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Abstract

This study introduces a new distance measure for clustering financial time series

based on variance ratio test statistics. The proposed metric attempts to assess the

level of interdependence of time series from the point of view of return predictabil-

ity. Simulation results show that this metric aggregates better time series according

to their serial dependence structure than a metric based on the sample autocorrela-

tions. An empirical application of this approach to international stock market returns

is presented. The results suggest that this metric discriminates reasonably well stock

markets according to size and level of development. Furthermore, despite the sub-

stantial evolution of individual variance ratio statistics, the clustering pattern remains

fairly stable across different time periods.

1 Introduction

Clustering of time series has become an important tool in many scientific domains, such

as finance and economics, engineering and life sciences. The procedure for clustering time

series typically involves the construction of a convenient similarity measure between the

series. A number of approaches for clustering time series data are available in the litera-

ture, such as autoregressive expansion-based distances (Piccolo, 1990; Maharaj, 1996, 1999,
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variance ratio tests”.
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2000), autocorrelation-based distances (Galeano and Peña, 2000; Caiado et al., 2006), fit-

ted residuals-based distances (Tong and Dabas, 1990), cross-correlation coefficient distances

(Bohte et al., 1980), periodogram-based distances (Maharaj, 2002; Caiado et al., 2006, 2009),

spectral coherence-based dissimilarities (Maharaj and D’Urso, 2010), dynamic time warping

distances (Berndt and Clifford, 1996; Wang and Gasser, 1997), Markov-operator distances

(Gregorio and Iacus, 2008), short time series distances (Möller-Levet et al., 2003) and cepstral

coefficient-based distances (Kalpakis et al., 2001; Savvides et al., 2008).

Cluster analysis of time series is particularly important in finance, since practitioners are

interested in identifying similarities in financial assets for investment and risk management

purposes. This has motivated financial researchers to develop multivariate statistical meth-

ods to identify similar structural patterns in asset prices. For instance, Mantegna (1999) and

Bonanno et al. (2001) used a function of the Pearson correlation coefficient as a measure of

similarity between pairs of stock returns. In order to take into account the information about

the volatility structure of time series, Caiado and Crato (2010) introduced a Mahalanobis-

like distance between the dynamic features of two return series and employed a clustering

procedure to investigate similarities among stocks of the DJIA index.

In this paper, we introduce a new distance measure for clustering time series with similar

stochastic dependence structure. The proposed metric is based on the distance between

variance ratio statistics computed for individual series. Variance ratios tests are popular

tests of the hypothesis that a time series follows a random walk or a martingale difference

sequence, i.e., that its returns are uncorrelated at all leads and lags. Lo and MacKinlay (1988,

1989) provided the asymptotic sampling theory for both homoscedastic and heteroscedastic

random walks, and showed that these tests are more powerful than traditional tests, such

as serial correlation and unit root tests, against several alternative processes. Wright (2000)

proposed non-parametric variance ratio tests based on ranks and signs. Unlike conventional

variance ratio tests, rank- and sign-based tests are exact, with sampling distributions that

do not rely on asymptotic approximations. Wright (2000) showed that rank- and sign-based

tests improve substantially the power of variance ratio tests with little size distortions. In

recent years, many innovations and refinements of the variance ratio methodology have been

proposed in the literature. An extensive survey of these developments is provided by Charles

and Darné (2009).

To some extent, the proposed metric assesses the level of interdependence of time-series

from the point of view of return predictability. Therefore, a natural empirical application

for this metric is provided by international stock markets. In fact, the level of predictability
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of global markets is of great importance for investors seeking the reduction of idiosyncratic

risk through international portfolio diversification, and an abundant research has been de-

voted to examining whether the prices of securities conform to a random walk behavior. A

comprehensive review of these empirical studies is provided in the recent survey by Lim and

Brooks (2011). In particular, several studies employed variance ratios to test the random

walk hypothesis in stock markets (see, e.g., Hoque et al., 2007; Kim and Shamsuddin, 2008;

Smith, 2009).

In this study, we analyze daily returns of free float-adjusted market capitalization equity

indices from 46 different countries, covering the period from 1995 to 2009. Two types of

multivariate interdependence techniques are considered for analyzing the clustering patterns

of these markets. First, we employ multidimensional scaling maps, which can be used to

identify similarities between features of different return series, and to construct distances in

a multidimensional space. Then, we perform cluster analysis, which is particularly suited

for defining groups of equity markets with maximal structure dependence within the groups

while also having minimum structure dependence between the groups.

The remainder of this paper is organized as follows. Section 2 presents a brief review

of the variance ratio statistics that are used as inputs for our metric. Section 3 introduces

the clustering procedure and evaluates its properties on simulated data. Section 4 shows the

results of an empirical application to international stock markets. Finally, Section 5 presents

some concluding remarks.

