii) the trade sector, and (iv) the services sector. To each
individual loan is attributed a rating by the bank’s internal rating system. The rating
reflects not only the probability of default of the loan but also the guarantees and collateral
that support the operation. There are seven classes of rating: A (the best), B, C1, C2,
C3, D and E (the worst). These alpha-numeric rating notches were transformed into
numeric values by an ordinal encoding that assigns the value 1 to rating A, the value 2
to rating B, and so on. Nearly half of the loans had no rating attributed. In order to
avoid the exclusion of loans with missing rating class, which would reduce significantly
the number of available observations, surrogate ratings were given to unrated loans by

1Because this study is essentially methodological, only a brief review of the data is given here. For a
comprehensive description of the data, see Dermine and Neto de Carvalho (2006).
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multiple imputation.2 Fifty eight per cent of the loans are covered by personal guarantees.
These are written promises that grant to the bank the right to collect the debt against
personal assets pledged by the obligor. Fifteen per cent of the loans are covered by several
varieties of collateral. These include real estate, inventories, bank deposits, bonds and
stocks. Thirty six per cent of the loans are not covered by personal guarantees or any
form of collateral. The loans are also characterized by the contractual lending rate, the
age of the borrowing firm and the number of years of relationship with the bank. The
mean age of the firms is 17 years while the mean age of relationship with the bank is 6
years. The values of the rating, collateral and personal guarantees are those recorded at
default.

1995 1996 1997 1998 1999 2000 Total

All data 65 89 59 57 47 57 374

12 month horizon 65 89 59 57 47 317

24 month horizon 65 89 59 57 270

36 month horizon 65 89 59 213

48 month horizon 65 89 154

Table 1: Number of loans organized by year of default, and the number of loans that are
used for each recovery horizon.

Recovery rates are estimated using the discounted value of cash-flows recovered by
the bank after default.3 The database contains the monthly history of cash-flows received
by the bank after the loans became non-performing. These cash-flows include incoming
payments due to realizations of collateral. For some loans, those defaulted in June 1995,
a long recovery history of 66 months is available. As the default date approaches the
end of year 2000, the recovery history is shortened. The dates when the defaulted loans
were officially written-off by the bank are not available and, therefore, ultimate recoveries
cannot be calculated, as required by Basel II. Instead, cumulative recovery rates are
calculated for horizons of 12, 24, 36 and 48 months after default. It should be noted
that, since most cash-flows are received shortly after default (see Dermine and Neto
de Carvalho, 2006), the distribution of recoveries for the longest recovery horizons are
good approximations of the distribution of ultimate recoveries. Furthermore, calculating
recovery rates at several horizons after default is useful for understanding the performance
of neural networks under different recovery rate distributions and number of observations.
The first row in Table 1 shows how the 374 loans included in the data are distributed
across the years. The second row shows that, when cumulative recoveries are calculated
for an horizon of 12 months after default, defaults that occurred in year 2000 are not
considered since they do not include 12 months of recovery history. In this case, the
data sample is reduced to 317 observations. For longer recovery horizons, the number of
available observations is further reduced, as indicated in Table 1.

The discount rate that is used to compute the present value of the post-default cash-

2Five imputations were generated using the program Amelia II (http://gking.harvard.edu/
amelia). As discussed in King et al. (2001), 5 imputations are usually sufficient, unless the number
of missing values in the complete data set is exceptionally high. The prediction errors in Section 5
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Figure 1: Distribution of the cumulative recovery rate for recovery horizons of 12, 24, 36
and 48 months after the default event.

flows is the loan-specific contractual lending rate. While this rate may not capture the
total risk of the firm after default, a substantial part of the total recovery is collected
in the first months of the work-out process and, therefore, calculated recoveries should
not change dramatically with the discount rate. The costs of the resolution process are
not considered in the calculation of the recovery rates.4 Figure 1 shows the distribution
of cumulative recovery rates for horizons of 12, 24, 36 and 48 months after the default
event. It can be seen that the distributions are bimodal with many observations with
low recoveries and many with complete or near complete recoveries. Also, there are no
substantial differences between recovery rate distributions for horizons of 24, 36 and 48
months. Naturally, this is a consequence of marginal recovery rates that decrease rapidly
with time after default.

