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Abstract

In many domains, the combined opinion of a committee of experts provides better

decisions than the judgment of a single expert. This paper shows how to implement

a successful ensemble strategy for predicting recovery rates on defaulted debts. Using

data from Moody’s Ultimate Recovery Database, it is shown that committees of models

derived from the same regression method present better forecasts of recovery rates than

a single model. More accurate predictions are observed whether we forecast bond or

loan recoveries, and across the entire range of actual recovery values.

JEL classification: G17; G21
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1 Introduction

Prudent people make predictions taking into consideration the opinion of several experts

rather than trusting solely their own judgment or that of a single expert. Any predictive
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model that produces better forecasts than the average outcome, by incorporating some of the

information provided by explanatory variables, can be regarded as an “expert”. Therefore,

it follows that we should expect a committee of such experts to provide better predictions

than a single expert. In this article, I show how to implement a successful ensemble strategy

for predicting recovery rates on defaulted securities. This strategy is based on a simple

predictor that combines the opinion of an ensemble of structurally similar models estimated

on perturbed versions of the original data. This predictor produces more powerful forecasts

of creditor recoveries than single models, and presents lower prediction errors across the

entire range of actual recoveries. The gains obtained in predictive power are fundamental

for lenders and investors wishing to estimate potential credit losses, helping them price and

manage credit risk more efficiently.

This article contributes to the expanding strand of literature studying the “Loss Given

Default”: the loss incurred by creditors when a borrower defaults expressed as a proportion

of the exposure at default. This ratio is one of the key elements for calculating regulatory

capital requirements in the Basel II framework (Basel Committee on Banking Supervision,

2006). Modeling and forecasting the Loss Given Default or its complement, the recovery rate,

is an interesting challenge. First, because the amount recovered after default is expressed

as a fraction of the exposure at default, discounted recoveries are usually observed over the

interval [0, 1]. Second, the distributions of discounted recoveries are frequently bimodal,

containing many observations with very low recoveries and many with complete or near

complete recoveries. A straightforward approach for modeling recoveries is to estimate a

linear least squares regression (see, e.g. Acharya et al., 2007; Caselli et al., 2008; Grunert

and Weber, 2009). A limitation of the linear model is that its support is the real line

and, therefore, it does not guarantee that predicted values lie over the unit interval. This

inconvenience may be overcome by fitting a (nonlinear) fractional regression estimated using

quasi-maximum likelihood methods (Papke and Wooldridge, 1996). For instance, in the
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context of credit losses this approach is adopted by Dermine and Neto de Carvalho (2006).

Alternatively, one may estimate a linear model on appropriately transformed recoveries. The

most eminent example of this approach is Moody’s LossCalc v2 (Gupton and Stein, 2005), in

which recoveries are normalized via a beta distribution and a linear least squares regression

is carried out on the transformed data. More recently, Bastos (2010) and Loterman et al.

(2012) suggest that nonparametric predictive models, such as regression trees and neural

networks, outperform parametric models in forecasting recoveries.

While the exploration of alternative models is fundamental for lenders wishing to better

predict future credit losses, theoretical work in the area of machine learning suggests that a

diverse ensemble of predictors may have greater predictive accuracy than a single predictor.

Given a set of observations, how can we create an ensemble of predictors? One approach

consists of using these observations to estimate a handful of models derived by different

regression techniques, and combine the predictions in line with a convenient scheme. An

alternative and often more powerful approach consists of creating a diversity of data sets by

introducing randomness into the original data set, estimating models on the new data sets

using the same regression technique, and then combine their predictions. The most basic

procedure for perturbing data and combining predictors was proposed by Breiman (1996),

giving it the acronym “bagging” (for bootstrap aggregating). This approach generates new

data sets by sampling with replacement (i.e. bootstrapping) observations from the data.

The new samples will not be identical to the primordial sample: some observations may be

repeated while others may be left out. Then, for each bootstrap sample a predictive model

is estimated using a single regression technique. The final prediction is a simple average of

the individual predictions.

Since the same regression technique is applied to different data sets, the success of this

strategy depends crucially on how the technique responds to small perturbations in the data.

The resulting predictive models cannot be too similar, since numerous copies of the same
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forecast contain exactly the same amount of information as a single forecast. Therefore,

this strategy must ensure diversity among the models it combines, and this diversity is only

feasible if the regression method exhibits some instability with respect to changes in the

data. Furthermore, a decision on the number of experts to be included in the ensemble must

be made. The size of the committee is usually determined by minimizing a loss function such

as the mean squared error. In general, substantial gains in predictive power are achieved by

committees with few members, and the marginal impact of each additional expert quickly

vanishes.