2 Variance ratio tests

In this section, we describe three alternative variance ratio tests of the random walk hypoth-

esis. If a return series conforms to a random walk behavior then it should be uncorrelated

at all leads and lags. Let pt, t = 0, 1, ..., T denote a time-series of asset prices and yt denote

the continuously compounded return at time t, yt = log(pt/pt−1), t = 1, ..., T . Given the

time series of asset returns yt = µ+ ϵt, where µ is a drift parameter, we want to test the null

hypothesis that: i) ϵt are identical and independently distributed (iid), or ii) ϵt are indepen-

dent and conditional heteroscedastic, that is, the return series forms a martingale difference

sequence.
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2.1 Conventional variance ratio tests

Lo and MacKinlay (1988) variance ratio tests are based on the property that, if returns

are i.i.d., the variance of the k-period return is k times the variance of the one-period

return. Therefore, if a return series is a random walk the ratio of 1/k times the variance of

log(pt/pt−k) to the variance of log(pt/pt−1) should be close to 1. This variance ratio is given

by

VR(k) =
1
Tk

∑T
t=k (yt + yt−1 + ...+ yt−k+1 − kµ̂)2

1
T

∑T
t=1 (yt − µ̂)2

, (1)

where µ̂ = T−1
∑T

t=1 yt. Lo and MacKinlay (1988) showed that, if the returns are i.i.d. then

the test statistic

M1(k) = (VR(k)− 1)ϕ(k)−1/2, (2)

where

ϕ(k) =
2(2k − 1)(k − 1)

3kT
, (3)

follows the standard normal distribution asymptotically, under the null hypothesis that

VR(k) = 1. This null asymptotic distribution does not hold if the returns are subject

to conditional heteroscedasticity. Therefore, Lo and MacKinlay (1988) proposed an alter-

native test statistic which is robust against the presence of conditional heteroscedasticity,

given by

M2(k) = (VR(k)− 1)

[
k−1∑
j=1

[
2(k − j)

k

]2
δj

]−1/2

, (4)

where

δj =

∑T
t=j+1(yt − µ̂)2(yt−j − µ̂)2[∑T

t=1(yt − µ̂)2
]2 . (5)

The test statistic M2(k) also follows the standard normal distribution asymptotically under

the null hypothesis that VR(k) = 1 and the conventional critical values for the standard

normal distribution hold for both tests.

2.2 Rank-based variance ratio tests

The finite-sample null distribution of Lo and MacKinlay (1988) tests can be rather asym-

metric and nonnormal, exhibiting bias and positive skewness. To overcome these problems,

Wright (2000) proposed non-parametric tests based on ranks and signs. These tests have
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exact sampling distributions and do not recur to any asymptotic approximations. Denote by

r(yt) the rank of yt among y1, ..., yT . Under the null hypothesis that ϵt is i.i.d., the integer

sequence r(yt), t = 1, ..., T , is a random permutation of the integers from 1 to T , where each

permutation has equal probability. Wright (2000) suggests two alternative standardizations

of the ranks,

r1t =
r(yt)− T+1

2√
T 2−1
12

(6)

and

r2t = Φ−1

(
r(yt)

T + 1

)
, (7)

where Φ is the standard normal cumulative distribution function. The proposed test statistics

are given by

R1(k) =

[
1
Tk

∑T
t=k (r1t + r1t−1 + ...+ r1t−k+1)

2

1
T

∑T
t=1 r

2
1t

− 1

]
× ϕ(k)−1/2, (8)

and

R2(k) =

[
1
Tk

∑T
t=k (r2t + r2t−1 + ...+ r2t−k+1)

2

1
T

∑T
t=1 r

2
2t

− 1

]
× ϕ(k)−1/2. (9)

The exact sampling distribution of R1(k) and R2(k) may be derived from simulation to any

arbitrary degree of accuracy. Note that in the presence of conditional heteroscedasticity r(yt),

t = 1, ..., T , no longer corresponds to a random permutation of the set 1, ..., T with equal

probability and R1(k) and R2(k) are not exact. However, through Monte Carlo simulations

Wright (2000) showed that these tests do not exhibit serious size distortions under conditional

heteroscedasticity.

2.3 Sign-based variance ratio tests

Wright (2000) also suggests a sign-based variance ratio test. Let

st =

{
1 if yt > 0

−1 otherwise
(10)

5



If µ = 0, the series st is i.i.d. with mean 0 and variance 1. Also, each st is equal to 1 with

probability 1
2
and equal to −1 otherwise. The sign-based test statistic is given by

S1(k) =

[
1
Tk

∑T
t=k (st + st−1 + ...+ st−k+1)

2

1
T

∑T
t=1 s

2
t

− 1

]
× ϕ(k)−1/2. (11)

Again, the exact sampling distribution of S1(k) may be obtained by simulation. This test

is exact even in the presence of conditional heteroscedasticity. Because the assumption that

µ = 0 is restrictive, Wright (2000) suggested an alternative test in which this condition is

relaxed but his Monte Carlo simulations showed that the power of this test did not compare

well with S1(k).