correspond to average values over the five imputed data sets.
3Secondary market prices at the time of emergence from default were not available.
4Data on workout costs incurred in the recovery process are not available for individual loans and,

therefore, all results refer to gross recoveries. Dermine and Neto de Carvalho (2006) estimate that the
average recovery cost incurred by the bank is 2.6% of the amount recovered.
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3 Models

3.1 Parametric fractional regression

As mentioned in the introductory section, linear models estimated with ordinary least
squares methods are not appropriate for modeling recovery rates, since the predicted
values are not guaranteed to be bounded to the unit interval. An appropriate parametric
model for recovery rates is the fractional regression of Papke and Wooldridge (1996) which
was specifically developed for modeling fractional response variables. Let y be the variable
of interest (i.e., recovery rates) and x the vector of explanatory variables (i.e., firm and
contract characteristics). The fractional regression model is

E(y|x) = G(xβ), (1)

where G(·) is some nonlinear function satisfying 0 < G(z) < 1 for all z ∈ R. As suggested
by Papke and Wooldridge (1996), a consistent and asymptotically normal estimator of β
may be obtained by maximization of the Bernoulli quasi-likelihood function,

L(β) ≡ y log[G(xβ)] + (1 − y) log[1 − G(xβ)]. (2)

Common choices for G(·) are the cumulative normal distribution, the logistic function,
and the log-log function.

3.2 Artificial neural network

A feed-forward neural network consists of a group of elementary processing units (de-
noted by neurons) interconnected in such way that the information always moves in one
direction. The most prominent type of feed-forward network is the multilayer perceptron,
in which the neurons are organized in layers and each neuron in one layer is directly
connected to the neurons in the subsequent layer. In practice, multilayer perceptrons
with three layers are mostly used, as illustrated in Figure 2. The input layer consists of
m + 1 inputs corresponding to m explanatory variables and an additional constant input
called the bias. The output layer contains a number of neurons equal to the number of
dependent variables (one in this case). The layer between the input and output layers is
called the hidden layer. The number of neurons in the hidden layer h is determined by
optimization of the network performance. The hidden layer also includes a constant bias.

The output of each neuron is a weighted sum of its inputs that is put through some
activation function. Denoting by w(1) the weights of the connections between the inputs
and the hidden neurons, and by w(2) the weights of the connections between the hidden
neurons and the output neuron, the network’s output is given by

f̂(x;w) = Φ2

(

h
∑

k=1

w
(2)
k Φ1

(

m
∑

j=1

w
(1)
jk xj + w

(1)
m+1,k

)

+ w
(2)
h+1

)

, (3)

where the function Φ1(·) and Φ2(·) are the activation functions of the neurons in the
hidden and output layers, respectively. Commonly chosen activation functions for the
hidden neurons are the logistic function and the hyperbolic tangent. Also, typical neural
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Figure 2: Scheme of a multilayer perceptron with three layers. The dark circles represent
the network’s inputs. The light circles represent the neurons. The input layer contains
m + 1 inputs corresponding to m explanatory variables and an additional constant input
called the bias, which is represented by a square. The output layer contains a number of
neurons equal to the number of dependent variables (one in this case). The layer between
the input and output layers is called the hidden layer. The number of neurons in the
hidden layer is determined by optimization of the network performance. The hidden layer
also includes a constant bias.

network implementations employ a linear activation function in the output neuron. In
this study, a logistic activation function is used in the hidden layer neurons. In order to
ensure that the network predictions are mapped into the unit interval, a logistic activation
function is also employed in the output neuron.

Given n observations, learning occurs by comparing the network output f̂ with the
desired output y, and adjusting iteratively the connection weights in order to minimize
the loss function

L(w) =
1

2n

n
∑

i=1

[

yi − f̂(xi;w)
]2

. (4)

After a sufficiently large number of iterations, the network weights converge to a con-
figuration where the value of the loss function is small. The weights are adjusted by a
non-linear optimization algorithm, called gradient descent, that follows the contours of
the error surface along the direction with steepest slope.