In the area of credit risk, several empirical studies have used ensemble strategies. How-

ever, these studies focused on bankruptcy prediction and credit scoring. The reader is

referred to Verikas et al. (2010) for a survey of the literature. In the following sections, I ex-

plore the effectiveness of an ensemble strategy for forecasting recovery rates using data from

Moody’s Ultimate Recovery Database. This database covers US non-financial corporations

and provides information on 4630 bonds and loans that defaulted in the period from 1987 to

2010. After providing an overview of the data, I discuss the choice of the regression method

and the optimal size of the ensemble. Then, the out-of-sample predictive accuracy of the

ensembles is evaluated using several accuracy measures. Results for the entire data set, the

subsample of bonds, and the subsample of loans are reported. This is followed by an exam-

ination of which features of the defaulted debts determine the ensemble predictions of their

recovery rates. Afterward, it is shown that when the regression method is stable with respect

to perturbations in the data, this ensemble strategy is ineffective for forecasting recoveries.

Finally, it is shown that ensembles of models estimated with a single regression method

outperform a committee of two models estimated with different regression techniques.
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2 Sample characteristics and variables

The data sample is Moody’s Ultimate Recovery Database (URD), which covers US non-

financial corporations holding over $50 million in debt at the time of default. The sample

describes 4630 defaulted bonds and loans from 957 different issuers, covering the period

from 1987 to 2010. Moody’s provides three alternative valuations of nominal recoveries at

the time of resolution. These are based on the settlement value taken at or close to default,

the trading prices of the defaulted instruments at or post-emergence, and the value of the

settlement instruments taken at the time of a liquidity event (Emery et al., 2007). The

database indicates which recovery value Moody’s considers to be the most representative of

the actual recovery. The analysis is conducted using the recovery value recommended by

Moody’s. Discounted recoveries are obtained by discounting back to the last time interest

was paid using the instrument’s pre-petition coupon rate.

Table 1 reports the number of instruments and the mean discounted recovery rate broken

down by year of default, Moody’s industry, instrument type and collateral. Panel A shows

that there is considerable variation in default rates across time. The number of defaulted

instruments in the database increases in the recessions of the early 1990s, early 2000s and

late-2000s. There is also substantial variation in mean recovery rates across time, and

decreased recoveries are observed during the economic downturns.1 Panel B reports the

sample distribution and mean recovery rate broken down by Moody’s industry classification.

Again, there are big differences in recovery rates across industries. The highest mean recovery

is observed in the Natural products sector, while the lowest is found in the Environment

sector.

Panel C provides the sample breakdown by instrument type. Bonds make up approxi-

mately 60% of total instruments with loans comprising the remaining 40%. Among loans,

1For a discussion on the importance of the negative correlation between default probabilities and recovery
rates see, e.g. Das (2007).
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Obs. RR Obs. RR

Panel A. By Year
1987 23 76% 1999 184 57%
1988 64 55% 2000 271 51%
1989 98 46% 2001 572 52%
1990 150 48% 2002 783 49%
1991 226 58% 2003 399 70%
1992 190 62% 2004 206 75%
1993 138 62% 2005 203 76%
1994 66 69% 2006 75 74%
1995 96 66% 2007 47 75%
1996 83 64% 2008 197 66%
1997 64 65% 2009 370 63%
1998 68 47% 2010 57 63%

Panel B. By Moody’s industry
Automotive 204 62% Manufacturing 427 64%
Chemicals 74 64% Media 358 64%
Construction 68 50% Metals & mining 141 57%
Consumer products 385 66% Natural products 93 82%
Distribution 519 52% Other 67 57%
Energy 493 74% Services 337 59%
Environment 51 30% Technology 146 61%
Health care 157 56% Telecommunications 469 42%
Industrials 69 67% Transportation 314 50%
Leisure & entertainment 258 62%

Panel C. By instrument type
Junior Subordinated Bonds 69 18% Term Loan 883 76%
Senior Subordinated Bonds 493 29% Revolver 963 85%
Subordinated Bonds 372 29%
Senior Unsecured Bonds 1263 49%
Senior Secured Bonds 587 64%

Panel D. By collateral type
All or most assets 1348 82% PP&E 342 59%
Capital Stock 183 69% Second and third lien 204 55%
Inventory, accounts receivable & cash 218 96% Unsecured 2273 41%
Other 62 84%

Table 1: Summary statistics of Moody’s Ultimate Recovery Database. This table shows the
number of instruments (Obs.) and mean discounted recovery rate (RR), by year of default
(Panel A), Moody’s industry (Panel B), instrument type (Panel C) and collateral type (Panel
D).