3 Cluster analysis with variance ratio statistics

3.1 Variance ratio-based metric

A fundamental task in cluster analysis is to obtain a relevant measure of similarity be-

tween each pair of time series. Here, we propose the Euclidean distance between vectors

of the variance ratio statistics M1, M2, R1, R2 and S1, introduced in Section 2. Further-

more, these vectors include variance ratios evaluated at several lags k in order to capture

the serial dependence of the returns. To eliminate any bias due to scale differences across

variables, the variance ratios are standardized before computing the distances. Denoting

by v′x = [VR1x,VR2x, ...,VRpx] and v′y = [VR1y,VR2y, ...,VRpy] the p-dimensional vectors

of standardized variance ratios for time series x and y, respectively, the distance measure

between these vectors is

dVR(x, y) =

√√√√ p∑
j=1

(VRjx − VRjy)2 (12)

Let n denote the number of time series under consideration. We compute dissimilarities

between every pair of series in the data set. The result of this computation is an Euclidean

distance matrix D with n(n− 1)/2 different pairs of time series.
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3.2 Multidimensional scaling

Multidimensional scaling (MDS) is a multivariate statistical method that uses the informa-

tion about the similarities (or dissimilarities) between objects to construct a configuration of

n points in low-dimensional space (see, for instance, Johnson and Wichern, 2007). Let D be

the observed n× n matrix of Euclidean distances. By multidimensional scaling, the matrix

D yields a n× d configuration matrix T . The rows of T are the coordinates of the n points

in a d-dimensional representation of the observed dissimilarities (d < n). The d-dimensional

representation that best approximates the observed dissimilarity matrix is given by the d

eigenvectors of TT ′ corresponding to the d largest eigenvalues.

3.3 Hierarchical cluster analysis

Cluster analysis attempts to determine groups (or clusters) of objects in a multivariate data

set. The most commonly used clustering algorithm is based on the hierarchical classification

of the objects. This linkage algorithm is concerned with the partition of a set of objects into

groups or clusters, in such a way that objects in the same group are similar to one another

and objects in different clusters are as distinct as possible. We begin with each object being

considered as a separate cluster (n clusters). In the second stage, the closest two groups are

linked to form n − 1 clusters. The process continues until the last stage, in which all the

objects are in the same cluster (for further discussion, see Johnson and Wichern, 2007).

The dendrogram (also called ”cluster tree”) is a graphical representation of the results

of the hierarchical cluster analysis. The dendrogram shows how clusters are formed at each

stage of the procedure. At the bottom of the dendrogram, each object is considered its

own cluster. The objects continue to combine upwards. At the top, all objects are grouped

into a single cluster. In hierarchical clustering, partitions are obtained by cutting off the

dendrogram at an arbitrary point. The choice of the appropriate number of clusters in the

dendrogram is sometimes subjective and depends on the expert judgment of the researchers.

A formal method for finding the appropriate partition in the data set are the Duda-Hart

Je(2)/Je(1) indices (Duda and Hart, 1973). These indices (also called “stopping rules”) are

computed for each cluster solution in a hierarchical cluster analysis. Larger values of the

indices indicate more distinct clustering (for more details, see Everitt et al., 2001).
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3.4 Simulation results

In order to understand the properties of the variance-ratio based distance dVR(x, y) in clus-

tering time series, we simulated 10 random series from each of the following six processes

(see Wright, 2000):

Model (a): yt = εt, where εt is iid N(0,1).

Model (b): yt = exp(ht/2)εt, where ht = 0.95ht−1 + ξt, with ξt iid N(0,0.1) and independent

of εt.

Model (c): yt = 0.1yt−1 + exp(ht/2)εt;

Model (d): (1 − L)dyt = exp(ht/2)εt, where (1 − L)d is the fractional differencing operator

and d = 0.1;

Model (e): yt = (1− 0.5L)−1υt + exp(ht/2)εt, where υt is iid N(0,0.1), independent of εt;

Model (f): yt = (1 − L)−dυt + exp(ht/2)εt, where (1 − L)d is the fractional differencing

operator and d = 0.3.

For each series we calculated the variance ratios M1, M2, R1, R2 and S1 evaluated at

four distinct values of k: 2, 5, 10, 20. Then the Euclidean distance dVR(x, y) between all

pairs of 20-dimensional vectors was computed. We also considered three different series

lengths: N = 500, 1000 and 2000. We explore the existence of possible clusters among the

six models by the complete linkage dendrogram associated with the variance ratio distances.

The dendrograms from which clusters can be identified are shown in Figure 1. For large values

of N , the method tends to group the series according to serial dependence structure. For

example, one cluster contains almost all series generated from processes (c) and (d). These

two processes have both serial dependence and conditional heteroscedasticity. On the other

hand, the series generated from processes with no serial dependence (Models (a) and (b)), the

series generated from the sum of a Gaussian AR(1) process and conditional heteroscedastic

noise (Model (e)), and the series generated from the sum of Gaussian fractionally integrated

process with conditional heteroscedastic noise (Model (f)) are, to a large degree, randomly

distributed across multiple clusters.

For comparison, we also consider a well-known discrepancy statistic based on the esti-
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Figure 1: Complete linkage dendrogram for variance-ratio based distances between the gen-
erated series.
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mated autocorrelations (Galeano and Peña, 2000):

dACF(x, y) =

√√√√ L∑
l=1

(ρ̂x,l − ρ̂y,l)
2, (13)

where ρ̂x,l and ρ̂y,l are the sample autocorrelation functions of time series x and y, and L is the

number of autocorrelation lags (in our simulation study, we set L = N/10, as recommended in

Caiado et al. (2006)). Figure 2 shows the complete linkage dendrogram based on metric (13).

From the results given by these simulations, it can be seen that the autocorrelation method

performs poorly in detecting serial dependence. In fact, this metric cannot distinguish models

that have serial dependence and some conditional heteroscedasticity from those that are iid

or mds.

In order to better assess the methods, we have explored other hierarchical (single linkage,

average linkage and Ward’s linkage) and non-hierarchical (k-means) clustering procedures.