4 Significance of explanatory variables

In Papke and Wooldridge (1996) fractional regression model, the partial effects of ex-
planatory variables on the response variable are not constant, given that the function
G(·) in Equation 1 is nonlinear. However, the chain rule gives that the partial effect of
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variable xj is
∂E(y|x)

∂xj

=
dG(xβ)

d(xβ)
βj. (5)

Since G(·) is strictly monotonic, the sign of the coefficient gives the direction of the partial
effect. The quasi-maximum likelihood estimator of β is consistent and asymptotically
normal regardless of the distribution of the response variable conditional on x (Gourieroux
et al., 1984).

With respect to the neural network models, it is not trivial to derive the direction of
the partial effects and understand if explanatory variables have significant effects on the
network’s output. In order to circumvent this problem, Baxt and White (1995) suggested
the bootstrap technique. Denoting by f̂ the trained network output function, the partial
effect on recovery rates of perturbing variable xj is approximated by the network sample

mean delta

∆j f̂ ≡
1

n

n
∑

i=1

∆j f̂(xi), (6)

where ∆j f̂(xi) denotes the change in the network’s output by perturbing the jth compo-

nent of the ith observation. Because f̂ is an estimate of the true relation between recovery
rates and explanatory variables, it is subject to sampling variation. Therefore, partial ef-
fects that are truly zero may seem to be nonzero and vice versa. The sampling variation
may be derived by drawing a large number of pseudosamples of size n with replacement
from the original sample. For each of the pseudosamples the network sample mean deltas
are calculated and the bootstrap distribution and corresponding critical values of ∆j f̂ are
obtained.5

Table 2 shows the statistical significance and direction of the partial effects of the
explanatory variables for the fractional regression (FR) models and the neural network
(NN) models, and for recovery horizons of 12, 24, 36 and 48 months after default.6 The
symbols -, - - and - - - indicate that a variable has a negative effect on recoveries with
a statistical significance of 10%, 5% and 1%, respectively; the symbols +, ++ and +++
indicate that a variable has a positive effect on recoveries with a statistical significance of
10%, 5% and 1%, respectively; and a bullet (•) means that a variable is not statistically
significant. The results for the fractional regression models were obtained with the logistic
function G(xβ) = 1/(1 + exp(−xβ)). With respect to the neural network models, three
parameters were optimized: (i) the number of neurons in the hidden layer, (ii) the learning

rate, which determines the size of the changes in the network weights during the learning

5Baxt and White (1995) also suggest an alternative approach based on residual sampling. This involves
creating pseudosamples in which the input patterns from the original sample are maintained, but the
recovery rates are perturbed using n residuals obtained by sampling with replacement from the sample of
residuals given by the neural network trained on the original data. However, this approach is not feasible
here since the recovery rates of these pseudosamples would not be necessarily constrained to the interval
[0,1].

6The coefficients of the fractional regression models are average values over the five imputed data
sets. Also, the standard errors of the coefficients are corrected in order to account for the variance of the
coefficients across the five imputed data sets (For details, see, King et al., 2001). With respect to the
neural network models, the critical values of the bootstrap distributions are average values over the five
imputed data sets.
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12 months 24 months 36 months 48 months

FR NN FR NN FR NN FR NN

Loan size • - - - - - - - - - - - - - - - - - - -

Collateral • • + ++ + ++ +++ +++

Personal guarantee • • - - • • - -

Manufacturing sector • • • - • - - - - - - - -

Trade sector • • • - - - - - - - - - - - -

Services sector • • • • • • • •

Lending rate • • • • • • • •

Age of firm + • + • + + ++ +

Rating - - - - - - - - - - - - - • •

Years of relationship • ++ + +++ • + • +

Table 2: Statistical significance and direction of partial effects of explanatory variables
given by the fractional regression (FR) models and the neural network (NN) models, and
for recovery horizons of 12, 24, 36 and 48 months. The symbols -, - - and - - - indicate
that a variable has a negative effect on recoveries with a statistical significance of 10%, 5%
and 1%, respectively; the symbols +, ++ and +++ indicate that a variable has a positive
effect on recoveries with a statistical significance of 10%, 5% and 1%, respectively; and
the symbol • means that a variable is not statistically significant.

process, and (iii) the momentum term, which determines how past network weight changes
affect current network weight changes. Neural network training is stopped when the out-
of-sample error is no longer improved. The amount of training cycles is defined by a
parameter called the number of epochs. The critical values for the neural network models
were obtained from 1000 bootstrap pseudosamples.