6



the data is roughly split between revolvers and term loans. On average, bank loans recover

better than bonds, reflecting the typically higher position of loans in terms of claim priority.

Furthermore, only 14% of the loans in the sample are not secured by any type of collat-

eral. Revolvers exhibit higher mean recovery than term loans. This may be attributed to

the greater frequency with which revolving lines of credit are monitored by lenders. The

sample breakdown by collateral type is shown in Panel D. On average, debts secured by in-

ventory, accounts receivable and cash exhibit higher recoveries, since these assets are easier

to liquidate. Not surprisingly, unsecured instruments present the lowest mean recovery rate.
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Figure 1: Distribution of discounted recovery rates for bonds and loans in Moody’s Ultimate
Recovery Database (1987–2010).

Figure 1 shows the distributions of discounted recovery rates for loans and bonds. The

distribution for loans has a strong negative skew. More than 60% of these instruments

resulted in complete or near complete recovery. On the other hand, the distribution of bond

recovery rates is bimodal. In particular, the probability that defaulted bonds recover very

little is substantial.

Table 2 shows which variables determine ultimate recoveries in a multivariate setting.
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coef. p-value
Moody’s Industry
Automotive 0.214 <0.001
Chemicals 0.194 <0.001
Construction 0.134 0.001
Consumer products 0.224 <0.001
Distribution 0.117 <0.001
Energy 0.362 <0.001
Environment -0.110 0.004
Health care 0.160 <0.001
Industrials 0.219 <0.001
Leisure & Entertainment 0.206 <0.001
Manufacturing 0.235 <0.001
Media 0.254 <0.001
Metals & Mining 0.144 <0.001
Natural products 0.399 <0.001
Other 0.189 <0.001
Services 0.220 <0.001
Technology 0.169 <0.001
Transportation 0.129 <0.001

Instrument type
Revolver 0.219 <0.001
Term loan 0.188 <0.001
Senior secured bonds 0.141 0.002
Senior unsecured bonds 0.179 <0.001
Senior subordinated bonds -0.001 0.989
Subordinated bonds 0.053 0.178

Collateral type
All or most assets 0.086 0.001
Capital stock 0.051 0.106
Inventory & accounts receivable 0.161 <0.001
Other 0.105 0.011
PP&E 0.043 0.157
Second & Third Lean 0.011 0.727

Seniority
Percentage above -0.146 <0.001
Percentage below 0.388 <0.001
Instrument ranking -0.024 0.004
Intercept 0.183 <0.001

Table 2: Determinants of ultimate recovery rates. This table shows which variables determine
Moody’s ultimate recovery rates in a multivariate setting. The coefficients and corresponding
p-values were estimated by ordinary least squares with robust standard errors. The data
sample consists of 4630 defaulted bonds and loans from 957 different issuers, covering the
period from 1987 to 2010.
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The coefficients and corresponding p-values were estimated by ordinary least squares with

robust standard errors. The regressors include dummy variables for industry, collateral and

instrument type. Furthermore, because there is strong empirical evidence that seniority has

a strong impact on recoveries (see, e.g. Varma and Cantor, 2005), the following variables,

readily available in the database, are also included in the regression: percentage above (the

percentage of obligor’s debt senior to the instrument); percentage below (or “debt cushion”,

the percentage of obligor’s debt junior to the instrument); and the instrument rank within

the obligor’s liability structure (an ordinal variable in which lower values correspond to higher

priority).

The reference group for Moody’s industry dummies is the Telecommunications sector

since it represents a large proportion of the debts and features the second lowest mean re-

covery rate. Most industries have statistically significant larger recoveries than the reference

group. On the other hand, the Environment sector has statistically significant lower re-

coveries than the Telecommunications sector. The reference group for the instrument type

dummies is the junior subordinated bonds. Table 2 suggests that other subordinated bonds

do not have significantly different recoveries with respect to that group. On the other hand,

the remaining instrument types have significantly higher recoveries at conventional levels.