Irrespectively of the clustering procedure, the variance ratio based metric provides better

cluster solutions than the ACF based method. We have also obtained multidimensional

scaling solutions for both variance ratio and ACF distances between generated series. Re-

sults were similar to the ones obtained by the hierarchical and non-hierarchical clustering

procedures and provide the same recommendations for the discrepancy statistic choice.

4 An empirical application

4.1 Data

The data employed in this analysis consists of free float-adjusted market capitalization equity

indices constructed and maintained by Morgan Stanley Capital International (MSCI). In

order to avoid effects due to exchange rates, all indices are specified in local currency. The

construction and maintenance of the MSCI index family follows a consistent methodology.

Securities included in the indices are subject to minimum requirements in terms of market

capitalization, free-float, liquidity, availability to foreign investors and length of trading.

The database includes the following 23 developed markets: Australia, Austria, Belgium,

Canada, Denmark, Finland, France, Germany, Greece, Hong Kong, Ireland, Italy, Japan,

Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland, the

United Kingdom and the United States. A market is classified as developed if i) the coun-

try GNI per capita is 25% above the World Bank high income threshold for 3 consecutive
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Figure 2: Complete linkage dendrogram for autocorrelation-based based distances between
the generated series.
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years, ii) there is a minimum number of companies satisfying minimum size and liquidity

requirements, and iii) there is a very high openness to foreign ownership, ease of capital

inflows/outflows, efficiency of the operational framework and stability of institutional frame-

work. The database also includes the following 23 emerging markets: Argentina, Brazil,

Chile, China, Czech Republic, Colombia, Egypt, Hungary, India, Indonesia, Israel, Korea,

Malaysia, Mexico, Morocco, Peru, Philippines, Poland, Russia, South Africa, Taiwan, Thai-

land and Turkey. To be included in the emerging category, a market must satisfy size and

liquidity requirements, and market accessibility criteria that are less tight than those for

their counterparts in developed economies.1

Although for some developed markets the database includes observations that date back

to year 1979, only observations from year 1995 onwards are available for the complete set of

developed and emerging markets. The data employed in the analysis consists of daily index

prices from 1995:01 to 2009:12, corresponding to 3,914 observations.2 In the event of days

where there is a market holiday, the index construction methodology simply carries forward

the index value from the previous business day. In some countries the number of market

holidays can be quite large (for example, the data for Egypt includes 914 market holidays).

Therefore, repeated observations were removed from the data in order to remove potential

biases associated to nontrading days.

Summary statistics (size, annualized mean, annualized standard deviation, skewness and

kurtosis coefficients) of daily percentage rates of return, log(pt/pt−1) × 100, where pt is the

index price at time t, for developed and emerging markets are reported in Tables 1 and 2,

respectively. The mean return and the standard deviation of the returns for emerging markets

(10.07% and 29.33%) are higher than those for developed markets (4.29% and 22.95%),

reflecting the risk/return trade-off suggested by finance theory. Several markets (i.e., Ireland,

Japan, Norway, China, Philippines, Taiwan and Thailand) exhibit negative mean returns in

this period. Most developed markets exhibit negative skewness coefficients, indicating that

return distributions in these markets typically have longer negative than positive tails. On

the other hand, almost half of the emerging markets exhibit positive skewness. The returns

series for the developed markets of Austria, Belgium, Canada, Hong-Kong, Ireland, Norway,

New Zealand, Portugal and United States, and for the emerging markets of Brazil, Chile,

Colombia, Czech Republic, Hungary, Indonesia, Malaysia, Philippines, Russia and Thailand

are highly leptokurtic, which means that extreme events occur with increasing frequency.

1For details see www.mscibarra.com
2Note that this sample covers the period posterior to the movement towards financial liberalization

experienced by many emerging economies in the late 80’s and early 90’s (see Kim and Singal, 2000).
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Market size mean (%) stdev (%) skew kurt

Australia 3797 6.02 16.62 -0.418 9.071
Austria 3713 1.78 22.85 -0.349 13.344
Belgium 3803 1.75 21.44 -0.588 14.154
Canada 3776 8.12 20.08 -0.636 11.563
Denmark 3755 8.89 20.25 -0.332 9.028
Finland 3758 7.71 37.43 -0.360 8.969
France 3804 5.52 22.93 -0.063 7.706
Germany 3795 4.62 24.56 -0.101 7.383
Greece 3742 4.29 27.70 -0.118 7.074
Hong-Kong 3703 3.89 27.02 0.026 11.434
Ireland 3777 -3.18 25.55 -0.722 15.672
Italy 3796 2.85 22.68 -0.062 7.916
Japan 3686 -3.25 22.44 -0.133 8.445
Netherlands 3819 4.10 23.21 -0.182 7.998
Norway 3767 -0.92 18.14 -0.632 18.228
New Zealand 3763 5.83 25.02 -0.564 10.054
Portugal 3770 4.09 17.76 -0.278 11.423
Singapore 3765 1.83 22.80 0.030 8.460
Spain 3774 10.15 23.29 -0.132 7.834
Sweden 3762 8,67 26.66 0.091 6.398
Switzerland 3769 6.25 19.73 -0.102 8.561
United Kingdom 3792 3.60 19.31 -0.174 9.399
United States 3778 6.00 20.34 -0.214 11.125