The results in Table 2 show that, to a large extent, the neural network models are
in agreement with the parametric models in terms of which variables determine recovery
rates. For instance, excluding the fractional regression for 12 months horizon, all models
indicate that the size of the loan has a statistically significant negative effect on recovery
rates at all recovery horizons.7 Also, both techniques suggest that collateral has a sta-
tistically significant positive impact on recovery rates for the longest recovery horizons
of 24, 36 and 48 months and personal guarantees have a statistically significant negative
impact on recoveries for 24 and 48 months horizon.

The models also suggest that the manufacturing and trade sectors present lower recov-
eries with respect to the base case (the real sector) for longer horizons. However, for a 24
months horizon, the neural networks indicate that these sectors may also have a negative
impact on recoveries while the fractional regressions suggest that they are not significant.
On the other hand, both techniques reveal that the services sector is not statistically sig-
nificant at all recovery horizons. Similarly, the contractual lending rate does not appear
to have any effect on recovery rates across all horizons.

The fractional regressions indicate that the age of the firm has a positive effect on
recoveries regardless of the recovery horizon. That is, according to these models, older
firms should exhibit better recoveries. On the other hand, the neural networks indicate

7See Dermine and Neto de Carvalho (2006) for the empirical interpretation of these effects.
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that this variable is only important for longer recovery horizons. Both techniques indicate
that the rating is significant for 12, 24 and 36 months recovery horizons. The sign of
the coefficients is in agreement with the expected direction of the partial effect: poor
creditworthiness results in lower recoveries. According to the neural network models, the
age of the obligor’s relationship with the bank is relevant for all recovery horizon, and
longer relationships result in better recoveries. On the other hand, for the fractional
regression this variable is only significant for a recovery horizon of 24 months.

5 Forecasting performance

The predictive accuracy of the models is assessed using two widespread measures: the
root-mean-squared error (RMSE) and the mean absolute error (MAE). These are defined
as

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2, MAE =
1

n

n
∑

i=1

|yi − ŷi| , (7)

where yi and ŷi are the actual and predicted values of observation i, respectively, and
n is the number of observations in the sample. Models with lower RMSE and MAE
have smaller differences between actual and predicted values and predict actual values
more accurately. However, RMSE gives higher weights to large errors and, therefore, this
measure may be more appropriate when these are particularly undesirable.

Because the developed models may overfit the data, resulting in over-optimistic esti-
mates of the predictive accuracy, the RMSE and MAE must also be assessed on a sample
which is independent from that used for estimating the models. In order to develop mod-
els with a large fraction of the available data and evaluate the predictive accuracy with
the complete data set, a 10-fold cross-validation is implemented. In this approach, the
original sample is partitioned into 10 subsamples of approximately equal size. Of the 10
subsamples, a single subsample is retained for measuring the predictive accuracy (the test

set) and the remaining 9 subsamples are used for estimating the model. This is repeated
10 times, with each of the 10 subsamples used exactly once as test data. Then, the er-
rors from the 10 folds can be averaged or combined to produce a single estimate of the
prediction error.

Table 3 shows in-sample and out-of-sample RMSEs and MAEs of the recovery rate
predictions given by the fractional regressions and the neural networks. The out-of-sample
errors correspond to average values over 100 test sets obtained from 10 random 10-fold
cross validations. Also shown are the errors given by a simple model in which the predicted
recovery is given by the average of actual recoveries (Historical model). The last row in
Table 3 shows the corrected resampled T -test (Nadeau and Bengio, 2003) for the null
hypothesis that the out-of-sample prediction errors of the fractional regressions and the
neural networks are equal.8

As anticipated, in-sample errors are typically smaller than out-of-sample errors since
the models overfit the data, giving over-optimistic estimates of the predictive accuracy.