With respect to collateral, debts protected by all or most assets, and inventory & accounts

receivable have statistically significant higher recoveries than unsecured securities (the ref-

erence group). Also, collateral types gathered in the “other” category (which includes those

with very few observations, such as real estate, oil and gas properties, and intellectual prop-

erty) have statistically significant higher recoveries with respect to unsecured debts. Finally,

the variables related to the instrument’s priority in the liability structure have statistically

significant effects on recoveries. As expected, percentage above and the instrument rank

have a negative impact on recoveries, while percentage below has a positive effect.
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3 Ensemble models of recovery rates

3.1 Bagging predictors

As mentioned in the introduction, a committee of experts may be obtained by creating a

diverse ensemble of data sets from the primordial data. The simplest way to achieve this

is to bootstrap the available observations to create new samples, and calculate the average

of the predictions of models estimated on these samples using a single regression technique,

which is labeled “base model”.

Let L denote a set of n observations {(yi,xi), i = 1, . . . , n} independently drawn from a

probability distribution, where yi is the response variable and xi is a set of predictor variables.

Furthermore, let φ(x,L) denote a predictor for y estimated using L. Now, assume that we

have several datasets {Lk} each consisting of n independent observations drawn from the

same underlying probability distribution. We can calculate the average of the predictions

given by the models estimated with the individual datasets {Lk} to obtain an aggregated

predictor for y,

φA(x) = EL [φ(x,L)] . (1)

The mean-squared error, averaged over L, of the single predictor is

EL
[
(y − φ(x,L))2

]
= y2 − 2yEL [φ(x,L)] + EL

[
φ(x,L)2

]
= y2 − 2yEL [φ(x,L)] + EL [φ(x,L)]2 + VarL [φ(x,L)]

= (y − φA(x))2 + VarL [φ(x,L)] . (2)

Since in standard situations the variance of the predictor φ(x,L) is positive, the squared

error of the ensemble of predictors φA(x) is lower than the mean-squared error averaged over
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L of a single predictor φ(x,L). Moreover, the greater the instability of φ(x,L) with respect

to L, the greater the difference between these errors will be.

Of course, in practice we have only one data set, and collecting more data is often

prohibitive or simply impossible. The approach suggested in Breiman (1996) is to generate

several data sets {L(B)}, each consisting of n observations sampled with replacement from

the available data set. If N sets are generated, the aggregated predictor becomes

φA(x)→ φB(x) =
1

N

N∑
i=1

φ(x,L(B)
i ). (3)

This predictor will perform better than a single predictor if: 1) the performance of the models

estimated with bootstrap samples is not much worse than that of the model estimated with

the original data set; 2) the models estimated with different bootstrap samples produce

significantly different forecasts.

Below I show the pseudocode for the bagging procedure:

Input:

data set: L = {(y1,x1), (y2,x2), . . . , (yn,xn)}

base model: φ(x,L)

number of ensemble members: N

Process:

for i = 1, 2, . . . , N

sample with replacement n observations from L to obtain L(B)
i

estimate predictor φ(x,L(B)
i )

end for

Output:

φB(x) = 1
N

∑N
i=1 φ(x,L(B)

i )
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3.2 Choosing the base model

Equation 2 shows that a crucial factor in creating a powerful ensemble is the stability of

the base model. If slight perturbations in the data produce small changes in the estimated

models, ensembles fail to provide significantly better forecasts than a single model. There-

fore, ensembles are most effective when the base model has some instability with respect to

perturbations in the data. For reasons that will become evident below, a good choice for

the base model is a regression tree (Breiman et al., 1984). This is a fortunate circumstance,

since this class of predictive models has shown good accuracy in forecasting credit recoveries

(Bastos, 2010).

A regression tree is a model in which the data are recursively partitioned into smaller

mutually exclusive subsets, and the partitions are represented by a sequence of logical if-

then-else tests on the attributes of the observations. The algorithm begins with a “root”

node containing all observations. It then searches all the possible binary splits of the data

in order to find the explanatory variable and corresponding cut-off value that minimize the

intrasubset variance of the response variable in the newly created daughter nodes. That is,

the response variable will be more homogeneous in daughter nodes than in their parents.

This procedure is then repeated for new daughter nodes until the reduction of variance

is very small (e.g. less than 1% of the variance of the complete data set) and/or very few

observations remain in the node. Starting from the upper-most node, observations are routed

down the tree according to the values of the explanatory variables tested in successive nodes

and, inevitably, end their path in a terminal node. The average value of the response variable

in a terminal node will be the predicted value for new observations that reach that node.