Average 3768 4.29 22.95 -0.261 10.054

Table 1: Summary statistics of daily percentage rates of return for developed markets: num-
ber of observations (size), annualized mean (mean), annualized standard deviation (stdev),
skewness (skew) and kurtosis (kurt).
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Market size mean (%) stdev (%) skew kurt

Argentina 3721 12.58 37.11 -0.066 9.488
Brazil 3711 15.44 33.56 0.333 13.417
Chile 3741 6.62 18.07 0.331 13.081
China 3834 -0.56 34.22 0.035 8.074
Colombia 3637 16.94 22.98 0.178 14.630
Czech Republic 3741 8.52 25.18 -0.359 12.167
Egypt 3000 16.96 26.19 -0.251 7.940
Hungary 3744 16.76 31.95 -0.379 11.200
India 3683 10.42 27.65 -0.139 8.311
Indonesia 3659 11.65 33.97 -0.130 11.277
Israel 3890 8.70 23.62 -0.354 7.843
Korea 3703 6.50 34.07 0.020 6.590
Malaysia 3697 2.11 25.35 0.763 44.721
Mexico 3771 16.44 25.97 0.099 7.844
Morocco 3668 8.69 13.29 -0.063 9.031
Peru 3744 14.97 29.08 -0.136 9.618
Philippines 3706 -1.24 25.95 0.350 12.333
Poland 3755 6.60 29.39 -0.115 5.159
Russia 3841 13.40 52.17 -0.367 12.633
South Africa 3746 9.06 21.42 -0.413 7.811
Taiwan 3690 -0.11 26.92 -0.024 5.030
Thailand 3675 -4.10 37.75 0.661 13.321
Turkey 3731 35.36 43.72 0.034 7.532

Average 3699 10.07 29.33 0.000 11.265

Table 2: Summary statistics of daily percentage rates of return for emerging markets: num-
ber of observations (size), annualized mean (mean), annualized standard deviation (stdev),
skewness (skew) and kurtosis (kurt).
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4.2 Testing individual markets

The test statistics M1(k), M2(k), R1(k), R2(k) and S1(k) were computed using the daily

returns of the 46 indices. Four lags were considered, k = 2, 5, 10, 20, corresponding to two

days, one week, two weeks and one month calendar periods, respectively. Lo and MacKinlay

(1988) and Wright (2000) tests are individual tests in which the random walk hypothesis

is rejected if the test statistic is rejected for any of the pre-defined values of k. Chow and

Denning (1993) argue that performing individual tests using several values of k may lead to

an over rejection of the null-hypothesis above the nominal level of significance. To overcome

the size distortion of individual tests they suggest a joint version of Lo and MacKinlay

(1988) test in which the decision concerning the null hypothesis is taken on the basis of the

maximum absolute value of the vector of test statistics. For instance, if individual tests are

evaluated using m lags ki, i=1,...,m, then the joint test statistics are

M ′
1 = max

i=1,...,m
|M1(ki)|, (14)

M ′
2 = max

i=1,...,m
|M2(ki)|.

Chow and Denning (1993) show that M ′
1 and M ′

2 follow a studentized maximum modulus

distribution with m and T degrees of freedom. When T is large the critical value is obtained

from the [1− (α∗/2)]th percentile of the normal distribution, where α∗ = 1− (1−α)1/m and

α is the expected level of significance. In the spirit of Chow and Denning (1993), analogous

joint tests can be devised for rank- and sign-based variance ratio tests

R′
1 = max

i=1,...,m
|R1(ki)|, (15)

R′
2 = max

i=1,...,m
|R2(ki)|,

S ′
1 = max

i=1,...,m
|S1(ki)|.

The sampling distribution and critical values of the joint tests R′
1, R

′
2 and S ′

1 can be derived

from simulation in the same fashion as they are obtained for the individual tests R1(k), R2(k)

and S1(k). Through Monte Carlo simulations Belaire-Franch and Contreras (2004) show that

these tests have good size and power properties against several stochastic processes. In this

study, the critical values for these tests were simulated through 10,000 replications.

In order to understand how the clustering pattern evolves in the period covered by our

data, we analyze three 5-years sub-samples covering the periods from 1995 to 1999, from
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1995-1999 2000-2004 2005-2009
M ′

1 M ′
2 R′

1 R′
2 S′

1 M ′
1 M ′

2 R′
1 R′

2 S′
1 M ′

1 M ′
2 R′

1 R′
2 S′

1

Australia • • • •
Austria • • • •
Belgium • • • • • • •
Canada • • • • • • •
Denmark • • •
Finland • • • •
France • • • • •
Germany
Greece • • • • • • • • • • • •
Hong Kong •
Ireland • • • •
Italy
Japan • •
Netherlands
New Zealand • • • • •
Norway • • •
Portugal • • • • • • •
Singapore • • • • •
Spain • • • • •
Sweden • • •
Switzerland • •
U. Kingdom • • • • • • • • • •
U. States • • • • • •

Table 3: Results of the conventional, rank-based and sign-based variance ratio tests for devel-
oped markets, and for three different periods: 1995-1999, 2000-2004 and 2005-2009. A bullet
(•) indicates that the random walk hypothesis was rejected with a statistical significance of
5%.
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1995-1999 2000-2004 2005-2009
M ′