8Denote by ε
(1)
i

and ε
(2)
i

the prediction errors in test set i given by models 1 and 2, respectively, and
let N denote the total number of test sets. The corrected resampled test for the equality of mean errors
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12 months 24 months 36 months 48 months

Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE

In-sample

FR 0.4139 0.3804 0.3841 0.3381 0.3577 0.3053 0.3371 0.2732

NN 0.3750 0.3235 0.3541 0.2970 0.3312 0.2688 0.3166 0.2510

Out-of-sample

Historical 0.4365 0.4163 0.4099 0.3803 0.3840 0.3444 0.3736 0.3243

FR 0.4297 0.3951 0.3983 0.3526 0.3749 0.3224 0.3580 0.2947

NN 0.4145 0.3586 0.3870 0.3272 0.3671 0.2965 0.3631 0.2946

TNN−FR -2.24* -5.55** -1.51 -3.75** -0.97 -3.82** 1.04 -0.02

Table 3: In-sample and out-of-sample root-mean-squared errors (RMSE) and mean ab-
solute errors (MAE) of the recovery rate estimates, for recovery horizons of 12, 24, 36
and 48 months, and for the fractional regression (FR) models, the neural networks (NN)
models and the model in which the predicted recovery is equal to the historical average.
The numbers for out-of-sample evaluation refer to average values over 100 test sets ob-
tained from 10 random 10-fold cross-validations. Also shown is the corrected resampled
T -test for the null hypothesis that the errors of the fractional regressions and the neural
networks are equal. One (*) and two (**) asterisks mean that the null is rejected with
5% and 1% significance level, respectively.

Therefore, the models not only fit the “true” relationship between recovery rates and the
explanatory variables but also capture the idiosyncrasies (“noise”) of the data employed
in their estimation. Both fractional regressions and neural networks give better forecasts
than simple predictions based on historical averages. The neural network models have
a statistically significant better predictive accuracy than the fractional regressions for a
recovery horizon of 12 months, both in term of RMSE and MAE. For horizons of 24 and
36 months, the neural networks also outperform the fractional regression, but only in
terms of MAE. Finally, both models exhibit comparable prediction errors for a horizon of
48 months.

These results suggest that the neural network’s accuracy may be penalized by the
decreasing number of observations as the recovery horizon increases (see last column in
Table 1). In order to test this hypothesis, the analysis was repeated on three random
subsets of the 12 months horizon set, containing 270, 213 and 154 observations (that is,
the number of observation in 24, 36 and 48 months horizon sets). The results shows that
on these “reduced” 12 months horizon data sets the predictive advantage of the neural

m(1) = 1
N

∑

i
ε
(1)
i

and m(2) = 1
N

∑

i
ε
(2)
i

is given by

T =
m(1) − m(2)

√

(

1
N

+ q
)

S
,

where S = Var(ε(1) − ε(2)) and q is the ratio between the number of observations in the test set and
the number of observations in the training set. Here, because 10 random 10-fold cross-validations are
generated, q = 0.1/0.9 and N = 100. The corrected resampled T -test follows a Student’s t-distribution
with N − 1 degrees of freedom.
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networks with respect to the fractional regressions is generally lost. In fact, the neural
networks only have a statistically significant advantage over the fractional regression in
the subset with 270 observations and solely in terms of MAE.

6 Conclusions

This study evaluates the performance of neural networks to forecast bank loan credit
losses. The properties of the neural network models are compared with those of parametric
models obtained from fractional regressions. The neural networks are implemented with a
logistic activation function in the output neuron, in order to guarantee that the predictions
are mapped into the unit interval. Recovery rate models for several recovery horizons are
implemented and analyzed. In the neural network models, the statistical relevance of
explanatory variables is assessed using the bootstrap technique. It is shown that there
are few divergences with respect to which variables the network models use to derive
their output and those that are statistically significant in fractional regression models.
Furthermore, when a variable is significant according to both techniques, the direction
of the partial effect is usually the same. Nevertheless, some discrepancies can be found.
For instance, while neural networks suggest that the age of relationship of the bank with
the client has a positive effect on recoveries across all horizons, the fractional regressions
indicate that this variable only has a positive impact on recoveries for the 24 months
horizon. On the other hand, the fractional regressions suggest that the age of the firm is
relevant across the four horizons, while according to the neural networks this variable is
only important for the longest horizons.

Out-of-sample estimates of the prediction errors are evaluated. The results indicate
that neural networks models have a statistical significant predictive advantage over re-
gression models for a recovery horizon of 12 months in terms of RMSE and MAE, and
for recovery horizons of 24 and 36 months in terms of MAE. For a recovery horizon of 48
months, the predictive ability of the two techniques is comparable. However, the decline
of the neural networks performance for longer horizons may be related to the reduced
number of observations when the recovery horizon is increased.
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