Figure 2 illustrates the recursive segmentation of Moody’s URD data using the tree

induction algorithm. For illustrative purposes only, the splitting process was stopped earlier

imposing a large, and not necessarily optimal, lower limit on the number of observations in

the nodes. This tree splits the data into five distinct regions determined by three attributes
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percentage above

yes no

0.86

0.670.52

yes no

> 0.63

yes no

0.420.25

> 0.10

unsecured
percentage above

Figure 2: Regression tree to predict recovery rates from Moody’s Ultimate Recovery
Database. This tree was estimated with the 4630 observations in the database.

of the debts.2 At the upper-most node it is asked if the instrument’s percentage below is

greater than 0.37. If the answer is positive, the predicted recovery is 0.86. If the opposite

occurs, it is further inquired if the instrument’s percentage above is greater than 0.10. If

this is true, the tree examines the percentage above again. If the percentage above is smaller

than 0.63 (and greater than 0.10) the predicted recovery is 0.42, otherwise it is 0.25. If the

percentage above is smaller than 0.10, the question is asked if the debt is unsecured. If the

answer is positive, the predicted recovery is 0.52; if the instrument is secured by collateral

the predicted recovery is 0.67.

This simple model allows several conclusions to be drawn. First, higher debt cushions

are associated with large recoveries, since the branch “percentage below ≥ 0.37” leads to a

terminal node in which the predicted recovery is greater than those in the remaining nodes.

Second, percentage above is negatively related to recoveries since the branch “percentage

above < 0.10” leads to predicted recoveries that are larger than those in the opposite branch.

2The optimal lower limit on the number of observations in the nodes may be very low, even when the
model precision is estimated out-of-sample to prevent over-fitting the data. This generates highly complex
trees when the sample size is large. For Moody’s URD, I found an optimal lower limit of just 2 observations
per node, which segments the data into 170 distinct regions.
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Furthermore, the branch “percentage above < 0.63” leads to a terminal node in which the

predicted recovery is greater than that in the opposite node. The same reasoning leads us

to the conclusion that unsecured debts are associated with lower recoveries.

percentage below

> 0.26

yes no

percentage below

yes no

0.55

> 0.10

yes no

0.600.35
> 0.55

unsecured
percentage above

yes no

0.790.95

Figure 3: Regression tree estimated with a bootstrap sample consisting of 4630 observations
sampled with replacement from the complete data set. The comparison of this tree with
that in Figure 2 illustrates a crucial feature of regression tree models: small changes in the
data generate different tree structures, and different forecasts for the response variable (the
values in the terminal nodes are different from those in Figure 2). An ensemble is a set
of regression tree models estimated with different bootstrap samples. The random nature
of the sampling procedure guarantees that these trees have different structures and provide
different forecasts.

The recursive segmentation of the data induced by this algorithm implies that the es-

timated model will be rather unstable with respect to perturbations in the data. In fact,

small changes in the data may easily result in a different variable or cut-off value being

chosen at a particular node, and a significantly different structure for the subtree beneath

that node (Witten and Frank, 2005). Figure 3 illustrates this point by showing a regression

tree estimated with a bootstrap sample, and imposing the same lower limit on the number

of observations in the nodes as for the tree estimated with the full data. Comparing this

tree with the one in Figure 2, it can be seen that the explanatory variable at the upper-most
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node is still the instrument’s percentage below. However, the optimal cut-off value now is

0.26. This slightly different cut-off value leads to substantially different subtrees beneath

this node. The branch on the left is not a terminal node but a question of whether the debt

is unsecured. The branch on the right leads to a test on the debt’s percentage above with

the same cut-off value as in the tree estimated with the full data. However, for the bootstrap

sample this test ends the splitting process.

As a concluding remark, an additional reason for electing the regression tree for the

base model is that its predictions are averages of the response variable. Because recovery

rates are bounded to the interval [0,1], regression trees give predictions that also lie in this

interval. Furthermore, as the ensemble predictions are averages of the individual base model

predictions, they will be bounded to [0,1] as well.

3.3 Choosing the number of ensemble members

After electing a base model, one must decide how many experts should be included in the

committee. This decision is based on the minimization of a loss function, such as the mean

squared error. Let y and ŷ denote the actual and predicted recovery rates, respectively, and

n denote the number of debts in the sample. The mean squared error (MSE) is defined as

MSE =
1

n

n∑
i=1

(yi − ŷi)2. (4)

Models with lower MSE tend to give smaller differences between the actual and predicted

recoveries and, on average, predict actual recoveries more accurately.