1 M ′
2 R′

1 R′
2 S′

1 M ′
1 M ′

2 R′
1 R′

2 S′
1 M ′

1 M ′
2 R′

1 R′
2 S′

1

Argentina • • • • • • • •
Brazil • • • •
Chile • • • • • • • • • • • • • •
China • • • • • • •
Colombia • • • • • • • • • • • • • •
Czech Rep. • • • • • •
Egypt • • • • • • • • • • • • • • •
Hungary • • • • • • • •
India • • • • • • • • • • • • •
Indonesia • • • • • • • • • • • • • •
Israel • • • • • •
Korea • • • • •
Malaysia • • • • • • • • • • • •
Mexico • • • • • • • • • • • •
Morocco • • • • • • • • • • • • • • •
Peru • • • • • • •
Philippines • • • • • • • • • • • • • •
Poland • • • • •
Russia • • • • • • •
South Africa • • • • • • • • •
Taiwan
Thailand • • • • • • • • • •
Turkey • • • •

Table 4: Results of the conventional, rank-based and sign-based variance ratio tests for
emerging markets, and for three different periods: 1995-1999, 2000-2004 and 2005-2009. A
bullet (•) indicates that the random walk hypothesis was rejected with a statistical signifi-
cance of 5%.
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2000 to 2004, and from 2005 to 2009.3 The results of testing the random walk hypothesis

with statistics M ′
1, M

′
2, R

′
1, R

′
2 and S ′

1, for developed and emerging markets are shown in

Tables 3 and 4, respectively. For a given test statistic and market, a bullet (•) indicates

that the null hypothesis that the return series follows a random walk is rejected with a

statistical significance of 5%. Tables 3 and 4 provide evidence for the conventional belief

that index returns in emerging markets are typically more predictable that those in developed

markets, as a result of the lower trading volumes and liquidity, and higher levels of regulatory

restrictions. On the other hand, these results do not substantiate Griffin et al. (2010). This

study found small differences between developed and emerging markets, for both stocks and

portfolios, using individual Lo and MacKinlay (1988) variance ratio statistics covering the

period from 1994 through 2005.

Nevertheless, some markets do not conform to this pattern. For instance, in the period

1995-1999 all test statistics reject the null hypothesis in the developed markets of Belgium,

Greece, Portugal, Singapore and Spain, providing strong evidence in favor of predictability

in this period. On the other hand, all tests fail to reject the null hypothesis for the market

Taiwan, which is included in the emerging markets group. Also, from 2000 to 2009, all tests

fail to reject the null for the market of Korea. This is no surprise since these markets have

developed past the emerging market phase, despite the classification as emerging by MSCI.

The evolution of the test results across the three periods suggests a decrease of the

predictability of returns in the past years. In most developed markets and many emerging

markets the number of tests that fail to reject the random walk hypothesis decreases over

time. The number of developed markets in which all tests fail to reject the null hypothesis

increased from 8 in the first period to 14 in the most recent period. In the emerging markets

group, this figure increased from 1 in the period 1995-1999 to 10 in the period 2005-2009.

Remarkably, in the most recent period several tests reject the null in mature markets such

as Australia, Canada, United Kingdom, and the United States.

4.3 Multidimensional scaling maps

Figure 3 shows 2-dimensional scaling maps for the three subperiods. In order to better visu-

alize and interpret similarities among equity markets, we removed outliers which exhibited

very large absolute values of the test statistics. In particular, we dropped the markets of

3Because the sampling theory of variance ratio tests is based on asymptotic approximations, a minimum
number of observations in each subperiod is necessary. This division results in around 1250 observations in
each period, a sample size that guarantees reasonably high power of the joint variance ratio tests (Belaire-
Franch and Contreras, 2004).
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Morocco and Colombia from the clustering analysis in subperiods 1995-1999, 2000-2004 and

2005-2009, the market of Chile in subperiods 2000-2004 and 2005-2009, and the markets of

Egypt and Malaysia in subperiod 2005-2009.

The plot on the top of Figure 3 shows the multidimensional scaling (MDS) map for the

first period: 1995-1999. On the right hand side of the map, standing at larger values on

the horizontal axis (Dimension 1), one can identify a cluster containing Canada and the

United States, several developed markets from western Europe (Austria, Denmark, Finland,

France, Germany, Italy, Netherlands, Norway, Spain, Sweden, Switzerland and the United

Kingdom) and the most developed markets from the Pacific Rim (Australia, Hong-Kong,

Korea, Japan, New Zealand and Taiwan). The comparison of this cluster with the leftmost

panels in Tables 3 and 4 provides an interesting result. While this cluster contains most

developed markets in which at least one test statistic failed to reject the null hypothesis that

the return series conforms to a random walk, it only contains the single emerging market

in which all test statistics failed to reject the null (i.e., Taiwan). The exceptions to this

pattern are the markets of Spain, for which all tests reject the null, and Ireland which stands

between the main cluster of developed markets and the remaining developed markets.