Figure 4 shows the out-of-sample MSE of ensembles of regression trees as a function of the

size of the committee.3 While this plot refers to ensembles estimated using the entire data

3Out-of-sample estimates of errors on unseen data are obtained through 10-fold cross-validation. In this
procedure, the data are divided into 10 groups of approximately the same size. Nine groups are used for
estimation and one group is used for evaluating an out-of-sample error. Each of the 10 groups is in turn set
aside to serve temporarily as an independent test sample. Then, the out-of-sample errors of the 10 samples
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Figure 4: Out-of-sample mean squared error of recovery rate forecasts given by an ensemble
of regression trees as a function of the number of trees in the committee.

from Moody’s URD, the results are similar when bonds and loans are considered separately.

The regressors are the dummy variables for industry, collateral and instrument type, and

the variables describing the seniority of the debt within the obligor’s liability structure that

were introduced in Section 2.

Figure 4 shows that the prediction error of the combined “opinions” decreases as the

number of experts in the committee increases. These errors should be compared with the out-

of-sample MSE of a single tree estimated with the full data which is 0.068. Clearly, even an

ensemble with very few members has better accuracy than a single tree. However, substantial

gains in predictive power are obtained by the first few members, and the marginal impact of

each additional opinion decreases rapidly. If computing time is an issue, practical results are

obtained with just 15 or 20 members. After the inclusion of around 60 members, the out-

of-sample error stabilizes and further improvements in predictive accuracy are unattainable.

The size of the committee should be greater than this critical number.

are combined to obtain an estimate of the error on unseen data using all available observations.
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3.4 Evaluating predictive accuracy

In addition to the mean squared error introduced in Equation 4, I consider the following

measures of predictive accuracy. The mean absolute error (MAE) is defined as

MAE =
1

n

n∑
i=1

|yi − ŷi| . (5)

Models with lower MAE also predict actual values more accurately, on average. However,

the MSE puts more weight on large errors than on small ones, whereas the MAE does not.

Therefore, the MSE should be preferred over MAE when large prediction errors are more

damaging. Relative errors measure the predictive accuracy with respect to a simple “model”

that always predicts the average outcome of the response variable, thereby neglecting the

information provided by the explanatory variables. The relative squared error (RSE) and

the relative absolute error (RAE) are defined as:

RSE = 100

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(%), RAE = 100

∑n
i=1 |yi − ŷi|∑n
i=1 |yi − ȳ|

(%). (6)

Models with RSE and RAE smaller than 100% provide, on average, better forecasts than

the simple predictor in terms of squared and absolute error, respectively. The last measure

of predictive accuracy is the statistical correlation between y and ŷ:

ρy,ŷ =
Cov(y, ŷ)√

Var(y)Var(ŷ)
. (7)

Of course, the model with the highest correlation outperforms the others.

Table 3 shows the out-of-sample accuracy measures for recoveries predicted by a single

tree and an ensemble of trees. The ensemble contains 100 members, but any committee size

within the range of the plateau in Figure 4 could be chosen. For the sake of completeness,

the results for a linear least squares regression are also shown. In addition, Table 3 shows

17



Panel A: All data
Linear model Single tree Ensemble LM-ST ST-E

Mean squared error 0.086 0.068 0.053 -21% -22%
Mean absolute error 0.238 0.179 0.163 -25% -9%
Relative squared error (%) 56.83 44.81 34.79 -21% -22%
Relative absolute error (%) 66.73 50.14 45.70 -25% -9%
Correlation coefficient 0.657 0.746 0.809 14% 8%

Panel B: Bonds
Linear model Single tree Ensemble LM-ST ST-E

Mean squared error 0.099 0.078 0.060 -21% -23%
Mean absolute error 0.260 0.198 0.179 -24% -10%
Relative squared error (%) 70.46 55.54 42.85 -21% -23%
Relative absolute error (%) 77.20 58.61 52.94 -24% -10%
Correlation coefficient 0.543 0.673 0.758 24% 13%

Panel C: Loans
Linear model Single tree Ensemble LM-ST ST-E

Mean squared error 0.060 0.056 0.043 -7% -23%
Mean absolute error 0.189 0.152 0.141 -19% -7%
Relative squared error (%) 65.89 61.75 47.02 -7% -23%
Relative absolute error (%) 75.03 60.51 56.11 -19% -7%
Correlation coefficient 0.583 0.625 0.730 7% 17%

Table 3: Comparison of predictive accuracy. Out-of-sample predictive accuracy measures of
recovery rate forecasts given by a linear least squares regression, a single regression tree and
an ensemble of 100 regression trees. The last two columns show the percent variation of the
accuracy measures between the linear model and a single tree (LM-ST), and between the
single tree and the ensemble (ST-E). Panel A refers to the entire data set, panel B refers to
a subsample including bonds only, and panel C refers to the subsample including loans only.

the accuracy measures when we consider the entire data set (panel A), the subsample of

bonds (panel B) and the subsample of loans (panel C).

A single tree gives better forecasts of recoveries than the linear model across all measures.

For instance, a single tree decreases the out-of-sample MSE of the complete data set by about

21% compared to the linear model. The corresponding numbers for the subsamples of bonds

and loans are 21% and 7%, respectively. This is not unexpected, since the linear model

forces a linear dependence between recovery rates and the explanatory variables, while the

regression tree does not assume any underlying relationship, and is capable of detecting

nonlinear dependencies.
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When we compare ensembles of trees with single trees we find even bigger improvements

in predictive accuracy. Across all measures and across the three data sets the ensembles

outperform the single tree models. In fact, further reductions in MSE of about 22%, 23%

and 23% are observed in the full sample, the subsample of bonds, and the subsample of

loans, respectively. The corresponding reductions in terms of MAE are 9%, 10% and 7%.

Accordingly, the ensembles present lower relative errors across the three data sets. Finally,

the recoveries predicted by the ensembles also show higher correlation with actual recoveries.
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Figure 5: Out-of-sample mean squared errors versus actual recoveries given by a single tree
and an ensemble of trees.

Figure 5 shows out-of-sample mean squared errors versus actual recoveries given by a

single tree and the ensemble of trees. These results refer to the full data set. The ensemble

presents lower out-of-sample prediction errors across all recovery values. In particular, the

ensemble is more powerful at predicting the low recoveries which are more damaging to the

lender.

Also of note is that the errors are systematically biased for the loans sample. This is

due to the large number of defaulted loans with full recovery (see Figure 1), and due to
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predicted values being bounded to the interval [0,1]. Defining the error as ε = y − ŷ, about

70% of the loan recovery rate forecasts have positive errors (the ensemble underestimates

the recovery rate). On the other hand, the distribution of recoveries for the bonds sample

is more symmetrical. For this sample, about 46% of the bond recovery rate forecasts have

positive errors.

3.5 Which variables determine ensemble forecasts?

One potential disadvantage of creating ensembles of experts is that the final prediction rule

is substantially more complex than that of a single expert. Therefore, it is more difficult to

understand which attributes of the observations are contributing to the improved forecasts.

When regression trees are used as the base model, a straightforward approach to un-

derstand the relative importance of the explanatory variables is to calculate the frequency

with which those variables appear in the decision nodes of the trees in the committee. This

information can be complemented with the inspection of individual trees or the coefficients

of a parametric model in order to discern the direction of the partial effects. Figure 6 reports

this frequency for the ensembles estimated with data from Moody’s URD. The bars in black,

dark gray, and light gray, correspond to the full sample, and the subsamples of bonds and

loans, respectively.

Overall, the relative participation of the industry, collateral and instrument type dummies

in the decision nodes is rather small. On the other hand, the variables that characterize

the priority of the debts in the liability structure frequently participate in the decision

nodes. These variables also reveal an interesting asymmetry between bonds and loans. For

the subsample of bonds, percentage above is the most important variable. This is not

unexpected, since bonds tend to reside at the bottom of the obligor’s liability structure in

terms of claim priority. Therefore, the percentage of debt senior to these debts must have a

significant (and negative) impact on how they recover. Conversely, percentage below is the

20



0.0

0.1

0.2

0.3

0.4

0.5

0.6

Bonds & loans

Bonds

Loans

Figure 6: Frequency with which explanatory variables are employed in the decision nodes of
tree ensembles. The bars in black, dark gray, and light gray, correspond to the full sample,
and the subsamples of bonds and loans, respectively.

most important variable for loans. Given that loans tend to reside at the top of the liability

structure, the debt cushion below these instruments must have a significant (and positive)

impact on how they recover.