In contrast to the developed markets, many emerging markets in which at least one test

statistic fails to reject the null (i.e., Brazil, Hungary, Israel, Malaysia, Mexico, South Africa

and Turkey) are displaced from this cluster. On the other hand, while all test statistics

fail to reject the null in the developed market of Spain, nevertheless, it is grouped with

the cluster of developed markets. Therefore, it appears that this procedure can capture

similarities between markets with similar levels of development that single variance ratio

tests fail to detect. On the left of this cluster, scattered more or less evenly across lower

values of Dimension 1, one can find most emerging markets and four smaller developed

markets (Belgium, Greece, Portugal and Singapore). Larger values of Dimension 1 appear

to be directly related to lower levels of stock market predictability and, in fact, this dimension

explains 86.7% of the total variance of the scaled data.

The plot in the middle of Figure 3 shows the MDS map for the period 2000-2004. The

visual inspection of this map reveals a large cluster containing all developed markets with

the exception of Greece. Corroborating this observation, Table 3 shows that Greece is the

only developed country in which all test statistics failed to reject the null hypothesis that the

return series is a random walk. We can find eight emerging markets with Dimension 1 values

within the range of the developed markets (Brazil, China, Hungary, Korea, Poland, Russia,

Turkey and Taiwan). Interestingly, while exactly the same tests reject the null hypothesis

19



HK

POL

NET

JAP

AUST

FRA

ARG

GER

IND
NOR

UK

CHIN

US
SWE

GRE

IRE
THA

HUN

SPA

KOR

BRA

FIN

TAI

MEX
BEL

CHIL
DEN

SING

ITA

INDO

SAPER

NZ

SWI

TUR

PHI

RUS

AUS

ISR

POR

CR

CAN

MAL

EGY
−

2
−

1
0

1
2

D
im

en
si

on
 2

 (
6.

0%
)

−8 −6 −4 −2 0 2 4 6
Dimension 1 (86.7%)

1995−1999

FIN
HK

HUN

FRA

GER

EGY

CANCR

THA

US

CHIN

POR

SA

SPA
DEN

POL

INDO

ITA

BRA

SWE
KOR

NZ

AUST

SING

PER

UKNETTAI

GRE

JAP

ISR

IND

MEX

IRE
SWI

RUS

AUS
TUR

ARG

NOR

MAL

PHI
BEL

−
2

−
1

0
1

2
D

im
en

si
on

 2
 (

6.
9%

)

−8 −6 −4 −2 0 2 4 6
Dimension 1 (84.1%)

2000−2004

CHIN

ITA

JAP

TUR

FRA

SWE FIN

GRE

DEN

INDO

GER

NET

UK

AUST

AUS

NZ SING

NOR

TAI
HK

SPA KOR

ARG
SA

CAN

PERCR
BRA

SWI

POL

PHI

POR

US HUN
RUS

MEX

IND
IRE

THA

ISR

BEL

−
3

−
2

−
1

0
1

2
3

D
im

en
si

on
 2

 (
9.

9%
)

−8 −6 −4 −2 0 2 4 6
Dimension 1 (73.4%)

2005−2009

Figure 3: Two-dimensional maps of global stock markets by metric multidimensional scaling.
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Figure 4: Dendrograms for Euclidean distances between international stock markets.

in the markets of France and Argentina, the former is found in the cluster of developed

markets and the latter is found at a considerable distance from this cluster. Finally, the plot

in the bottom of Figure 3 shows the MDS map for the most recent period. Apart from a

reflection about the vertical axis, this map reveals a clustering pattern resembling those of

the previous periods. A cluster containing most developed markets can be found at negative

values of Dimension 1. As in the first period, the three European markets of Belgium,

Greece and Portugal stand in the cluster of emerging markets. Interestingly, the market of

the United States is the farthermost from the emerging markets cluster, despite having four

tests rejecting the null during this period. Among the cluster of developed markets one can

find the emerging markets of Brazil, Czech Republic and South Africa.
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Duda-Hart Clusters
Period #clusters Je(2)/Je(1) pseudo-t2 1 2 3 4 5

1995-1999 1 0.4108 60.24 44
2 0.3945 21.48 28 16
3 0.5650 20.02 28 9 7
4 0.5133 4.74 20 9 8 7
5 0.7229 6.90 20 9 8 6 1

2000-2004 1 0.4465 50.83 43
2 0.5276 17.01 22 21
3 0.5685 15.18 22 17 4
4 0.5829 10.74 17 15 7 4
5 0.6343 7.49 15 12 7 5 4

2005-2009 1 0.5448 32.59 41
2 0.6494 15.65 31 10
3 0.7792 5.10 20 11 10
4 0.6732 3.88 14 11 10 6
5 0.5844 8.53 14 11 9 6 1

Table 5: Cluster solutions for Duda-Hart Je(2)/Je(1) index. The values in the rightmost
cells are the number of markets for each cluster solution.

4.4 Dendrogram analysis

Figure 4 shows the dendrograms for periods 1995-1999, 2000-2004, and 2005-2009 obtained

by the complete linkage method, which minimizes the maximum distance between equity

markets in the same group. We have computed the Duda-Hart Je(2)/Je(1) indices and the

associated pseudo-t2 statistics to determine the optimal cluster solutions, as shown in Table 5.

The appropriate number of clusters is determined by the largest Duda-Hart Je(2)/Je(1)

values. The results in Table 5 suggest five clusters for periods 1995-1999 and 2000-2004, and

three clusters for period 2005-2009.