3.6 Ensembles of linear models

The instability of regression trees in response to small perturbations in the data was the

reason they were adopted as the base model. Nevertheless, how effective is an ensemble

strategy if the base model is fairly robust to small changes in the data? Figure 7 sheds

light on this question. It shows how the out-of-sample mean squared error of recovery rate

forecasts given by an ensemble of linear least squares regressions evolves as a function of the

number of members in the committee.

First, the MSE as a function of the size of the ensemble is over a very limited range.

Because the OLS regression is fairily robust with respect to changes in the data, linear models

estimated with different bootstrap samples are very similar to each other and produce very
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Figure 7: Out-of-sample mean squared error of recovery rate forecasts given by an ensemble
of linear least squares regressions as a function of the number of members in the ensemble.

similar forecasts. Therefore, ensemble forecasts are also very similar regardless of the size

of the ensemble. An apparent and rather small gain in predictive power is observed when

the size of the committee increases. However, Figure 7 is somewhat misleading. First, the

out-of-sample MSE of an ensemble with few members is actually larger than the out-of-

sample MSE of a single linear model estimated with the full data (0.08591). In fact, when

the committee contains very few linear models, we are just averaging predictions from very

similar models that were estimated with just a fraction of the data.4 As the size of the

committee increases, and eventually all observations in the primordial data set are used in

the estimation, the accuracy of these ensembles tends toward that of the single linear model

estimated with the full data.

4The bootstrap samples leave many observations out. For reasonably large data sets such as Moody’s
URD, on average 36.8% of the observations in the bootstrap samples are duplicates.
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3.7 Committee of different regression techniques

If the regression technique is unstable with respect to different bootstrap samples, the mem-

bers of the ensemble are significantly different from each other, and can be regarded as

distinct experts. Therefore, we may regard an ensemble as a large committee of experts with

similar expertise, but sufficiently different to complement one another. On the other hand,

the combination of different regression techniques estimated with the same data may be

regarded as a small committee of experts with different kinds of expertise. Table 4 reports

the out-of-sample predictive accuracy measures given by a model in which the predicted

recoveries are the average of the predictions of two different regression techniques: a linear

least squares regression and a regression tree. Comparing these measures with those in Ta-

ble 3, we find that the combined forecasts of this committee are better than the individual

forecasts of the linear model. However, they are barely comparable to the predictions of the

most skilled expert: the regression tree. Consequently, the forecasts of this committee are

outperformed by those of the ensemble of regression trees.

All data Bonds Loans

Mean squared error 0.067 0.077 0.053
Mean absolute error 0.201 0.221 0.167
Relative squared error (%) 44.28 54.86 57.91
Relative absolute error (%) 56.53 65.64 66.40
Correlation coefficient 0.748 0.675 0.648

Table 4: Predictive accuracy of a committee of two regression techniques. Out-of-sample
predictive accuracy measures of recovery rate forecasts given by a model in which the pre-
dicted values are the average of the predictions of a linear least squares regression and a
regression tree.

4 Conclusions

This article shows that the combined opinion of a committee of models provides better

forecasts of recovery rates than single models. The analysis is based on a simple ensem-
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ble strategy called “bagging”. This procedure generates new data sets by bootstrapping

observations from the original data, and calculating the average of the predictions of mod-

els estimated on these samples using a single regression method. Because the effectiveness

of this strategy depends on the instability of the regression technique in response to small

perturbations in the data, a decision tree induction algorithm is chosen for the base model.

Using data from Moody’s Ultimate Recovery Database, it is shown that the recovery rate

forecasts given by an ensemble of regression trees outperform the forecasts given by a single

regression tree, whether we consider the entire data set or samples containing only bonds

or loans. Also, the ensembles outperform a single tree across all actual recovery values. In

particular, the ensembles are more powerful at predicting low recoveries, which are more

ruinous to lenders and investors. It is also shown that an ensemble of linear models fails to

increase predictive performance compared to a single linear model. Moreover, tree ensembles

have greater predictive power than a committee formed by a linear least squares regression

and a regression tree.

One potential drawback of ensembles is that it may not be easy to understand which

variables are contributing to the improved forecasts. While it is often the case that sim-

plicity has to be sacrificed in order to achieve a higher degree of precision, if we calculate

the frequency with which explanatory variables are employed in the decision nodes of the

ensemble we can understand in intuitive terms the relative importance of the variables in

the model. This approach showed that the variables describing the instrument’s position in

the liability structure in terms of claim priority contribute more often to the recovery rate

forecasts provided by the ensemble.
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