Table 6 shows how the stock markets are grouped in these clusters. In period 1995-1999,

cluster 1 includes 11 developed markets (Austria, Canada, Denmark, Finland, Hong-Kong,

Ireland, Italy, New Zealand, Spain, Sweden and Switzerland) and nine emerging markets

(Argentina, Brazil, Hungary, Israel, Korea, Malaysia, Mexico, Taiwan and Turkey). In

cluster 2 we can find seven emerging markets (India, Indonesia, Peru, Philippines, Poland

and South Africa) and three developed markets (Belgium, Greece and Singapore). Cluster 3

includes the indices with the largest market capitalizations, such as the United States, Japan,

United Kingdom, Germany and France, together with the Netherlands and Norway. Cluster

4 contains five emerging markets (Chile, China, Czech Republic, Russia and Thailand) and
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1995 - 1999

cluster 1 Austria Canada Denmark Finland Hong-Kong Ireland Italy New Zealand
Spain Sweden Switzerland Argentina Brazil Hungary Israel Korea
Malaysia Mexico Taiwan Turkey

cluster 2 Belgium Greece Singapore India Indonesia Peru Philippines Poland S.
Africa

cluster 3 France Germany Japan Netherlands Norway United Kingdom United
States

cluster 4 Portugal Chile China Czech R. Russia Thailand

cluster 5 Egypt

2000 - 2004

cluster 1 Australia Belgium Canada Denmark Finland Italy Japan Sweden Switzer-
land Brazil Hungary Korea Poland Russia Turkey

cluster 2 Austria Ireland Hong-Kong New Zealand Portugal Singapore Argentina
China Czech R. Israel Peru Taiwan

cluster 3 France Germany Norway Netherlands Spain United Kingdom United
States

cluster 4 Indonesia Mexico Philippines S. Africa Thailand

cluster 5 Greece Egypt India Malaysia

2005 - 2009

cluster 1 Australia Canada Finland France New Zealand Sweden Switzerland
United Kingdom United States Brazil

cluster 2 Austria Belgium Greece Portugal Argentina Hungary India Indonesia
Peru Philippines Thailand

cluster 3 Denmark Germany Hong Kong Ireland Italy Japan Netherlands Norway
Singapore Spain China Czech R. Israel Korea Mexico Poland S. Africa
Taiwan Turkey

Table 6: Distribution of stock markets in the cluster solutions identified with the Duda-Hart
stopping-rule index.
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one developed market (Portugal). Finally, cluster 5 is formed by the market of Egypt. Note

that, in the MDS map corresponding to this period this market can be found at a large

distance from all other markets.

The clustering results over the period 2000-2004 suggest again five distinct groups. Clus-

ter 1 includes nine developed markets (Australia, Belgium, Canada, Denmark, Finland, Italy,

Japan, Sweden and Switzerland) and six emerging markets (Brazil, Hungary, Korea, Poland,

Russia and Turkey). In cluster 2 we can find six emerging markets (Argentina, Czech Repub-

lic, China, Israel, Peru, Taiwan), three developed European markets (Austria, Ireland and

Portugal) and three developed Pacific Rim markets (Hong-Kong, New Zealand and Singa-

pore). Again, cluster 3 groups many of the markets with the largest market capitalizations.

Interestingly, Japan is no longer included in this group. This is consistent with the corre-

sponding MDS map, in which the market of Japan is found at a reasonable distance from

other large capitalization markets. Cluster 4 only contains emerging markets (Indonesia,

Mexico, Philippines, South Africa and Thailand), and cluster 5 is formed by the markets

with lowest Dimension 1 values in the MDS map: Egypt, India, Malaysia and Greece.

In contrast to the previous periods, the cluster solution for period 2005-2009 indicates a

separation of equity markets into three clusters. One cluster is formed by most developed

markets (Australia, Canada, Finland, France, New Zealand, Sweden, Switzerland, United

Kingdom and United States) and Brazil. A second cluster is formed by seven emerging

markets (Argentina, Hungary, India, Indonesia, Peru, Philippines and Thailand) and four

developed European markets (Austria, Belgium, Greece and Portugal). A third cluster is

formed by the remaining developed and emerging markets.

5 Conclusions

In this paper, we introduced a new distance measure for clustering time series which is

based on variance ratio statistics. The proposed metric attempts to gauge the level of

interdependence of time series from the point of view of return predictability. Simulation

results show that a variance ratio-based metric aggregates better time series according to

their serial dependence structure than a metric based on the sample autocorrelations. An

empirical application of this approach to a large set of 46 international stock market returns

was presented. The examination of individual variance ratio statistics provided further

evidence for the conventional belief that the returns of emerging stocks markets are usually

more predictable than those of their developed counterparts. It was also found that in the
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period covered by the data there was a trend towards greater unpredictability of returns in

both developed and emerging markets. Groups of markets were identified by visual inspection

of two-dimensional scaling maps and by cluster solutions given by the Duda-Hart stopping-

rule index. The propose metric clustered reasonably well the stock markets according to

their size and level of development. It also provided interesting insights that the analysis of

single variance ratios failed to capture.

While this analysis was conducted using specific variance ratio tests and pre-determined

lag orders, future studies can explore alternative variance ratio tests, such as those with

automatic selection of the optimal holding period (see, Kim, 2009; Charles et al., 2011).

Furthermore, future studies could attempt to relate our clustering metric to factors that

may affect market efficiency, such as regulatory restrictions, freedom of capital movements,

and trade openness (see, Lim and Kim, 2011).
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